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Abstract. We report an unexpected systematic degeneracy between different
multiplets in an inversion symmetric system of two coupled Gaudin models with
homogeneous couplings, as occurring for example in the context of solid state
quantum information processing. We construct the full degenerate subspace
(being of macroscopic dimension), which turns out to lie in the kernel of the
commutator between the two Gaudin models and the coupling term. Finally we
investigate to what extend the degeneracy is related to the inversion symmetry
of the system and find that indeed there is a large class of systems showing the
same type of degeneracy.
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1. Introduction

In a large variety of nanostructures spins couple to a bath of other spin degrees of
freedom. Commonly such systems are described by so-called central spin models.
Important examples are given by semiconductor [1, 2, 3, 4] and carbon nanotube [5]
quantum dots, phosphorus donors in silicon [6], nitrogen vacancy centers in diamond
[7, 8, 9] and molecular magnets [10]. Motivated by the perspective to utilize the
central spins as qubits [11, 12] or to effectively access the bath spins via the central
spins [13, 14], presently central spin models are the subject of extensive theoretical
as well as experimental research. However, their importance in a more mathematical
context became clear already several decades ago, when Gaudin proved the Bethe
ansatz integrability of the central spin model with one central spin (Gaudin model)
[15]. Since then they are in the focus of the important field of quantum integrability
[16, 17, 18, 19, 20, 21].

It is well-known that the energy levels of a quantum system usually tend to repel
each other and degeneracies are exceptional events [22]. Hence there are only extremely
few examples of systems with degenerate eigenstates and even less, whose eigenstates
are systematically degenerate. Famous examples are given by the hydrogen atom [23],
the n-dimensional harmonic oscillator [24] or the Haldane-Shastry model [25, 26]. In
all three cases the degeneracies are due to hidden symmetries requiring a dedicated
analysis.

In the present work we we study the spectrum of an inversion symmetric central
spin model consisting of two coupled Gaudin models with homogeneous coupling
constants, meaning they are chosen to be equal to each other. In order to lower
the dimension of the problem, the baths of the two Gaudin models are approximated
by single long spins, which does not change the set of eigenvalues of the Hamiltonian.
Surprisingly, the resulting Hamiltonian exhibits systematically degenerate multiplets
of consecutive total angular momentum and alternating parity, a situation somewhat
similar to the degenerate multiplets of orbital angular momentum in the hydrogen
atom.

The outline of the paper is a follows. The degeneracies in the coupled Gaudin
models are first analyzed in a numerical approach in Sec. 2. In Sec. 3 we analytically
construct the full subspace of degenerate states which turns out to be located in the
kernel of the commutator between the two Gaudin models and the coupling term.
In Sec. 4 we furthermore investigate the role of the inversion symmetry and show
that indeed there is a whole class of systems with spectra showing the same type of
degeneracy.

2. Model and spectral properties

The Gaudin model [15] describes the coupling of a central spin ~Si to a set of ni bath

spins ~Iji

Hi = ~Si

ni∑
j=1

Aji
~Iji , (1)

via some coupling constants Aji , which have the unit of energy. In the following we

choose the couplings to be homogeneous, i.e. Aji = Ai. In this case the central spin



Unexpected systematic degeneracy in coupled Gaudin models 3

couples to a simple sum of spins, denoted by ~Ii from now on. Furthermore we assume
Si = 1/2. Coupling together two such Gaudin models HG := H1 +H2 by

Hc = Jex~S1
~S2 (2)

finally yields the Hamiltonian subject to our investigation:

H = HG +Hc = A1
~S1
~I1 +A2

~S2
~I2 + Jex~S1

~S2. (3)

The parameter Jex can be viewed as an exchange coupling. Obviously the Hamiltonian
conserves the total spin ~J = ~S1 + ~S2 + ~I1 + ~I2 as well as ~I21 and ~I22 .

The ni bath spins couple to different values Ii of the total bath spin squared.
In the following we study the spectrum of the Hamiltonian for A1 = A2 = A, where
A := (1/2)(A1 + A2), on subspaces I1 = I2 =: I. On these subspaces, in addition
to the symmetries mentioned above, H is invariant under “inversions”, meaning an
interchange 1↔ 2. It is clear that this is not the case globally, i.e. on the entire Hilbert
space. However, subspaces with I1 = I2 lie fully in the kernel of the commutator [H, τ ],
where τ denotes the inversion operator. Obviously this only has the two eigenvalues
(±1). In the following we refer to this as positive and negative parity.

