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Abstract

The subject is the overview of the use of quasi-entropy in finite dimensional

spaces. Matrix monotone functions and relative modular operators are used. The

origin is the relative entropy and the f -divergence, monotone metrics, covariance

and the χ2 divergence are the most important particular cases. The extension of

the monotone metric to two variables is a new concept.
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Quasi-entropy was introduced by Petz in 1985 as the quantum generalization of
Csiszár’s f -divergence in the setting of matrices or von Neumann algebras. The im-
portant special case was the relative entropy of Umegaki and Araki. In this paper the
applications are overviewed in the finite dimensional setting. Quasi-entropy has some
similarity to the monotone metrics, in both cases the modular operator is included, but
there is an essential difference: In the quasi-entropy two density matrices are included
and for the monotone metric on foot-point density matrices. In this paper two density
matrices are introduced in the monotone metric style.

1 Quasi-entropy

Let M denote the algebra of n× n matrices with complex entries. For positive definite
matrices ρ1, ρ2 ∈ M, for A ∈ M and a function f : R+ → R, the quasi-entropy is defined
as

SA
f (ρ1‖ρ2) := 〈Aρ1/22 , f(∆(ρ1/ρ2))(Aρ

1/2
2 )〉

= Tr ρ
1/2
2 (A∗f(∆(ρ1/ρ2))Aρ

1/2
2 ), (1)

1E-mail: petz@math.bme.hu. Partially supported by the Hungarian Research Grant OTKA T068258

and the Mittag-Leffler Institute in Stockholm.

1

http://arxiv.org/abs/1009.2679v1


where 〈B,C〉 := TrB∗C is the so-called Hilbert-Schmidt inner product and ∆(ρ1/ρ2) :
M → M is a linear mapping acting on matrices:

∆(ρ1/ρ2)B = ρ1Bρ−1
2 .

This concept was introduced by Petz in 1985, see [19, 20], or Chapter 7 in [18]. (The
relative modular operator ∆(ρ1/ρ2) was born in the context of von Neumann algebras
and the paper of Araki [1] had a big influence even in the matrix case.) The quasi-
entropy is the quantum generalization of the f -divergence of Csiszár used in classical
information theory (and statistics) [2, 16]. Therefore the quantum f -divergence could
be another terminology as in [10].

The definition of quasi-entropy can be formulated with mean. For a function f the
corresponding mean is defined as mh(x, y) = f(x/y)y for positive numbers, or for com-
muting positive definite matrices. The linear mappings

Lρ1X = ρ1X and Rρ2X = Xρ2

are positive and commuting. The mean mf makes sense and

SA
f (ρ1‖ρ2) = 〈A,mf (Lρ1 , Rρ2)A〉. (2)

Let α : M0 → M be a mapping between two matrix algebras. The dual α∗ : M →
M0 with respect to the Hilbert-Schmidt inner product is positive if and only if α is
positive. Moreover, α is unital if and only if α∗ is trace preserving. α : M0 → M is
called a Schwarz mapping if

α(B∗B) ≥ α(B∗)α(B) (3)

for every B ∈ M0.

The quasi-entropies are monotone and jointly convex [18, 20].

Theorem 1 Assume that f : R+ → R is an operator monotone function with f(0) ≥ 0
and α : M0 → M is a unital Schwarz mapping. Then

SA
f (α

∗(ρ1)‖α∗(ρ2)) ≥ S
α(A)
f (ρ1‖ρ2) (4)

holds for A ∈ M0 and for invertible density matrices ρ1 and ρ2 from the matrix algebra
M.

Proof: The proof is based on inequalities for operator monotone and operator concave
functions. First note that

SA
f+c(α

∗(ρ1)‖α∗(ρ2)) = SA
f (α

∗(ρ1)‖α∗(ρ2)) + cTr ρ1α(A
∗A))

and
S
α(A)
f+c (ρ1‖ρ2) = S

α(A)
f (ρ1‖ρ2) + cTr ρ1(α(A)

∗α(A))

2



for a positive constant c. Due to the Schwarz inequality (3), we may assume that
f(0) = 0.

