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In this paper, we study stochastic volatility models in regimes
where the maturity is small but large compared to the mean-reversion
time of the stochastic volatility factor. The problem falls in the class
of averaging/homogenization problems for nonlinear HJB type equa-
tions where the “fast variable” lives in a non-compact space. We de-
velop a general argument based on viscosity solutions which we apply
to the two regimes studied in the paper. We derive a large deviation
principle and we deduce asymptotic prices for Out-of-The-Money call
and put options, and their corresponding implied volatilities. The re-
sults of this paper generalize the ones obtained in [11] (J. Feng, M.
Forde and J.-P. Fouque, Short maturity asymptotic for a fast mean
reverting Heston stochastic volatility model, SITAM Journal on Finan-
cial Mathematics, Vol. 1, 2010) by a moment generating function
computation in the particular case of the Heston model.

1. Introduction. On one hand, the theory of large deviations has been
recently applied to local and stochastic volatility models [1-4, 18], and has
given very interesting results on the behavior of implied volatilities near
maturity (an implied volatility is the volatility parameter needed in the
Black-Scholes formula in order to match a call option price; it is common
practice to quote prices in volatility through this transformation). In the
context of stochastic volatility models, the rate function involved in the
large deviation estimates is given in terms of a distance function, which in
general cannot be calculated in closed-form. For particular models, such as
the SABR model [17, 19], approximations obtained by expansion techniques
have been proposed (see also [12, 16, 20, 26]).

On the other hand, multi-factor stochastic volatility models have been
studied during the last ten years by many authors (see for instance [7, 13,
16, 25, 27]). They are quite efficient in capturing the main features of implied
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volatilities known as smiles and skews, but they are usually not simple to
calibrate. In the presence of separated time scales, an asymptotic theory has
been proposed in [13, 14]. It has the advantage of capturing the main effects
of stochastic volatility through a small number of group parameters arising
in the asymptotic. The fast time scale expansion is related to the ergodic
property of the corresponding fast mean reverting stochastic volatility factor.

It is natural to try to combine these two modeling aspects and limiting
results, by considering short maturity options computed with fast mean-
reverting stochastic volatility models, in such a way that maturity is of
order ¢ < 1 and the mean-reversion time, d, of volatility is even smaller of
order § = €2 (fast mean-reversion) or § = ¢* (ultra-fast mean-reversion).

In [11], the authors studied the particular case of the Heston model in the
regime § = € by an explicit computation of the moment generating function
of the stock price and its asymptotic analysis.

In this paper, we establish a large deviation principle for general stochas-
tic volatility models in the two regimes of fast and ulta-fast mean-reversion,
and we derive asymptotic smiles/skews. For such general dynamics, a mo-
ment generating function approach is no longer available. Our problem falls
in the class of homogenization/averaging problems for nonlinear HJB type
equations where the “fast variable” lives in a non-compact space. We de-
velop a general argument based on viscosity solutions which we apply to the
two regimes studied in the paper.

We start by considering the following stochastic differential equations
modeling the evolution of the stock price (S;) under a risk-neutral pricing
probability measure, and with a stochastic volatility determined by a process

(Y2):

(1.1a) dS; = rSydt + Syo (V,)dw,",
1
(1.1b) aY; = 5(m — Yi)dt + %dewt@).

where m € R, 7, v > 0, W) and W® are standard Brownian motions with
WO W)y, = pt, with |p| < 1 constant. The process (V;) is a fast mean-
reverting process with rate of mean reversion 1/ (6 > 0). The parameter (3
and o(y) are chosen to satisfy the following,.

ASSUMPTION 1.1.  We assume that

1. Be{0}ulz,1);
2. in the case of B = 1/2, we require m > v2/2 and Yo > 0 a.s., in the
case of 1/2 < B < 1, we require m > 0 and Yy > 0 a.s.;
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3. o(y) € C(R;R,.) satisfies
o(y) < C(L+[yl?),
for some constants C >0 and o with 0 <o <1 — j.

These assumptions ensure existence and uniqueness of a strong solu-
tion of (1.1). This can be seen as a combination of existence of martin-
gale problem solution (e.g. Theorem 5.3.10 in Ethier and Kurtz [8]) and
the Yamada-Watanabe theory for 1-D diffusions (e.g. Chapter 5, Karatzas
and Shreve [21]). In particular, Assumption 1.1.2 ensures that, in the case
B e [%, 1), Y; > 0 a.s. for all t > 0 (see Appendix A). In the case 5 =0, Y is
an Ornstein-Uhlenbeck (OU) process with a natural state space (—oo, c0).
In order to present both model cases using one simple set of notation, we
denote state space for Y as Ey with Ey := R if § = 0 and Ey := (0,00)
when 3 € [1,1).

Note that the Heston model does not satisfy these assumptions, but it
has been treated separately in [11].