In order to reduce the dimension of the problem, we approximate each bath by one
single spin of length I. This neglects the quantum numbers associated with a certain
Clebsch-Gordan decomposition of the respective bath and therefore the multiplicity
of the eigenvalues changes, but not the set of eigenvalues itself. Every energy in the
resulting spectrum indeed appears x1x2 times in the spectrum of H, where xi denotes
the number of multiplets with the quantum number Ii. If for example Iji = 1

2 , we
have [27]

xi =

[(
ni

ni

2 − Ii

)
−
(

ni
ni

2 − Ii − 1

)]
. (4)

However, it should be stressed again that the energy eigenvalues themselves remain
unaltered.

In Figs. 1 and 2 we show spectra obtained numerically for different values of the
exchange coupling constant Jex, both for an even and an odd I. Although the spectra
are quite rich in detail, their global structure becomes already plausible from simple
qualitative arguments. Obviously we always have four “branches” of energy levels,
where, in particular for large Jex, three of them form a bundle separated from the
fourth one. The three former branches consist of states where the two central spins
are predominantly coupled to a triplet (which has eigenvalue Jex/4 under Hc) while in
the latter branch the central spins are mainly in the singlet state (having eigenvalue
−3Jex/4 under Hc). The coupling of the central spin triplet and singlet to the bath
spins leads then leads to the observed further energy splittings between and within
the corresponding branches.

An unexpected particular feature, however, occurs in the triplet branch of
intermediate energy. Here all multiplets are energetically completely degenerate with
eigenvalue (Jex − 2A)/4. These multiplets have consecutive total spin between J = 1
and J = 2I and alternating parity. Here positive (negative) parity corresponds to
2I − J being even (odd). The latter observation is reminiscent to the degenerate
multiplets of orbital angular momentum found in the hydrogen problem. In general,
such systematic degeneracies are extremely rare, and hence our finding is interesting
on its own right. Moreover, since the degenerate subspace is of particularly high
dimension, potential applications in, for example, solid state quantum information
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Figure 1. Spectrum of H with baths approximated by two single spins of equal
length I = 20 for different values of the exchange coupling Jex. The energies (in
units of A) are plotted against the total spin J , i.e. each data point represents a
multiplet of 2J + 1 states. States of positive (negative) parity are signalled by a
cross (circle). For all exchange couplings Jex we have four “branches” of energy
levels, where the above three ones originate from triplet states with respect to
Hc and the lower one is associated with the singlet state. The triplet branch
of intermediate energy consists completely degenerate multiplets of alternating
parity.

Figure 2. Analogous data as in Fig. 1 for an odd spin length I = 21. Again we
find a completely degenerate triplet branch.
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processing can be envisaged: It is clear that states with overlap exclusively in a
degenerate subspace do not show any non-trivial time evolution. Therefore, such
spaces have the potential to provide valuable implementations of long lived quantum
memory, where the present one appears to be particularly suitable due to its enormous
size. Note that even in the “thermodynamic limit” I � 1 a fourth of the Hilbert space
is degenerate: The dimension of the full Hilbertspace is 4(2I + 1)2 and the degenerate

subspace HD has dimension
∑2I
n=1(2n+ 1) = 4I(I + 1), yielding

I(I + 1)

(2I + 1)2
≈ 1

4
,

if I � 1. Furthermore, the space of degenerate states detected here decomposes
into subspaces of different parity which could also serve as a computational basis for
quantum information processing.

3. Construction of the degenerate subspace

So far we have reported on numerical observations revealing an unexpected systematic
degeneracy in the spectrum. In the following we analytically construct the subspace
HD of these degenerate multiplets.