Let ∆ := ∆(ρ1/ρ2) and ∆0 := ∆(α∗(ρ1)/α
∗(ρ2)). The operator

V Xα∗(ρ2)
1/2 = α(X)ρ

1/2
2 (X ∈ M0) (5)

is a contraction:

‖α(X)ρ
1/2
2 ‖2 = Tr ρ2(α(X)∗α(X))

≤ Tr ρ2(α(X
∗X) = Trα∗(ρ2)X

∗X = ‖Xα∗(ρ2)
1/2‖2

since the Schwarz inequality is applicable to α. A similar simple computation gives that

V ∗∆V ≤ ∆0 . (6)

Since f is operator monotone, we have f(∆0) ≥ f(V ∗∆V ). Recall that f is operator
concave, therefore f(V ∗∆V ) ≥ V ∗f(∆)V and we conclude

f(∆0) ≥ V ∗f(∆)V . (7)

Application to the vector Aα∗(ρ2)
1/2 gives the statement. �

It is remarkable that for a multiplicative α we do not need the condition f(0) ≥ 0.
Moreover, V ∗∆V = ∆0 and we do not need the matrix monotonicity of the function f .
In this case the only condition is the matrix concavity, analogously to Theorem 1. If we
apply the monotonicity (4) to the embedding α(X) = X ⊕ X of M into M ⊕M and
to the densities ρ1 = λE1 ⊕ (1 − λ)F1, ρ2 = λE2 ⊕ (1 − λ)F2, then we obtain the joint
concavity of the quasi-entropy:

Theorem 2 If f : R+ → R is an operator convex, then SA
f (ρ1‖ρ2) is jointly convex in

the variables ρ1 and ρ2.

If we consider the quasi-entropy in the terminology of means, then we can have another
proof. The joint convexity of the mean is the inequality

f(L(A1+A2)/2R
−1
(B1+B2)/2

)R(B1+B2)/2 ≤ 1
2
f(LA1

R−1
B1
)RB1

+ 1
2
f(LA2

R−1
B2
)RB2

which can be simplified as

f(LA1+A2
R−1

B1+B2
)

≤ R
−1/2
B1+B2

R
1/2
B1

f(LA1
R−1

B1
)R

1/2
B1

R
−1/2
B1+B2

+R
−1/2
B1+B2

R
1/2
B2

f(LA2
R−1

B2
)R

1/2
B2

R
−1/2
B1+B2

≤ Cf(LA1
R−1

B1
)C∗ +Df(LA2

R−1
B2
)D∗.

Here CC∗ +DD∗ = I and

C(LA1
R−1

B1
)C∗ +D(LA2

R−1
B2
)D∗ = LA1+A2

R−1
B1+B2

.
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So the joint convexity of the quasi-entropy has the form

f(CXC∗ +DYD∗) ≤ Cf(X)C∗ +Df(Y )D∗

which is true for an operator convex function f [5, 24].

If f is operator monotone function, then it is operator concave and we have joint
concavity in the previous theorem. The book [24] contains information about operator
monotone functions. The standard useful properties are integral representations. The
Löwner theorem is

f(x) = f(0) + βx+

∫

∞

0

λx

λ+ x
dµ(λ) .

An operator monotone function f : R+ → R+ will be called standard if xf(x−1) = f(x)
and f(1) = 1. A standard function f admits a canonical representation

f(t) =
1 + t

2
exp

∫ 1

0

(1− t)2
λ2 − 1

(λ+ t)(1 + λt)(λ+ 1)2
h(λ) dλ, (8)

where h : [0, 1] → [0, 1] is a measurable function [6].

2 Applications

The concept of quasi-entropy includes many important special cases.