The infinitesimal generator of the Y process, when § = 1, can be identified
with the following differential operator on the class of smooth test functions
vanishing off compact sets:

1
(1.2) B = (m —y)dy + vy 05,.

Following the general theory of 1-D diffusion (e.g. page 221, Karlin and
Taylor [23]), we introduce the so called scale and speed measure of the (Y3)
process:

Y2(m —z 1
s(y) == exp{—/1 Wdz}, m(y) := Pl PPsly)

Denoting dS(y) := s(y)dy and dM (y) := m(y)dy, we then have

1d [df(y)]

T 2dM

(13) BI() e

Under Assumption 1.1 there exists a unique probability measure

(1.4) w(dy) :== Z 'm(y)dy, Z:= : m(y)dy < oo

such that [ Bfdr =0 for all f € C?(Ep). See Appendix C.
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By a change of variable X; = log S;, we have
_ L 5 (1)
dXy = r— 3 (Yy) ) dt + o(Y)dW, .
In order to study small time behavior of the system, we rescale time ¢ — €t

for 0 < € < 1; denoting the rescaled processes by X, s; and Y, 5;, we have
in distribution:

1
(1.5a) dX 5, =€ <7~ - 502(1@@)) dt + e o (Yez0)dW )

(1.5b) dY, 5, =

STINe

(m — Y. s.)dt + u\/g v/ aw.

We are interested in understanding the two scale €, — 0 limit behavior
of option prices and its implication to implied volatility. In this paper, we
restrict our attention to the following two regimes :

d=¢* and §=¢€

In view of [11], to obtain a large deviation estimate of option prices, it is
sufficient to obtain a large deviation principle for {X, s, : € > 0}. By Bryc’s
inverse Varadhan lemma [6][Theorem 4.4.2], we know that the key step is
proving convergence of the following functionals:

(16) ue,5(t7 €, y) = ElogE[eeilh(Xe’é't)’XE,&O =x, }/e,é,(] = y]a h € Cb(R)a

to some quantity independent of y.

For each h € Cy(R), the function u, s satisfies a nonlinear partial differ-
ential equation given in (3.4). In section 3.2, we use heuristic arguments to
obtain PDEs that characterize the limit of these wu, 5. Proving this conver-
gence rigorously however is non-trivial. Intuitively we know that, as Y has
a mean reversion rate 1/J and § < ¢, the effect of the Y process should
get averaged out. To be exact, the form of nonlinear operator (3.5) indicates
that convergence of u. 5 is an averaging problem (over the fast y variable) for
Hamilton-Jacobi equations. Such problems, in the context of compact state
space for the averaging variable, can be handled by extending standard lin-
ear equation techniques using viscosity solution language. The Y process in
this article lies in Ep, which is R in the case of 8 = 0 and (0, 00) in other
cases. Fy is a non-compact space, and therein lies an additional difficulty.

We adapt methods developed in Feng and Kurtz [10]. Indeed, an abstract
method for large deviation for sequence of Markov processes, based on con-
vergence of HJB equation, is developed fully in [10]. The two schemes treated
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in this article are of the nature of Example 1.8 and Example 1.9 introduced
in Chapter 1 and proved in details in Chapter 11 of [10]. In this article, we
not only present a direct proof, but also introduce some argument to further
simplify [10] in the setting of multi-scale. This is possible in a large part due
to the locally compact state space and mean-reverting nature of the process
Y.

In particular, modulo technical subtleties in verification of conditions,
the setup of Section 11.6 in [10] corresponds to the large deviation result
in our case of § = €2. Since Ej is locally compact and we only deal with
PDEs instead of abstract operator equations, great simplification of [10]
can be achieved through the use of a special class of test functions. See
Conditions 4.1, 4.2. The techniques we introduce (Lemmas 4.1 and 4.2)
are not limited to averaging problems, but are applicable to problems of
homogenization also, which we will not delve into in this article. The rigorous
justification of convergence of u, s is shown in section 5.

The main results of the paper are stated in Section 2. Theorem 2.1 is a
rare event large deviation type estimate corresponding to short time, out-of-
the-money option pricing. Corollary 2.1 and Theorem 2.2 give asymptotics
of option price and implied volatility, respectively, for such situation. The
proofs are given in the sections that follow, starting with heuristic proofs
in section 3.2 and finishing with rigorous justifications in sections 4 and 5.
Technical results Lemmas 4.1 and 4.2 may be of independent interest.

2. Main results.

THEOREM 2.1 (Large Deviation). Suppose that Assumption 1.1 holds.
Let

2
(2.1)  Iy(z;m0,t) = %, where & is defined in (3.7) and
(2.2) [2(%; o, t) = tEo <l‘0 t_ l‘)

where Lq is the Legendre transform of Hy defined in (5.12). See also equiv-
alent representation (3.15).