3.1. General ansatz and first consequences

As we shall see below, the degenerate states are simultaneous eigenstates of the Gaudin
part HG of the Hamiltonian and the coupling Hc between the central spins. In other
words, HD lies entirely in the kernel of the commutator

[HG, Hc] = −iAJex
(
~S1 × ~S2

)
·
(
~I1 − ~I2

)
. (5)

Let us first turn to a single Gaudin Hamiltonian, Hi = A~Si~Ii, with Si = 1/2 and
Ii = I. The eigenvalues read

E±(A, I) =
A

2

(
±
(
I +

1

2

)
+

1

2

)
, (6)

and the eigenstates are given by a well-known Clebsch-Gordan decomposition [28]

|I ± 1

2
,mi〉 = µ±(mi)| ↑〉|I,mi −

1

2
〉 ± µ∓(mi)| ↓〉|I,mi +

1

2
〉, (7)

where, apart from standard notation, we have introduced

µ±(m) =

√
I ±m+ 1

2

2I + 1
. (8)

The eigenvalues of HG = H1 +H2 now follow immediately

HG|+,m1〉|+,m2〉 =
A

2
(I1 + I2)|+,m1〉|+,m2〉 (9a)

HG|+,m1〉|−,m2〉 = − A

2
|+,m1〉|−,m2〉 (9b)

HG|−,m1〉|+,m2〉 = − A

2
|−,m1〉|+,m2〉 (9c)

HG|−,m1〉|−,m2〉 = − A

2
(I1 + I2 + 2)|−,m1〉|−,m2〉, (9d)
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Figure 3. The different values of m1 and m2 arranged on a grid. The diagonal
lines mark the states with constant magnetization. The dotted bended lines
connect the states with interchanged magnetization, combined in our ansatz
(11). The solid bended lines connect the states which are combined in order
to construct the set of linearly independent eigenstates spanning the eigenspace
to the eigenvalue (J − 2A)/4.

where we abbreviated |I ± 1
2 ,mi〉 =: |±,mi〉. Obviously, the states |±,m1〉|∓,m2〉

are degenerate with the eigenvalue being independent of I. As seen above, the highly
degenerate eigenvalue in the subspace HD is (Jex − 2A)/4. Thus, eigenstates of H
with this eigenvalue can be constructed by simply combining the states |±,m1〉|∓,m2〉
to triplet states with respect to the two central spins, meaning that they lie in the
kernel of (5). At this point it is of course not clear that all eigenstates with the above
eigenvalue are resulting through this approach. However, we will see that this is indeed
the case.

In other words, our goal is to eliminate singlet contributions from suitable linear
combinations of the states |±,m1〉|∓,m2〉. To this end we use an ansatz already
accounting for the conservation of Jz and the parity symmetry by superimposing
states of the form

|+,m〉|−,M −m〉 ± |−,M −m〉|+,m〉 , (10)

where M is the eigenvalue of Jz. All considerations will focus on M ≥ 0, as states
with M < 0 result simply by reversing every spin. In the following analysis one needs
to distinguish the four different cases depending on whether M is even or odd, and
I is integer or half-integer. This case-by-case procedure can be nicely encapsulated
and simplified as follows by introducing i = 2I −M with i = 0, . . . , 2I: In Fig. 3
the possible values of m1 and m2 are arranged on a grid. The diagonal lines mark
the states of constant magnetization M = 2I − i, where we refer to the maximal
value on such a diagonal as mmax. Obviously, we have mmax = I − 1/2 for i = 2I
and mmax = I + 1/2 otherwise. Following a line of constant magnetization starting
from mmax, one recognizes that from a certain value m = mmin on, all occurring
states result from those with larger values of m by interchanging the respective
magnetizations (m,M −m). In Fig. 3 these “complementary” states are connected
by dotted bended lines. It is easy to see that if i is odd, we have mmin = (2I − i)/2,
whereas for an even value of i we have to add (1/2) so that mmin = (2I − i+ 1)/2. It
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is now a simple fact that there are states which do not have a complement. This is the
case for the states with m = mmax if i 6= 2I and for those with m = mmin provided i
is odd or equal to zero.