2.1 f-divergences

If ρ2 and ρ1 are different and A = I, then we have a kind of relative entropy. For
f(x) = x log x we have Umegaki’s relative entropy S(ρ1‖ρ2) = Tr ρ1(log ρ1 − log ρ2).
(If we want a matrix monotone function, then we can take f(x) = log x and then we
get S(ρ2‖ρ1).) Umegaki’s relative entropy is the most important example, therefore
the function f will be chosen to be matrix convex. This makes the probabilistic and
non-commutative situation compatible as one can see in the next argument.

Let ρ1 and ρ2 be density matrices in M. If in certain basis they have diagonal
p = (p1.p2, . . . , pn) and q = (q1, q2, . . . , qn), then the monotonicity theorem gives the
inequality

Df(p‖q) ≤ Sf (ρ1‖ρ2) (9)

for a matrix convex function f . If ρ1 and ρ2 commute, them we can take the common
eigenbasis and in (9) the equality appears. It is not trivial that otherwise the inequality
is strict.

4



If ρ1 and ρ2 are different, then there is a choice for p and q such that they are different
as well. Then

0 < Df (p‖q) ≤ Sf(ρ1‖ρ2).
Conversely, if Sf(ρ1‖ρ2) = 0, then p = q for every basis and this implies ρ1 = ρ2. For
the relative entropy, a deeper result is known. The Pinsker-Csiszár inequality says that

‖p− q‖21 ≤ 2D(p‖q). (10)

This extends to the quantum case as

‖ρ1 − ρ2‖21 ≤ 2S(ρ1‖ρ2), (11)

see [8], or [24, Chap. 3].

Example 1 The f -divergence with f(x) = x log x is the relative entropy. It is rather
popular the modification of the logarithm as

logβ x =
xβ − 1

β
(β ∈ (0, 1))

and the limit β → 0 is the log. If we take fβ(x) = x logβ x, then

Sβ(ρ1‖ρ2) =
Tr ρ1+β

1 ρ−β
2 − 1

β
.

Since fβ is operator convex, this is a good generalized entropy. It appeared in the paper
[27], see also [18, Chap. 3], there γ is written instead of β and

S(ρ1‖ρ2) ≤ Sβ(ρ1‖ρ2) (β ∈ (0, 1))

is proven.

The relative entropies of degree α

Sα(ρ2‖ρ1) :=
1

α(1− α)
Tr (I − ρα1ρ

−α
2 )ρ2.

are essentially the same. �

The f -divergence is contained in details in the recent papers [25, 10].

2.2 WYD information

In the paper [12] the functions

gp(x) =







1
p(1−p)

(x− xp) if p 6= 1,

x log x if p = 1

5



are used, this is a reparametrization of Example 1. (Note that gp is well-defined for x > 0
and p 6= 0.) The considered case is p ∈ [1/2, 2], then gp is operator concave.

For strictly positive A and B, Jenčová and Ruskai define

Jp(K,A,B) = Tr
√
BK∗ gp(LAR

−1
B )(K

√
B)

which is the particular case of the quasi-entropy SK
f (A‖B) with f = gp.

The joint concavity of Jp(K,A,B) is stated in Theorem 2 in [12] and this is a particular
case of Theorem 2 above. For K = K∗, we have

Jp(K,A,A) = − 1

2p(1− p)
Tr [K,Ap][K,A1−p]

which is the Wigner-Yanase-Dyson information (up to a constant) and extends it to the
range (0, 2].

2.3 Monotone metrics

Let Mn be the set of positive definite density matrices in Mn. This is a manifold and
the set of tangent vectors is {A = A∗ ∈ Mn : TrA = 0}. A Riemannian geometry is
a set of real inner products γD(A,B) on the tangent vectors [17]. By monotone metrics
we mean inner product for all matrix spaces such that

γβ(D)(β(A), β(A)) ≤ γD(A,A) (12)

for every completely positive trace preserving mapping β : Mn → Mm.