Assume Xcerg = xo and Ye g = yo where v = 2,4. Then, for each
regime v € {2,4}, for every fized t > 0 and z9 € R,yp € Ey, a large
deviation principle (LDP) holds for {Xc e ¢ : € > 0} with speed 1/€e and good
rate function I.(x;x0,t). In particular,

(2.3)
lim lim € log P (|X6,e7",t — x| <n| Xeer0 =20, Yeero = vo) = — I (w5 20,1);

n—0e—0
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x € R, for each regime r € {2,4}.

REMARK 2.1.  The rate function I.(x;xo,t), in both regimes, are convet,
continuous functions of x and I, (xo;xo,t) = 0.

REMARK 2.2. In the case § = €*, observe that the rate function I,
in (2.1), is the same as the rate function for the Black-Scholes model with
constant volatility &. In other words, in the ultra fast regime, to the leading
order, it is the same as averaging first and then take the short maturity limit.

REMARK 2.3. In the case § = €2, no explicit formula for the rate function
18 obtained. However, an explicit formula of the rate function is obtained
for the Heston model in [11] which corroborates the formula in (2.2). The
Heston model per se does mot fall in the category of stochastic volatility
models covered in this paper, but direct computation of Hy, given by (3.15),
and Lg, its Legendre transform, is possible for this model.

Let Sp > 0 be the initial value of stock price and let X, . o = x¢ = log Sp.
The asymptotic behavior of the price of out-of-the-money European call
option with strike price K and short maturity time T = et is given in
the following corollary. Since we are only considering out-of-the-money call
options,

(2.4) So< K or zp<logK.
COROLLARY 2.1 (Option Price). For fizedt >0,

lim elog E/ [e‘m (Seert — K)+] = —1I,(log K; xq,t)

e—0t

forr=2.4.

Denote the Black-Scholes implied volatility for out-of the-money Euro-
pean call option, with strike price K, by o, ¢(t,1log K, x¢), where r = 2,4
correspond to the two regimes. By the same argument used in [11], we get
an asymptotic formula for implied volatility:

THEOREM 2.2 (Implied Volatilities).

) (log K — m¢)?
lim o, (t, log K, 7o) = .
o (t, log K, o) 21, (log K; xo, t)t
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REMARK 2.4. In the case 6 = €*, the implied volatility is &, which is
obtained by averaging the wvolatility term o?(y) with respect to the equilib-
rium measure for Y . It is likely that more features of the Y process, beyond
its equilibrium, will be manifested in higher order terms of implied volatil-
ity. Studying the next order term of implied volatility is a topic for future
research.

3. Preliminaries. The process (X¢s,Ycs) is Markovian, and can be
identified through a martingale problem given by generator

(31) Acsf(ey) = (0= 3P WN0S (1) + 5P W) S 1)

+5Bf(a,y) + %pa(y)vyﬁaﬁyf (@,9),

where f € C?(R x Ep). Recall that B is given by (1.2). Let g € Cy(R) and
define

(3.2) ves(t,z,y) == Eg(Xest)| Xeso =2, Yes50=1].

In general, v. 5 € Cy([0,T] x R x Ep). If moreover v, s € C?([0,7] x R x R),
then it solves the following Cauchy problem in classical sense:

(3.3a) O = Acsv, in (0,7] x R x Ep;
(3.3b) v(0,2,y) = g(z), (z,y) € R x Ey.

3.1. Logarithmic transformation method. Recall the definition of u. s in
(1.6). That is, u s := elogv. s when g(z) = e @) b e Cy(R) in (3.2). By
(3.3) and some calculus, at least informally, (3.4) is satisfied. This is the
logarithmic transform method by Fleming and Sheu. See Chapters VI and
VII in [15]. In general, in the absence of knowledge on smoothness of ve s,
we can only conclude that u s solves the Cauchy problem (3.4) in the sense
of viscosity solution (Definition 4.1). In additon to Fleming and Soner [15],
such arguments can also be found in Section 5 of Feng [9].

LEMMA 3.1.  For h € Cy(R), ue s defined as in (1.6), is a bounded contin-
uwous function satisfying the following nonlinear Cauchy problem in viscosity
solution sense:

(3.4a) Ou = H.su, in (0,T] xR x Ey;
(3.4Db) u(0,z,y) = h(z), (x,y) € R x Ej.
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In the abowve,

(3.5)
Hs,éu(ta z, y) = 66_671HA6766671u(t7 z, y)

= e((r - %az)(‘)xu + %a%ﬁxu) + %\a@xu\z
+ ?e‘eluBeﬁlu + pa(y)uyﬁ(%agyu + %amuayu)
where,
€ _eup e lu _ € g 2
¢ Be = gBu+5 §|Vy Oyul|”.

Note that H s only operates on the spatial variables x and y.

3.2. Heuristic ezpansion. By Bryc’s inverse Varadhan lemma (e.g. The-
orem 4.4.2 of [6]), we know that convergence of u. s is a necessary condition
to obtain the LDP for {X,5; : € > 0}. In this section, we describe heuris-
tically PDEs characterizing u. s in the limit and the nature of convergence
itself.