With respect to later considerations it turns out to be more convenient to use
an ansatz which is a sum over pairs of complementary states, rather than a direct
superposition of the states (10). Hence we introduce coefficients αm, α

′
m for any state

with m ≥ mmin and its complement and combine them to a sum running from mmin

to mmax:

|±, i〉 :=

mmax∑
m=mmin

[αm (|+,m〉|−, 2I − i−m〉 ± |−, 2I − i−m〉|+,m〉)

+ θ(m)α′m (|+, 2I − i−m〉|−,m〉 ± |−,m〉|+, 2I − i−m〉)] (11)

The complements of the respective m = mmax states automatically vanish, whereas
the function θ(m) accounts for the mmin states without a complement:

θ(m) = Θ(m−mmin − 1) + δ
i mod 2,0

δm,mmin (12)

where the Heavyside function Θ(x) is unity for any x ≥ 0 and zero otherwise.
Clearly, the ansatz (11) is an eigenstate of HG,

HG|±, i〉 = −A
2
|±, i〉, (13)

consisting of triplet and singlet terms. Eliminating the latter by demanding
mmax∑

m=mmin

[(
αmµ

+(m)µ+(2I − i−m)∓ θ(m)α′mµ
−(m)µ−(2I − i−m)

)
×
(
|m− 1

2
, 2I − i−m+

1

2
〉 ∓ |2I − i−m+

1

2
,m− 1

2
〉
)

(14a)

+
(
αmµ

−(m)µ−(2I − i−m)∓ θ(m)α′mµ
+(m)µ+(2I − i−m)

)
×
(
|m+

1

2
, 2I − i−m− 1

2
〉 ∓ |2I − i−m− 1

2
,m+

1

2
〉
)]

= 0, (14b)

we arrive at an eigenstate of Hc.
Let us first consider the two particularly simple cases i = 0 and i = 2I. For

i = 0, i.e. M = 2I, the sum consists of only one term m = I + 1/2. In this case
the contributions related α′I+1/2 to in (14a) and (14b) are vanishing, implying that for
positive parity the unwanted singlet terms are automatically zero. This means that the
largest degenerate multiplet with J = 2I always has positive parity, as demonstrated
by our numerics.

In the other case i = 2I, i.e. M = 0, one easily sees that

µ+(m)µ+(−m) = µ−(m)µ−(−m) . (15)

If i is even, this condition means that for every m the singlet terms can be eliminated
by simply choosing αm = ±α′m. Therefore, in this case we always have an equal
number of multiplets with positive and with negative parity. As mentioned above, for
an odd value of i the summand with m = mmin = 0 does not have a complement.
However, for positive parity the unwanted terms vanish automatically so that the
number of positive multiplets is larger by one than the number of negative multiplets.
In total, we get 2I solutions as suggested by our numerics.
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These solutions result from demanding that the terms in (14a) and (14a) vanish
separately, while, strictly speaking, only their sum is required to be zero. However, it
is indeed simple to see that there are no further solutions: Demanding that the total
sum vanishes leads to the conditions

µ+(m)µ+(−m) (αm ∓ α′m)

= ±µ+(m− 1)µ+(−m+ 1)
(
αm−1 ∓ α′m−1

)
,

and
(
α 1

2
∓ α′1

2

)
=
(
αI− 1

2
∓ α′

I− 1
2

)
= 0, which obviously give the same solutions as

above. In summary, the resulting eigenstates at i = 2I (M = 0) can be formulated
most compactly as

|±, 2I,m〉 := | ↑↑〉
(
|m− 1

2
,−m− 1

2
〉 ± | −m− 1

2
,m− 1

2
〉
)

− | ↓↓〉
(
|m+

1

2
,−m+

1

2
〉 ± | −m+

1

2
,m+

1

2
〉
)
. (16)

That HD lies fully in the kernel of (5) becomes clear at this point: There are 2I
degenerate multiplets with alternating parity, each of which gives one state with
M = 0. Above we constructed states which are superpositions of exactly those states
and lie in kernel of (5). They can be combined to give eigenstates of ~J2, so that HD
can be constructed simply by applying J±. From

[
~J,HG

]
=
[
~J,Hc

]
= 0 it follows[

J±, [HG, Hc]
]

= 0, (17)

meaning that a state resulting from the application of J± to a state lying the kernel
of (5) again lies in the kernel of (5). Therefore the full degenerate subspace is located
there.