Define J
f
D : Mn → Mn as

J
f
D = f(LDR

−1
D )RD = LD mf RD , (13)

where f : R+ → R+ and mf is the mean induced by the function f .

It was obtained in the paper [22] that monotone metrics with the property

γD(A,A) = TrD−1A2 if AD = DA (14)

has the form
γD(A,B) = TrA(JfD)

−1(B) (15)

where f is a standard matrix monotone function. These monotone metrics are abstract
Fisher informations, the condition (14) tells that in the commutative case the classical
Fisher information is required. The popular case in physics corresponds to f(x) =
(1 + x)/2, this gives the SSA Fisher information.

Since

TrA(JfD)
−1(B) = 〈(AD−1)D1/2,

1

f
(∆(D/D))(AD−1)D1/2〉,
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we have
γD(A,A) = SAD−1

1/f (D‖D).

So the monotone metric is a particular case of the quasi-entropy, but there is another
relation. The next example has been well-known.

Example 2 The Boguliubov-Kubo-Mori Fisher information is induced by the function

f(x) =
x− 1

log x
=

∫ 1

0

xt dt.

Then

J
f
DA =

∫ 1

0

(LDR
−1
D )tRDAdt =

∫ 1

0

DtAD1−t dt

and computing the inverse we have

γBKM
D (A,A) =

∫

∞

0

Tr (D + tI)−1A(D + tI)−1Adt.

A characterization is in the paper [4] and the relation with the relative entropy is

γBKM
D (A,B) =

∂2

∂t∂s
S(D + tA‖D + sB).

�

Ruskai and Lesniewski discovered that all monotone Fisher informations are obtained
from an f -divergence by derivation [14]:

γf
D(A,B) =

∂2

∂t∂s
SF (D + tA‖D + sB)

The relation of the function F to the function f in this formula is

1

f(t)
=

F (t) + tF (t−1)

(t− 1)2
. (16)

If D runs on all positive definite matrices, conditions γD(A,A) ∈ R for self-adjoint
A and (14) are not required, but the monotonicity (12) is assumed, then we have the
generalized monotone metric characterized by Kumagai [13]. They have the form

Kρ(A,B) = b(Tr ρ)TrA∗TrB + c〈A, (Jfρ)−1(B)〉,

where f : R+ → R+ is matrix monotone, f(1) = 1, b : R+ → R+ and c > 0.

Let β : Mn ⊗M2 → Mm be defined as
[

B11 B12

B21 B22

]

7→ B11 +B22.

7



This is completely positive and trace-preserving, it is a so-called partial trace. For

D =

[

λD1 0
0 (1− λ)D2

]

, A =

[

λB 0
0 (1− λ)B

]

the inequality (12) gives

γλD1+(1−λ)D2
(B,B) ≤ γλD1

(λB, λB) + γ(1−λ)D2
((1− λ)B, (1− λ)B).

Since γtD(tA, tB) = tγD(A,B), we obtained the convexity.

Theorem 3 For a standard matrix monotone function f and for a self-adjoint matrix
A the monotone metric γf

D(A,A) is a convex function of D.

This convexity relation can be reformulated from formula (15). We have the convexity
of the operator (JfD)

−1 in the positive definite D.

2.4 Generalized covariance

If ρ2 = ρ1 = ρ and A,B ∈ M are arbitrary, then one can approach to the generalized
covariance [23].

qCovf
ρ(A,B) := 〈Aρ1/2, f(∆(ρ/ρ))(Bρ1/2)〉 − (Tr ρA∗)(Tr ρB). (17)

is a generalized covariance. The first term is 〈A, JfρB〉 and the covariance has some
similarity to the monotone metrics.

If ρ, A and B commute, then this becomes f(1)Tr ρA∗B−(Tr ρA∗)(Tr ρB). This shows
that the normalization f(1) = 1 is natural. The generalized covariance qCovf

ρ(A,B) is

a sesquilinear form and it is determined by qCovf
ρ(A,A) when {A ∈ M : Tr ρA = 0}.