Henceforth, for notational simplicity, we will drop the subscript § and
write ue and H for u.s; and H, s respectively. We begin by the following
heuristic expansion of u. in integer powers of €

(3.6) Ue = Ug + €uq + € us + us + €tug + . ..

in both regimes. The u;,7 = 0,1, ... are functions of ¢, x,y. In this heuristic
section, we make reasonable choices of u; which a posteriori, following a
rigorous proof of the convergence of u. in section 5, are shown to be the
right choice.

3.2.1. The case of § = ¢*. Computation of H.u, (see (3.5)) reveals that,
in this scale, the fast process Y oscillates so fast that averaging occurs up to
terms of order €2. Viz., ug = ug(t, ), uy = u1(t, ) and ug = us(t, x) will not
depend on y. To see this, we equate coefficients of powers of € in Oyu. = H ..

O(x): 0=3"(0u0)?,

0 (glg) 0= Buy + 3%*(9,u1)?, and
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O(1) : 0= Bu..
By choosing ug,u; and us independent of y, the above three equations are
satisfied. Then, it follows that

1
Heue(w,y) = §|03xu0|2 + Bug

1 1
+ 6(028xu08xu1 + §a2amuo + (r— 502)8xu0 + Vpayﬁ(?xuoayug
+ Buy)
+ o(e)
= Houg + eH1(ug,u1) + o(e)

The € order term has to be y independent, therefore us should be chosen
so that

1 _
5’5xu0($)\202(y) + Bus(z,y) = Houo(z)
ie. 1
Bug(x,y) = Houg(z) — 5’5xu0($)\202(y)'
The above is a Poisson equation for us with respect to the operator B in
the y variable. We impose the condition that the right hand side is centered
with respect to the invariant distribution 7 (given in (1.4)). This ensures

a solution to the Poisson equation, which is unique up to a constant in y.
That is, we take

_ 1
Ho’LL(](:E) = §|5'8xu0(33)|2;

where
(37) 7 = [ .
Thus the leading order term in the heuristic expansion satisfies

(3.8) Dty = %|58xu0(x)|2.

3.2.2. The case of § = €. When § goes to zero at a slower rate €2, limits
become very different and more features in the Y process (rather than just
its equilibrium) is retained. We observe that while v is independent of y as
in the faster scaling regime, u; may now depend on y. Equating coefficients
of €2 in Oyu, = H.ue, we get

1 1
0] <—2> : 0= §V2y26(8yu0)2,

€
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and so we choose ug = ug(t,x) independent of y. Then H.u, reduces to
1
Heu(t,z,y) = g\aaxuo\z + pauyﬁaxuoayul + e " Be"t

1 1
+€ <028wu08mu1 + §azﬁmu0 +(r— 502)8wu0
+Bug + Vy258yulayu2 + PO’Vyﬁamym + payyﬁamulayul
+pal/y68mu08yuQ>

+o(e)
= Hoyug + eHi(ug,u1) + o(e).

Observe that the leading order term should satisfy
dyuo = Houo,
where

(39) HOUO(t7 l‘) = %|8wu0(tv :E) |2J2(y) + ,()I/O'(y)yﬁamuo(t, x)ayul(ta z, y)
+e " Be" (t,x,y).

The € order term has to be y independent, therefore u; should be chosen
so that

1
(3.10) 5\8xu0]202(y) + pva(y)yP dpugdyur + e " Be™ = \(t, x),

where A is a function of ¢t and = and is a constant with respect to y. We will
rewrite the above equation as an eigenvalue problem.
Define the perturbed generator

(3.11) BPg(y) = Byg(y) + povy’pdyg(y).
Then
(3.12) e "' Be"! + pauyﬁaxuoc‘)yul = e~ BOauo(tz) gur

Fix t and z, and rewrite (3.10) in terms of the perturbed generator (3.12):
1
e BOsuotT) gt (g q)) 4 5 19ato(t, )20 (y) = A, z).
Multiplying the above equation by e“!, we get the eigenvalue problem:

(3.13) (Baz“o + V) 9(y) = Ag(y),
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where V(-) = 3|0,uo(t,z)[?0%(-) and g(-) = e“1(&¥"). Choose u; such that
(A, g) is the solution to the principal (positive) eigenvalue problem (3.13).
Since the dependence of A on t and x is only through 0,ug, we can define

(3.14) ];_I()(axuO) = )\(t,a;) = ];_I()UQ(t,x).

Constructing classical solution for (3.13) is a considerably hard problem
even in the 1-D situation. We give an alternate definition for Hy in (3.15)
below. If (3.13) can be solved with a nice g, then (3.15) always holds with
the Hy given by (3.14). The converse is not always true. Especially, (3.15)
says nothing about the g. We only need the definition in (3.15) in rigorous
treatment of the problem.

