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Abstract

We propose an approximation of the asymptotic variance that
removes a certain discontinuity in the formula for the raw and the
smoothed periodogram in case a data taper is used. It is based on
an approximation of the covariance of the (tapered) periodogram at
two arbitrary frequencies.
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1 Introduction

Spectral estimation is by now a standard topic in time series analysis, and many
excellent books are available, e.g. Percival and Walden (1993). The purpose of
this short note is to propose an approximation of the asymptotic variance that
removes a certain discontinuity in the formula for the raw and the smoothed
periodogram in case a taper is used. The standard asymptotic variance of the
raw periodogram is independent of the taper chosen, see Formulae (222b) and
(223c) in Percival and Walden (1993). However, this changes when the raw
periodogram is smoothed over frequencies close by. Then a variance inflation
factor Ch, see (4), appears which is equal to one if no taper is used and greater
than one otherwise, compare Table 248 in Percival and Walden (1993). The
reason for this is that tapering introduces correlations between the raw peri-
odogram at different Fourier frequencies. Because of this, the variance reduction
due to smoothing is smaller in the case of no tapering.

The above variance inflation factor is justified asymptotically when the num-
ber of Fourier frequencies that are involved in the smoothing tends to infinity
(more slowly than the number of observations, otherwise we would have a bias).
Hence, if only little smoothing is used, then we except something in between:
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some increase in the variance, but less than the asymptotic variance inflation
factor Ch. We give here a formula, see (5), which is almost as simple as the
inflation factor, but which takes the amount of smoothing into account.

2 Notation and preliminaries

Let {Xt}t∈Z be a real-valued stationary process with observation frequency 1
∆ ,

mean E[Xt] = µ, autocovariances sτ := Cov(Xt,Xt+τ ) and spectral density
S(f). We assume that X1,X2, . . . ,XN have been observed.

The tapered periodogram (called direct spectral estimator in Percival and Walden
(1993)) is

Ŝ(tp)(f) :=
∆

∑N
t=1 h

2
t

∣

∣

∣

∣

∣

N
∑

t=1

ht(Xt − µ̃)e−i2πitf∆

∣

∣

∣

∣

∣
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for f ∈ [0, 1/(2∆)]. Here the estimator µ̃ is usually either the arithmetic mean
X̄ or the weighted average

∑N
t=1 htXt
∑N

t=1 ht
.

The latter has the property that Ŝ(tp)(0) = 0. Since the choice is irrelevant for
the asymptotics, we can use either version. The taper (h1, . . . , hN ) is chosen
to reduce the discontinuities of the observation window at the edges t = 1 and
t = N . Usually, it has the form

ht = h

(

2t− 1

2N

)

with a function h that is independent of the sample size N . A popular choice
is the split cosine taper

hp(x) =







1
2(1− cos(2πx/p)) 0 ≤ x ≤ p

2
1 p

2 < x < 1− p
2

1
2(1− cos(2π(1 − x)/p)) 1− p

2 ≤ x ≤ 1
(1)

The tapered periodogram has the approximate variance

Var[Ŝ(tp)(f)] ≈ S(f)2, f /∈ {0, 1/(2∆)} (2)

(see e.g. Percival and Walden (1993), Formula (222b)). In particular, it does
not converge to zero. Because of this, one usually smoothes the periodogram
over a small band of neighboring frequencies. We smooth discretely over an
equidistant grid of frequencies. Let

fN ′,k =
k

N ′∆
(0 ≤ k ≤ N ′/2)
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for N ′ an integer greater or equal to N and smaller than 2N . Then the tapered
and smoothed spectral estimate is

Ŝ(ts)(fN ′,k) =

M
∑

j=−M

gj Ŝ
(tp)(fN ′,k−j),

where the gj ’s are weights with the following properties

gj > 0, gj = g−j (−M ≤ j ≤M),

M
∑

j=−M

gj = 1.

If k < M , the smoothing includes the value Ŝ(tp)(0) which is equal or very close
to zero if the mean µ is estimated. In this case, we should exclude j = k from
the sum.