3.2. Complete construction

Now we come to the construction of the full degenerate space HD. In an immediate
approach we follow the route described above and combine the states (16) to

eigenstates of ~J2 such that HD can be generated by applying J±. Unfortunately
the construction of ~J2 eigenstates is possible only up the solution of a homogeneous
set of equations with a (symmetric) tridiagonal coefficient matrix, which has to be
carried out numerically. Due to the simple shape of the matrix such a problem has
the very low complexity of O(2I) so that even systems of realistic size with respect
to experimental situations in for example semiconductor quantum dots I ∼ 106 can
be treated on conventional computers [1, 2, 3, 4]. However, in a second approach
we construct a basis of HD in a fully analytical fashion. The resulting basis states
are eigenstates of Jz and τ , but they are neither orthogonal nor do they satisfy the
~J2 symmetry. Nevertheless, for both applied as well as more mathematical future
considerations it will be helpful to have closed analytical expressions at hand.

3.2.1. First approach: Construction of eigenstates of ~J2 with M = 0 As mentioned
above, our first approach consists in using the particularly simple solutions for i = 2I
given in (16) by combining them to eigenstates of ~J2 such that applying the ladder
operators J± generates the full space HD. Hence we demand

~J2

I− 1
2∑

m=mmin

βm|±, 2I,m〉 = J(J + 1)

I− 1
2∑

m=mmin

βm|±, 2I,m〉
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⇔ ~J2

I− 1
2∑

m=mmin

βm|±, 2I,m〉 − J(J + 1)

I− 1
2∑

m=mmin

βm|±, 2I,m〉 = 0.

Explicitly this reads

| ↑↑〉
I− 1

2∑
m=mmin

βm

[(
2I(I + 1)− 2(m+

1

2
)(m− 1

2
)− J(J + 1)

)
×
(
|m− 1

2
,−m− 1

2
〉 ± | −m− 1

2
,m− 1

2
〉
)

(18a)

+ ν+(m− 1

2
)ν−(−m− 1

2
)

(
|m+

1

2
,−m− 3

2
〉 ± | −m− 3

2
,m+

1

2
〉
)

(18b)

+ ν−(m− 1

2
)ν+(−m− 1

2
)

(
|m− 3

2
,−m+

1

2
〉 ± | −m+

1

2
,m− 3

2
〉
)]

(18c)

−| ↓↓〉
I− 1

2∑
m=mmin

βm

[(
2I(I + 1)− 2(m+

1

2
)(m− 1

2
)− J(J + 1)

)
×
(
|m+

1

2
,−m+

1

2
〉 ± | −m+

1

2
,m+

1

2
〉
)

+ ν+(m+
1

2
)ν−(−m+

1

2
)

(
|m+

3

2
,−m− 1

2
〉 ± | −m− 1

2
,m+

3

2
〉
)

+ ν−(m+
1

2
)ν+(−m− 1

2
)

(
|m− 1

2
,−m+

3

2
〉 ± | −m+

3

2
,m− 1

2
〉
)]

= 0,

where ν±(m) =
√
I(I + 1)−m(m± 1) and hence

ν+(m− 1

2
)ν−(−m− 1

2
) = ν+(m+

1

2
)ν−(−m+

1

2
)

ν−(m− 1

2
)ν+(−m− 1

2
) = ν−(m+

1

2
)ν+(−m− 1

2
),

which is plausible, because the | ↑↑〉 and | ↓↓〉 terms must vanish separately. Note
that all components with | ↑↓〉, | ↓↑〉 are equal to zero. It is now simple to see that the
state in (18b) for some m is identical to the one in (18b) for (m+ 1) and to the one in
(18c) for (m + 2). For an even value of i eliminating these terms gives the following
set of equations

βm

[
ν+(m− 1

2
)ν−(−m− 1

2
)

]
+ βm+1

[
2I(I + 1)− 2(m+

3

2
)(m+

1

2
)− J(J + 1)

]
+Θ(I − 3

2
−m)βm+2

[
ν+(m+

3

2
)ν−(−m− 5

2
)

]
= 0

β 1
2

[2I(I + 1)− J(J + 1)± I(I + 1)] + β 3
2

[
ν−(1)ν+(−2)

]
= 0,

where m = 1/2, . . . , I − 3/2. This yields a symmetric tridiagonal matrix. However,
the symmetry of the matrix is destroyed if i is odd. In this case we have

βm(1± δm,0)

[
ν+(m− 1

2
)ν−(−m− 1

2
)

]
+ βm+1

[
2I(I + 1)− 2(m+

3

2
)(m+

1

2
)− J(J + 1)

]
+Θ(I − 3

2
−m)βm+2

[
ν+(m+

3

2
)ν−(−m− 5

2
)

]
= 0

β0

[
2I(I + 1)− J(J + 1)− 1

2

]
+ β1

[
ν−(

1

2
)ν+(−3

2
)

]
= 0,
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where m = 0, . . . , I − 1/2. The two above systems now have to be solved numerically
for the different values of J .