Let YP be the process corresponding to generator BP and define

(315 Ho(p) : = limsup sup T~ log E[e3 I *0)isyp — )
T—40c0 yeEy

YP has strong enough ergodic properties that the left hand above does not
depend upon y even if we omitted the sup,cp, on the right hand side;
and, in fact, the limsupy_,,, can be replaced with limy_,., in the above
definition. We will justify this fact in the rigorous derivations. By Girsanov
transformation

2
(3.16) Ho(p) _ l;mj—up Seug 71 logE[efOT ppU(YS)dW2(3)+(1 2p )|p|2 foT 0-2(Ys)d8]
—+00 Y 0

where Y is the process with generator B. From this expression, we see that
H is convex in p.
To summarize,

(3.17) Opuo(t, r) = Ho(dpuo(t,x))
where Hy is given by (3.15) or (3.16).

4. Convergence of HJB equations. The results of this section can
be independently read from the rest of the article.

We reformulate and simplify some techniques, regarding multi-scale con-
vergence of HJB equations, introduced in [10]. Compared with [10], the
simplification makes ideas more transparent and readily applicable. These
are made possible because we are dealing with Euclidean state spaces which
is local compact. All these results are generalizations of Barles-Perthame’s
half-relaxed limit argument first introduced in single scale, compact state
space setting.
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Let E C R™, Ey C R" and ' := E x Ey C R? where d = m 4+ n. A
typical element in F is denoted as z and a typical element in E’ is denoted
as z = (z,y) with z € F and y € Ey. We denote a class of compact sets in
E/

Q:={K x K : compact K cC E, compact K CC Ep}.

We specify a family of differential operators next. Let A be an index set and
Hi(z,p, P;a) : EXR"™ X Mywm x A= R, i=0,1;
HE(Z,p,P) 3 D Rd X ded — R
be continuous. For each f € C?(R%), let Vf(z) € R? and D?f(x) € Myyq

respectively denote gradient and Hessian matrix evaluated at x. We consider
sequence of differential operators

Hef(2) = He(z, V[ (2), D’ [(2),
for f belongs to the following two domains

D., := {f:fe€C*E),f has compact finite level sets}
D._ := —D.,:={—f:fcC*E),f has compact finite level sets}.

We will separately consider these two domains depending on the situation of
sub- or super-solution. We also define domains D, D_ similarly replacing
E' by E.

We will give conditions where u(t, z) = ue(t, x,y) solving
(4.1) Ouuc(t,z) = He(z, Vue(t, z), D*uc(t, 2)),

converges to u(t,z) which is a sub-solution to

(42) 8tu(t7x) < iggHo(x,Vu(t,x),Dzu(t,x);oz),

and a super-solution to

(4.3) dyu(t, z) > sup Hy(x, Vu(t,z), D*u(t, z); a).
acA

The meaning of sub- super-solutions is defined as follows.
DEFINITION 4.1 (viscosity sub- super- solutions). We call a bounded
measurable function u a viscosity sub-solution to (4.2) (respectively super-

solution to (4.3) ), if u is upper semicontinuous (respectively lower semicon-
tinuous), and for each

U()(t,x) - (b(t) + f()(l'), NS Cl(R-l-)?fO € D+7
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and each xo € E satisfying u — ug has a local mazimum (respectively each
ui(t,z) = ¢(t) + fi(z), ¢€C(Ry), freD,

and each xo € E satisfying u — uy has a local minimum) at xo, we have

Oruo(to, o) — inf\Ho(xo,Vuo(toaﬂfo),Dzuo(to,wo);Oé) <0;
ac
(respectively

8tu1 (t(), LZ'()) — SUR Hl (xo, Vul (t(), LZ'()), D2u1 (t(), LZ'()); a) 2 O)
ac

If a function is both a sub- as well as super- solution, then it is a solution.

We will assume the following two conditions.

CONDITION 4.1 (limsup convergence of operators). For each fo € D4
and each o € A, there exists foc € Dey (may depend on o) such that

1. for each ¢ > 0, there exists K x K € Q satisfying
{(z,y) : Hefoe(w,y) = —c} N {(z,y) : foelw,y) <} C K x K;

2. for each K x K € Q,

(4.4) lim  sup |foe(z,y) = fo(z)] = 0;
TV (@y)eKxK

3. whenever (z¢,y.) € K x KeQ satisfies x. — x,

(45) lim sup Hef0,6($67 ye) < H0($7 Vfo(l‘), szo(l‘); Oé).

e—0

CONDITION 4.2 (liminf convergence of operators). For each f; € D_
and each o € A, there exists fi € De— (may depend on o) such that

1. for each ¢ > 0, there exists K x K € Q satisfying
{(x,y) : Hfre(w,y) < b0 {(z,y) : fre(w,y) > —c} C K x K;
2. for each K x K € Q,

liII(l) sup |fi(z) — fl,e(ﬂfay)’ = 0;
Y (@) ek xK
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3. whenever (zc,y.) € K x K € Q, and z. — ,

lim inf Hefr.e(@e, ye) = Hi(2,V fi(x), D* fi(); ).