3 Approximations of the variance of spectral estima-

tors

The usual approximation for the variance of Ŝ(ts)(fN ′,k) is

Var(Ŝ(ts)(fN ′,k)) ≈ S(fN ′,k)
2

M
∑

r=−M

g2r
N ′

N
Ch (3)

for k 6= 0, N ′/2 where

Ch =

∑N
t=1 h

4
t /N

(
∑N

t=1 h
2
t /N)2

. (4)

This formula is given in Bloomfield (1976), p. 195, and it is implemented in the
function “spec.pgram” in the language for statistical computing R. In order to
see that it is the same as Formula (248a) in Percival and Walden (1993), one
has to go back to the definition of Wm in terms of the weights gj which is given
by the formulae (237c), (238d) and (238e).

If we put M = 0, this is different from (2). The reason for this difference is
that (3) is valid in the limit M → ∞ and M/N ′ → 0. But in applications M
is often small, e.g. M = 1 and one wonders how good the approximation is in
such a case.

We propose here as alternative the following approximation (for Var(Ŝ(ts)(fN ′,k)))

S(fN ′,k)
2







M
∑

r=−M

g2r + 2

2M
∑

l=1

∣

∣

∣
H

(N)
2 (fN ′,l)

∣

∣

∣

2

H
(N)
2 (0)2

M−l
∑

r=−M

grgr+l






(5)

(again for k 6= 0, N ′/2) where

H
(N)
2 (f) =

1

N

N
∑

t=1

h2t e
−i2πtf∆.
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Table 1: New and usual (in parenthesis) variance approximation in the limit
N ′ = N → ∞ relative to the squared spectral density for the split cosine taper
with p = 0.2, 0.5, 1 and uniform weights gj = 1/(2M + 1) in dependence of M .

p \ M 0 1 2 3
0.2 1.0000 (1.1163) 0.3453 (0.3721) 0.2122 (0.2233) 0.1537 (0.1595)
0.5 1.0000 (1.3471) 0.4017 (0.4490) 0.2521 (0.2694) 0.1836 (0.1924)
1.0 1.0000 (1.9444) 0.5370 (0.6481) 0.3489 (0.3889) 0.2574 (0.2778)

In order to compute this expression, we need to compute the convolution of
the weights (gj) and the discrete Fourier transform of the squared taper. The
former is usually not a problem sinceM is substantially smaller than N ′. Using
the fast Fourier transform, exact computation of the latter is in most cases also
possible. If not, then by the Lemma below we can use

H
(N)
2 (f) ≈

∫ 1

0
h2(u)e−i2πNuf∆du e−iπf∆ πf∆

sin(πf∆)
.

Choosing a simple form for the function h, we can compute the integral on the
right exactly. It is obvious that (5) agrees with (2) for M = 0. In the next
section, we show that it also agrees with (3) for M large.

For the split cosine taper hp(.), see (1), and uniform weights gj = 1/(2M + 1),
we get for the new approximation (5) in the limit N ′ = N → ∞ and k/N ′ → f

S(f)2

2M + 1

{

1+
1

(1− 5p/8)2
·

2M
∑

l=1

2M + 1− l

2M + 1

(

(2l2p2 − 5) sin(lpπ)

2lπ(lp − 2)(lp − 1)(lp + 1)(lp + 2)

)2 }

with an extension by continuity when lp equals 1 or 2, whereas the usual ap-
proximation (3) yields

S(f)2

2M + 1

(

1− 93p/128

(1− 5p/8)2

)

(see Bloomfield (1976), page 194 and 195). In Table 1, we compare the two
approximations (relative to S(f)2) for p = 0.2, 0.5, 1 and M = 0, 1, 2, 3.

4 Justification of the approximation

The idea is simple: We just plug in a suitable approximation for the covariances
of the tapered periodogram values into the exact expression for the variance
Var(Ŝ(ts)(fN ′,k)), that is,

M
∑

r=−M

M
∑

s=−M

grgsCov(Ŝ
(tp)(fN ′,k−r), Ŝ

(tp)(fN ′,k−s)).