Formally, this is a quasi-entropy and Theorem 1 applies if f is matrix monotone. If we
require the symmetry condition qCovf

ρ(A,A) = qCovf
ρ(A

∗, A∗), then f should have the
symmetry xf(x−1) = f(x).

Assume that Tr ρA = Tr ρB = 0 and ρ = Diag (λ1, λ2, . . . , λn). Then

qCovf
ρ(A,B) =

∑

ij

λif(λj/λi)A
∗

ijBij. (18)

The usual symmetrized covariance corresponds to the function f(t) = (t+ 1)/2:

Covρ(A,B) :=
1

2
Tr (ρ(A∗B +BA∗))− (Tr ρA∗)(Tr ρB).

The interpretation of the covariances is not at all clear. In the next section they will
be called quadratic cost functions. It turns out that there is a one-to-one correspondence
between quadratic cost functions and Fisher informations.
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Theorem 4 For a standard matrix monotone function f the covariance qCovf
ρ(A,A) is

a concave function of ρ for a self-adjoint A.

Proof: The argument similar to the proof of Theorem 3. Instead of the inequality
β∗(Jfβ(D))

−1β ≤ (JfD)
−1 we use the inequality βJfDβ

∗ ≤ J
f
β(D) (see Theorem 1.2 in [26] or

[23]). This gives the concavity of 〈A, Jfρa〉. The convexity of (Tr ρA)2 is obvious. �

2.5 χ2-divergence

The χ2-divergence

χ2(p, q) =
∑

i

(pi − qi)
2

qi
=
∑

i

(

pi
qi

− 1

)2

qi

was first introduced by Karl Pearson in 1900. Since
(

∑

i

|pi − qi|
)2

=

(

∑

i

∣

∣

∣

∣

pi
qi

− 1

∣

∣

∣

∣

qi

)2

≤
∑

i

(

pi
qi

− 1

)2

qi,

we have
‖p− q‖21 ≤ χ2(p, q). (19)

We also remark that the χ2-divergence is an f -divergence of Csiszár with f(x) = (x−1)2

which is a (matrix) convex function. In the quantum case definition (1) gives

Sf(ρ, σ) = Tr ρ2σ−1 − 1.

Another quantum generalization was introduced very recently in [28]:

χ2
α(ρ, σ) = Tr

(

ρ− σ)σ−α(ρ− σ)σα−1
)

= Tr ρσ−αρσα−1 − 1

where α ∈ [0, 1]. If ρ and σ commute, then this formula is independent of α. In the
general case the above Sf(ρ, σ) comes for α = 0.

More generally, they defined

χ2
k(ρ, σ) :=

〈

ρ− σ,Ωk
σ(ρ− σ)

〉

,

where Ωk
σ = R−1

σ k(∆(σ/σ)) and 1/k is a standard matrix monotone function. In the

present notation Ωk
σ = (J

1/k
σ )−1 and for density matrices we have

χ2
k(ρ, σ) = 〈ρ,Ωk

σρ〉 − 1 = 〈ρ, (J1/kσ )−1ρ〉 − 1 = γ1/k
σ (ρ, ρ)− 1.

Up to the additive constant this is a monotone metric. The monotonicity of the χ2-
divergence follows from (12) and monotonicity is stated as Theorem 4 in the paper [28],
where the important function k is

kα(x) =
1

2

(

x−α + xα−1
)

and χ2
kα = χ2

α.

9



1/kα is a standard matrix monotone function for α ∈ [0, 1] and kα(x) is convex in the
variable α. The latter implies that χ2

α is convex in α. The χ2-divergence χ2
α is minimal

if α = 1/2. (It is interesting that this appeared in [26] as Example 4.)