Let u, be viscosity solutions to (4.1), we define
us(t, z) = sup{lim sup uc(te, zc, ye) :I(te, e, ye) € [0,T] x K x K,
e—0+
(te,z) — (t,2), K x K € Q},

ug(t,x) == inf{limoilifue(tg,me,ye) F(te, T, ye) €[0,T] x K x K,

€—

(teyxe) = (t,2), K X K e o},

and 7 = u} the upper semicontinuous regularization of u3 and u = (uy), the
lower semicontinuous regularization of ug4.

LEMMA 4.1.  Suppose that sup,~g ||te|ls < 00. Then,

1. under Condition 4.1, u is a sub-solution to (4.2);
2. under Condition 4.2, u is a supersolution to (4.3).

PROOF. Let ug(t,z) = ¢(t) + fo(x) for a fixed ¢ € CY(R,) and fy € D,.
Let (to,x0) be a local maximum of @ — ug, tyg > 0. We can modify fy and
¢ if necessary so that (tg,xg) is a strict global maximum. For instance, by
taking fo(z) = fo(x) + k|lz — zo|* and ¢(t) = ¢(t) + k|t — to|? for k > 0 large
enough. Note that such modification has the property that

lim sup |Vfo(z) — Vfolzo)l + [D*fo(z) — D? fo(wo)| = 0.

€04 13z <e

Let ug = (Z; + ]FQ.

Let o € A be given. We now take ug (t,2) = ¢(t) + fo(z) where fo. is
the approximate of fo in Condition 4.1. Since u. is bounded and ug has
compact level sets, there exists (t, z¢) € [0,T] x E’ such that

(4.6) (e — o) (te, 2e) > (ue —ug)(t,z) for (t,2) €[0,T] x E',
and

(4.7) at‘l;(tE) - HefO,e(ZE) <0.
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The above implies infe H fo(2) > —oo. We verify next that fy(z) <
¢ < o0o. Then by Condition 4.1.1, there exists K x K € Q such that Ze =
(ze,ye) € K x K.

Take a (f,4) such that 7g(f,%) < oo. Take 2 = (#,7) for some § € Ej.
Then

and sup,~q fo.c(z) < oo follows.

Since K x K is compact in E’, there exists a subsequence of {(tc, z.)} (to
simplify, we still use the € to index it) and a (¢, %) € [0,7] x E such that
te — to and x. — Zg. Such (fo, o) has to be the unique global maximizer
(to, o) for w— up that appeared earlier. This is because, by using z. — Zo
and z. = (x,, y.), the definition of u and (4.4), from (4.6) we have

(4.8) (ﬂ - UO)(EO, fo) > (ﬂ — U())(t, LZ'), V(t, a:)
Now, from (4.7) and (4.5), we also have
8tu0(t0, xo) § H()(.Z'(), Vfo(xo), D2f0(1’0); a).

Note that tg, zg and ug are all chosen prior to, and independent of, a. We
can take inf,cx on both sides to get

Oruo(to, o) — llelg Ho(wo, Vug(to, 20), D*uo(to, 70); ) < 0.

The proof that u is a super-solution of (4.3) under Condition 4.2 follows
similarly. O

LEMMA 4.2.  Suppose that the conditions in Lemma 4.1 hold and that
there exists h € Cyp(E) such that

lim  sup  |h(z) —u(0,2,9)| =0, VK x K € Q.
=0 (x,y)erf{

Further suppose that for any sub-solution uy(t,z) of (4.2) with ug(0,x) =
h(x) and super-solution uy of (4.3) with ui(0,x) = h(z), we have

uo(t,z) <up(t,x), (t,x)€[0,T]x E.
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That is, a comparison principle holds for sub-solutions of (4.2) and super-
solutions of (4.3) with initial data h.
Then uw=1u = u and

lim sup  sup  |u(t,z) —uc(t,z,y) =0, VK xK e Q.
=0te[0,T] (x,y)e K x K

5. Rigorous justification of expansions. To rigorously prove the
convergence of operators H, given by (3.5) to operators Hy obtained by
heuristic arguments in section 3.2, we rely on, and extend, results developed
in [10]. An exposition of the relevant results from [10] was laid out in section
4. In this section we verify conditions 4.1 and 4.2 and prove the comparison
principle in Lemma 4.2. We will adhere to notation used in section 4.

Conditions 4.1 and 4.2 require us to carefully choose a class of perturbed
test functions with an index set A, and a family of operators
{Hop(;0), H1(:;a); 0 € A} to obtain viscosity sub- and super- solution esti-
mates of ug, the limit of u.. This technique was first introduced in [10] and
illustrated through examples in Chapter 11 of that book. Our presentation
simplifies the technique in the context of application here. We will make
the sub-solution estimate given by Hy(-, ) tight, by inf-ing over a. Hence
introducing yet another operator Hy. Similarly, we sup over a to tighten
up the super-solution type estimate provided by Hj(-, ) which introduces
operator Hi.