3.2.2. Second approach: Explicit elimination of singlet contributions via ansatz
Our second approach, which in contrast to the above one will lead to closed
analytical expressions for the degenerate eigenstates, consists in directly determining
the constants αm, α

′
m for every value of M . As already used above, considering (14a)

for some m and (14b) for (m− 1), one sees that the respective states become identical
up to a factor (∓1). The idea is now to eliminate these terms systematically, so that
we get a sufficient number of linearly independent eigenvectors. As indicated in Fig.
3 by the solid bended lines, this can be done by simply superposing an increasing
number of successive terms and choosing all other constants to be equal to zero. Of
course these solutions are by no means unique. We just choose the most compact
ones. For an odd value of i this yields the following quite cumbersome solutions

αI+ 1
2−λ

= (−1)κ−λ(∓1)κ−λ−1Nκ

[
µ+(I +

1

2
− λ)µ+(I − i− 1

2
+ λ)

∓µ−(I +
1

2
− λ)µ−(I − i− 1

2
+ λ)

]−1
, (19)

where λ = 0, . . . , (κ− 1) and

Nκ =



[
µ−(I +

1

2
− κ)µ−(I − i− 1

2
+ κ)−

(
µ+(I + 1

2
− κ)µ+(I − i− 1

2
+ κ)

)2
µ−(I + 1

2
− κ)µ−(I − i− 1

2
+ κ)

]
αI+ 1

2
−κ[

(µ+(I − i

2
))2 ∓ (µ−(I − i

2
))2
]
αI− i

2
,

where the first line refers to κ = 1, . . . , (i − 1)/2 and the second line applies to
κ = (i + 1)/2. For even i and negative parity the solution coincides with the first
line of (3.2.2), where now κ = 1, . . . , i/2. Considering positive parity we get:

Nκ =



[
µ−(I +

1

2
− κ)µ−(I − i− 1

2
+ κ)−

(
µ+(I + 1

2
− κ)µ+(I − i− 1

2
+ κ)

)2
µ−(I + 1

2
− κ)µ−(I − i− 1

2
+ κ)

]
αI+ 1

2
−κ[

µ+(I − i

2
+

1

2
)µ+(I − i

2
− 1

2
)− µ−(I − i

2
+

1

2
)µ−(I − i

2
− 1

2
)

]
αI− i

2
+ 1

2

with κ = 1, . . . , (i − 2)/2 for the first line and κ = i/2 for the second one. Due to
the presence of an α′mmin

term, in contrast to the case of an odd i, here we have an
additional solution. This results by simply choosing all constants to be equal to zero
except for αmmin

and α′mmin
, which are determined by eliminating the (14b) term:

α′I− i
2+

1
2

= ∓
µ−(I − i

2 + 1
2 )µ−(I − i

2 −
1
2 )

µ+(I − i
2 + 1

2 )µ+(I − i
2 −

1
2 )
αI− i

2+
1
2

(20)

Note that all the remaining constants are determined by the normalization condition.
Let us give a brief discussion of the above results. With respect to subspaces of fixed i,
the degeneracies shown in Figs. 1 and 2 yield the pattern shown in Tab. 1. Obviously
for any i there are (i + 1) states. If i is odd, there is an equal number of states with
positive and with negative parity, whereas for an even value of i the number of states
with positive parity is larger by one than the number of states with negative parity.
This is perfectly reproduced by our solutions: For an odd i the index κ in (3.2.2) runs
up to (i + 1)/2 for each parity, meaning that there are (i + 1) solutions in total. If i
is even, (3.2.2) yields i/2 solutions for each parity and an additional one for positive
parity.
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i τ
0 +
1 +-
2 +-+
3 +-+-

. . .

Table 1. Numerically detected degeneracy pattern.