The asymptotic behavior of these covariances is well known. Theorem 5.2.8
of Brillinger (1975) shows that, under suitable conditions, we have for two
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frequencies 0 < f ≤ g < 1
2∆ that Cov(Ŝ(tp)(f), Ŝ(tp)(g)) is equal to

S(f)S(g)
∣

∣

∣H
(N)
2 (0)

∣

∣

∣

2 ·

(

∣

∣

∣H
(N)
2 (f − g)

∣

∣

∣

2
+

∣

∣

∣H
(N)
2 (f + g)

∣

∣

∣

2
)

+O(N−1). (6)

The statement in Brillinger (1975) is actually asymmetric in f and g since it
has S(f)2 instead of S(f)S(g) on the right. Our statement can be proved by
the same argument since the covariance is of the order O(N−1) unless |f − g| =
O(N−1).

Using the approximation (6) directly would lead to an approximation which
depends on k. Having to compute N ′/2 different approximate variances is

usually too complicated. However, the second term |H
(N)
2 (f + g)|2 is small

unless ∆(f + g) is close to zero modulo one. This has been pointed out by
Thomson (1977), see also the discussion on p. 230–231 of Percival and Walden
(1993). If we omit the second term, then we obtain our new approximation (5)
by a simple change in the summation indices.

We next give a simple Lemma that justifies the omission of the second term in
(6). In addition, it also shows how the usual approximation (3) follows from
(5).
Lemma 4.1. If ψ is twice continuously differentiable on [0, 1] then for any

λ ∈ [0, 0.5]

1

N

N
∑

t=1

ψ

(

2t− 1

2N

)

e−i2πλt =

∫ 1

0
ψ(u)e−i2πNλudu e−iπλ πλ

sin(πλ)
+R

where

|R| ≤
1

24
sup |ψ′′(x)|

1

N
.

Proof. Put ǫ = 1/(2N). By a Taylor expansion, we obtain for any x ∈ [0, 1]
∫ x+ǫ

x−ǫ
ψ(u)e−i2πNλudu

= ψ(x)e−i2πNλx

∫ ǫ

−ǫ
e−i2πNλudu+ ψ′(x)e−i2πNλx

∫ ǫ

−ǫ
ue−i2πNλudu+R

where the remainder satisfies

|R| ≤
ǫ3

3
sup |ψ′′(x)| =

1

24
sup |ψ′′(x)|

1

N3
.

Next, observe that
∫ ǫ

−ǫ
e−i2πNλudu =

sin(πλ)

πλ

1

N

and
∫ ǫ

−ǫ
ue−i2πNλudu =

i

2πλ

(

cos(πλ)−
sin(πλ)

πλ

)

1

N2
.

From this the lemma follows by taking x = (2t− 1)/(2N) for t = 1, . . . , N and
summing up all terms.
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If ψ(0) = ψ(1) = 0, then by partial integration

∣

∣

∣

∣

∫ 1

0
ψ(u)e−i2πNλudu

∣

∣

∣

∣

≤
2 sup |ψ′(x)|+ sup |ψ′′(x)|

4π2
1

N2λ2
.

Hence by setting ψ(u) = h2(u), we obtain

H
(N)
2 (f) ≤ const.

1

N2(f∆)2
+ const.

1

N
(7)

Therefore the second term in (6) is negligible unless f+g is of the order O(N−1).

Finally, we derive the usual variance approximation (3) as follows. If the weights
gj change smoothly as a function of the lag j, then for any fixed k

M−l
∑

r=−M

grgr+l ∼

M
∑

r=−M

g2r .

Hence by dominated convergence

Var(Ŝ(ts)(fN ′,k)) ≈ S(fN ′,k)
2 1

H
(N)
2 (0)2

M
∑

r=−M

g2r

M
∑

l=−M

∣

∣

∣
H

(N)
2 (fN ′,l)

∣

∣

∣

2
.

Note that H
(N)
2 (0) = 1/N ·

∑N
t=1 h

2
t and because of (7),

M
∑

l=−M

∣

∣

∣H
(N)
2 (fN ′,l)

∣

∣

∣

2
=

N ′/2
∑

l=−N ′/2

∣

∣

∣H
(N)
2 (fN ′,l)

∣

∣

∣

2
+O(N−1).

Furthermore

N ′/2
∑

l=−N ′/2

∣

∣

∣H
(N)
2 (fN ′,l)

∣

∣

∣

2
≈ N ′

∫ 0.5

−0.5
|H

(N)
2 (f/∆)|2df =

N ′

N

1

N

N
∑

t=1

h4t .
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