When 1/k(x) = (1+x)/2 is the largest standard matrix monotone function, then the
corresponding χ2-divergence is the smallest and in the paper [28] the notation χ2

Bures(ρ, σ)
is used. Actually,

χ2
Bures(ρ, σ) = 2

∫

∞

0

Tr ρ exp(−tω)ρ exp(−tω) dt− 1,

see Example 1 in [26].

The monotonicity and the classical inequality (19) imply

‖ρ− σ‖21 ≤ χ2(ρ, σ)

(when the conditional expectation onto the commutative algebra generated by ρ − σ is
used).

3 Extension of monotone metric

As an extension of the operator (13), define J
f
D1,D2

: Mn → Mn as

J
f
D1,D2

= f(LD1
R

−1
D2
)RD2

≡ f(∆(D1/D2))RD2
= LD1

mf RD2
, ,

where f : R+ → R+. In this terminology

SA
f (ρ1‖ρ2) = 〈A, Jfρ1,ρ2A〉.

Theorem 2 says that for a matrix monotone function f , 〈A, Jfρ1,ρ2A〉 is a jointly concave
function of the variables ρ1 and ρ2.

The monotone metrics contains (Jfρ,ρ)
−1, therefore we consider the inverse

(JfD1,D2
)−1 = f−1(∆(D1/D2))R

−1
D2
.

In this chapter β is completely positive trace preserving mapping between matrix spaces.

Lemma 1 Assume that D1, D2, β(D1), β(D2) are positive definite and f > 0. Then the
conditions

β∗(Jfβ(D1),β(D2)
)−1β ≤ (JfD1,D2

)−1 (20)

and
βJfD1,D2

β∗ ≤ J
f
β(D1),β(D2)

(21)

are equivalent.

10



Proof: The following inequalities are equivalent forms of (20):

(JfD1,D2
)1/2β∗(Jfβ(D1),β(D2)

)−1β(JfD1,D2
)1/2 ≤ I

‖(Jfβ(D1),β(D2)
)−1/2β(JfD1,D2

)1/2‖2 = ‖(JfD1,D2
)1/2β∗(Jfβ(D1),β(D2)

)−1β(JfD1,D2
)1/2‖ ≤ 1

‖(JfD1,D2
)1/2β∗(Jfβ(D1),β(D2)

)−1/2‖ ≤ 1

(Jfβ(D1),β(D2)
)−1/2β(JfD1,D2

)β∗(Jfβ(D1),β(D2)
)−1/2 ≤ I

The last inequality is equivalent to (21). �

Example 3 Let f(x) = sx+ 1. Then

〈A, (JfD1,D2
)−1A〉 = 〈A, (s∆(D1/D2) + 1)−1

R
−1
D2
A〉 = 〈A, ((s∆(D1/D2) + 1)RD2

)−1A〉
= 〈A, (sLD1

+ RD2
)−1A〉.

This was studied in the paper [14], where the result

β∗(sLβ(D1) + Rβ(D2))
−1β ≤ (sLD1

+ RD2
)−1 (22)

was obtained. Another formulation is

β∗(Jfβ(D1),β(D2)
)−1β ≤ (JfD1,D2

)−1 (23)

which is equivalent to
βJfD1,D2

β∗ ≤ J
f
β(D1),β(D2)

(24)

due to the previous Lemma.

For f(x) = sx+ 1 this is rather obvious:

〈A, βJfD1,D2
β∗A〉 = sTrD1β

∗(A)β∗(A∗) + TrTrD2β
∗(A∗)β∗(A)

and
〈A, Jfβ(D1),β(D2)

A〉 = sTrD1β
∗(AA∗) + TrTrD2β

∗(A∗A).

The Schwarz inequality
β∗(X)β∗(X∗) ≤ β∗(XX∗)

is needed and gives (22) and (24). �

Theorem 5 Let β : Mn → Mm be a completely positive trace preserving mapping and
f : [0,+∞) → (0,+∞) be an operator monotone function. Assume that D1, D2, β(D1),
β(D2) are positive definite. Then

β∗(Jfβ(D1),β(D2)
)−1β ≤ (JfD1,D2

)−1.