4. The role of the inversion symmetry

In the preceding section we have constructed the full degenerate subspace by
determining the coefficients in (11) so that we arrive at triplet states of the two
central spins. Obviously, such a construction is still possible if inversion symmetry
is broken. Note that if I1 6= I2, additional labels for the spin length have to be
introduced in (8) and (9). However, it is simple to see that in general our states are
no longer eigenstates with respect to HG, because the degeneracy between the HG

eigenstates |±,m1〉|∓,m2〉 is lifted. Indeed this can be easily recovered by demanding
E+(A1, I1) + E−(A2, I2) = E−(A1, I1) + E+(A2, I2), yielding the quite remarkable
relation

A1dim (H1) = A2dim (H2) , (21)

where dim (Hi) = 2Ii + 1 denotes the dimension of the Hilbert space associated

with Ii. Note that the bath spins
∑ni

j=1
~Iji couple to different values of Ii so that,

by a corresponding choice of A1, A2, several different degenerate subspaces can be
constructed.

Relation (21) means that the inversion symmetric case is only an example of a
whole class of systems exhibiting the same type of systematic degeneracy. In Fig. 4
we plot the relevant part of the spectrum for I1 6= I2 with I2 > I1. In the upper panel
the couplings violate (21) and consequently the degeneracy between the multiplets
is lifted. In the bottom panel it is recovered by choosing A1, A2 according to (21),
leading to

A1 =
1 + 2I2

I1 + I2 + 1
A (22a)

A2 =
1 + 2I1

I1 + I2 + 1
A. (22b)

In direct analogy to the inversion symmetric case the branch begins at (I1 + I2) and
ends at (I2 − I1 + 1).

The relation (21) has a concrete physical meaning: Consider a semiconductor
double quantum dot. Here the electron spin interacts with the surrounding nuclear
spins via the hyperfine interaction, yielding a system of two coupled Gaudin models.
The role of the couplings A1, A2 is played by the overall coupling strengths of the
respective dots, given the sum of all hyperfine coupling constants (which depend on
the properties of the respective material). The size of the Hilbert spaces results from
the spatial extent of the respective electron wave function. If it is e.g. stretched
over a larger area, each individual coupling decreases, but the sum remains unaltered.
Hence, in an approximative sense, the relation (21) can always be realized by properly
adjusting the electron wave function.
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Figure 4. Formerly degenerate branch of the spectrum for I = 20 and J = 25A.
The inversion symmetry is broken by choosing I1 6= I2. The deviation from
the degenerate case is stronger for multiplets with a small value of the quantum
number J than for those with a large value. The bottom panel shows the spectrum
with the degeneracy recovered by choosing A1 6= A2 due to (22).

With respect to possible future applications of HD it is important to note that
for parameters only weakly violating (21), the multiplets are still nearly degenerate:
Let us fix A1 = A2 and vary I1, I2 so that (21) is violated. From the eigenvalues of
HG it is clear that the degeneracy is lifted in a continuous way. Furthermore, as can
be seen very well in the upper panel of Fig. 4, the influence of I1 6= I2 on multiplets
with small quantum numbers J is much stronger than on those with large values of
J . This is also the case if we analogously choose A1 6= A2.

5. Conclusion

In summary we have reported an unexpected systematic degeneracy in an inversion
symmetric system of two coupled Gaudin models with homogeneous couplings. This
leads to a degenerate subspace of macroscopic size. We have constructed the complete
degenerate subspace, which is fully located in the kernel of the commutator between
the two Gaudin models and their coupling term. Furthermore we have studied the
role of the inversion symmetry. Indeed it turns out that the inversion symmetric
case is only an example for a whole family of systems all of which share the same
type of systematic degeneracy. This exclusively originates in the degeneracy of two
eigenspaces of the Gaudin part of the Hamiltonian, yielding a remarkable relation
between the dimension of the bath Hilbert spaces and the couplings.

Nevertheless, so far we have not been able to detect the (possibly continuous)
symmetry underlying this remarkable degeneracy. i.e. a set of generating operators
that would connect the highly degenerate multiplets. This question remains as an
important but probably rather intricate problem for further studies. Furthermore it
would be fruitful to study applications of the degenerate space especially in the context
of solid state quantum information processing.
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