Let

(5.1) y) = ly —mlS,

where ¢ > 0 is any number satisfying 20 < ¢ < 2(1 — ) with o and [ given
as in Assumption 1.1. Throughout the two regimes (6 = €*, ¢?), we take the

index set
Ai={a=(£0): €€ C?(E),0<0<1};

and define two domains

Dy = {f: f(z) = p(x) +vlog(1 + |2*); € CZ(R), > O},
and

D_:={f: f(z) = p(x) — ylog(1 + [z[*); » € CZ(R),y > 0}.
A collection of compact sets in R x Ejy is defined by

Q:={K x K : compact K CCR,K CC Fy}.
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5.0.3. Case § = €*. For each f = f(x) € Dy, and each o = (£,0) € A,
we let

9(y) == &(y) + 0¢(y),
and define perturbed test function
fela,y) = f(2)+9(y) = f(@)+E(y) + 0C(y).
Note that [|0zf|leo + |02, f|lcc < o0. Then

Hofdey) = |50 W)0f + 50° W0kt | + 507 w)|0. 1P
FBE() +0BC) + 5 10,6() + 09,C ()]

—|—epa(y)uy68mf(5yf(y) +0,C(y))-

The choice of the number ¢ in definition of the function ((y) in (5.1) guar-
antees that B((y) < —C((y). Moreover, with earlier assumption that 0 <
o < 1—f, the growth of {(y) as |y| — oo dominates the growth in y of all
other terms in H.f.. Therefore, there exist constants ¢y, c; > 0 with

0(y)0a f (z)]* + BE(y) — OcoC(y) + ecr

N =

Hfe(z,y) <

In addition,

fe@,y) = f(z) + €9(y) > (@) — €]|¢]|oo-
Furthermore, for each ¢ > 0, we can find K x K € Q, such that
(5:2) {(z,y) : Hefe(w,y) = —c} N {(z,y) : fe(w,y) < ¢} C K x K,

verifying Condition 4.1.1. The rest of Condition 4.1 can be verified by taking

Ho(w,:6,6) = sup (Slo()pl? + BE(y) ~ beoc(y)).
yeEo

We define
Hof(r) : = inf Ho(x, 0. f(x); )

= it infsup (3lo0)af(2) + BE() — feol(y)).

0<6<1£€C2(Eo) yeFy

Similarly, for f € D_, a = (§,0) € A, we can choose

fe(my) = f(x)+€¢y) — 0¢(y).
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Then Condition 4.2 holds for the choice of
. 1
Hi(w,p:€,0) = inf (Zlo(y)pl? + BE(y) +0el(y) ).
yeR \ 2
We define

Hyf(z): = sup Hi(z, 05 f(2); )
a€el

. 1
= sup sup inf (3lo(y)0f (@) + BEW) +beod(y)).
0<0<1 £eC2 (o) YEE0 \ 2

Next, to verify Lemma 4.2, we estimate Hqf from above and Hif from
below using some simple quantity.

LEMMA 5.1.
Hof(x) < 3lo0f@)P,f € Dis  Hif(@) > 5lodf(@), f € D_.

We note that Hy, Hi have different domains Dy and D_ respectively; D4 N
D_=10.

PRrROOF. The key to obtaining the estimates in the statement of the Lemma
is the Poisson equation

1

= SR - o ().

(5.3) Bx(y)
We will need growth estimates for y. In the case of § = 0 (i.e. Y is an O-
U process), section 5.2.2 of Fouque, Papanicolaou and Sircar [13] contains
such estimates. Specifically, if o(y) is bounded, |x(y)| < C(1+log(1 + |y|));
if o(y) has polynomial growth, x has polynomial growth estimates of the
same order. The following growth estimates for the situation % <pB<1are
derived in Appendix B:

(5.4)  |X'(y)| <Cy** ' asy— oo, for some positive constant C.

Therefore |x(y)| < C(1+log(1l + |y|)) if o(y) is bounded and
Ix(y)| < C(1+4*) when0 <o <1—8.

We will make use of x as test function in the expressions for Hy f and H f.
However, y does not have compact support. We choose a cut-off function
¢ to approximate it using localization arguments. Let non-negative p(y) €
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C°(FEy) be such that p(y) =1 when |y| < 1 and 0 when |y| > 2. We take a

sequence of &,(y) = ¢(£)x(y) which are truncated versions of x. Then
— y _ “1,(Y
Bén(y) = w(n> Bx(y) + (m —y)x(y)n w(n)
15 95 -2 (Y 2,281 -1, (Y
Horyx(y)nT e (n> +ry X (y)n e (n>

Suppose o > 0. Noting that |¢(y)|, |¢' (y)| and |¢”(y)| are uniformly bounded
and are 0 when |y| > 2, and using the growth estimates (5.4) for y and Y/,
we get,

% (m—=y)  (Y\? 28-2 , -1 (Y\’ s
[Béa(w)| < ey <1+ +(2) 2y (2) 0 L)

n

< cy*  for all n.