11



Proof: Due to the Lemma it is enough to prove (21) for an operator monotone func-
tion. Based on the Löwner theorem, we consider f(x) = x/(λ+ x) (λ > 0). So

J
f
D1,D2

=
LD1

λI + LD1
R

−1
D2

and we need (21). The equivalent form (21) is

〈β(A), (λI + Lβ(D1)R
−1
β(D2)

)L−1
β(D1)

β(A)〉 ≤ 〈A, (λI + LD1
R

−1
D2
)L−1

D1
A〉

or

λTr β(A∗)β(D1)
−1β(A) + Tr β(A)β(D1)

−1β(A∗) ≤ λTrA∗D−1
1 A+ TrAD−1

2 A∗.

This inequality is true due to the matrix inequality

β(X∗)β(Y )−1β(X) ≤ β(X∗Y −1X) (Y > 0),

see [15]. �

The generalized monotone metric

γf
D1,D2

(A,B) := 〈A, (JfD1,D2
)−1B〉 (25)

is an extension of the monotone metric which is the case D = D1 = D2. We can call it
also as monotone metric with two parameters. (The use of this quantity is not clear to
me in the moment, although the case f(x) = 1+ sx appeared already in the paper [14].)

Example 4 Let f(x) = (x+ 1)/2. Then

J
f
D1,D2

B = 1
2
(D1B +BD2)

and

(JfD1,D2
)−1C =

∫

∞

0

exp(−tD1/2)C exp(−tD2/2) dt.

If D1, D2 and C commute, then

(JfD1,D2
)−1C =

(

D1 +D2

2

)

−1

C.

�

Example 5 Let f(x) = (x− 1)/ logx. Then similarly to J
f
D, we have

J
f
D1,D2

A =

∫ 1

0

Dt
1AD

1−t
2 dt.

When
D1 =

∑

i

λiPi and D2 =
∑

j

µjQj
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are the spectral decompositions, then

J
f
D1,D2

A =
∑

i,j

mf (λi, µj)PiAQj, (26)

where mf is the logarithmic mean. (The formula is general, it holds for all standard
matrix monotone functions f .) To show that

(JfD1,D2
)−1C =

∫

∞

0

(D1 + tI)−1C(D2 + tI)−1 dt.

is really the inverse, we compute
∫

∞

0

(D1 + tI)−1C(D2 + tI)−1 dt =
∑

i,j

1

mf (λi, µj)
PiCQj ,

If D1, D2 and C commute, then

(JfD1,D2
)−1C =

D1 −D2

logD1 − logD2
C.

We can recognize that in the commuting case

J
f
D1,D2

C = mf(D1, D2)C, (JfD1,D2
)−1C =

1

mf (D1, D2)
C,

where mf is the mean generated by the function f , mf(x, y) = xf(y/x). �

Corollary 1 For a matrix monotone function f the generalized monotone metric

〈A, (JfD1,D2
)−1A〉

is jointly convex function of the variables D1 and D2.

The difference between two parameters and one parameter is not essential if the matrix
size can be changed. Let

D =

[

D2 0
0 D1

]

, and A =

[

0 B
B 0

]

. (27)

We show that
〈A, JfDA〉 = 〈B, JfD1,D2

B〉+ 〈B, JgD1,D2
B〉

where g(x) = xf(x−1). Since continuous functions can be approximated by polynomials,
it is enough to check f(x) = xk trivially. The case of inverse functions is similar.

Lemma 2 For standard operator monotone function f , we have

〈A, JfDA〉 = 2〈B, JfD1,D2
B〉 and 〈A, (JfD)−1A〉 = 2〈B, (JfD1,D2

)−1B〉
for the matrices (27).

It follows that the monotonicity, Theorem 5, and the joint convexity, Corollary 1, are
consequences of the one parameter case.

13
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