In the above, we used the fact that £ < 2 and f — 1 < 0. Similarly, if
o(y) is bounded i.e. o = 0, we get |B&,(y)| is uniformly bounded for all n.
Therefore, for large y, ((y) dominates B&,(y) uniformly in n in the following
sense: there exists a sub-linear function ¢ : R — R, such that

sup [B&u(y)| < 9(C(y)).

n=1,2,...

With the above estimate, we have

Hof(x) < timsup inf sup (5lo()def (@) + Bealy) — beol(y))
n—o00 <6<1y€E0 2

1
Similarly, one can prove the case for H; f. O

By standard viscosity solution theory (e.g. [5]), the comparison principle
holds for sub-solutions and super-solutions of

1
dpuy = 5\58xu0\2, t >0,

and the solution is uniquely given by the Lax formula

|z — a7
(55) Uo(t,.’,l') = ‘S}é% {UO(O,I’/) — W .

Putting together the above result and Lemmas 4.1 and 4.2, we get

LEMMA 5.2.

lim sup  |ue(t,z,y) —uo(t,z)| =0, Ve>0
O el |yl <e

where ug is the solution of (3.8) and is given by (5.5).
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5.0.4. Case § = €2. For each f = f(x) € D,, and a = (£,0) € A, we
choose our perturbed test function as

fe(@,y) == f(z) + eg(y)
where g(y) = (1 — 0)&(y) + 0C(y); ((y) is defined as before in (5.1). Then,

Hoflw.y) = |(r = 0 w)0.f + 202 ()02 f| + 2o

+ e 9W) BP:S (@) (y))

2 ()10 17

<e|tr- 220t + Lo2wRs| + st wion P

+ (1 —0)e $B%/e8(y) 4+ e B/t (y),

where B%/f(#) is the perturbed generator defined in (3.11). Recall that
102 flloo + |02, flloo < 00 by the choice of domain D,. We can thus find
a constant ¢y > 0 such that

H.f(z,y) < !0( )0u f(@)? + (1 — 0)e S B%I e (y) + e~ B/ e (y) + eco.

Note that

e B/l (y) = BC(y) + po(y)vy® . f(2)0,¢(y )+ ~*y*P10,C ()P,

where
(56)  Bly)=—C-ly—mlS+ 0220(C -~ Dly — ml2

The term —((y) in B({(y) dominates growth in y from all other terms in H, f,
as |y| — oo. Since ((y) — oo as |y| — 0o, Hefe(x,y) — —o0 as |y| — oo. We
also have fc(z,y) = f(z) +eg(y) > f(z) — €||¢|loo- Therefore, for each ¢ > 0,
we can find K x K € Q, such that

(5.7) {(z,y) : Hefe(z,y) > —c} N {(2,y) : fe(z,y) <} C K X K,

verifying Condition 4.1.1.
Super-solution case follows similarly, where we define the perturbed test
function as fe(x,y) = f(x) + (1 +0),(y) — €6((y), for each f € D_ and

(5,9)61\.
Take
1
Ho(w,p;6,0) = sup (Slo(y)pl + (1 - 0)e  Bre(y) + 6 Be(y) ),
yely 2
Hy(z,p;€,0) = inf (1|0<y>p|2 (14 0)e et — g™ Brec(y) )
yeFy 2



ASYMPTOTICS FOR STOCHASTIC VOLATILITY MODELS 21

and

H = 1 f i f H )5S ’
of(z) ot At o(w, 0. f;€,0)

H,f(x):= sup sup  Hi(x,0.f;€,0).
0<0<1 ¢eCge(Eo)

Conditions 4.1 and 4.2 are satisfied by these choices of Hy and H;. Note
that, although %|o(y)p|? is not bounded in y, its growth is at most |y|** and
is dominated by the growth of {(y) for |y| large enough.

To verify Lemma 4.2, we develop useful sharp estimates for Hy and H;
next. Denote

T(t)g(y) == E[g(Y2)[Y(0) =y, g€ Cp(Ep)

and let B be the weak infinitesimal generator for semigroup {7T'(¢) : t > 0} in
Cy(Ep). Let Dt (B) denote the domain of B with functions strictly bounded
from below by a positive constant. Similarly define notations for B?, the
weak infinitesimal generator corresponding to the process Y? introduced in
section 3.2.2. For each g € DTT(BP) C Cy(E)p), since ¢ > 20, there exists
compact K CC Ey with

1 BP _
sup (Slo(y)pl? + (1 - 6) =2 (y) + e~ B7e ()
yeFoy g

1 BP -~
= sup (Slo@pl? + (1= 0) =2 (y) + 9e~ B (y)
yeK g

For each ¢ > 0, by truncating and mollifying g, we can find a § := & €
CS°(Ey) such that

1 B B
Ho(w,p:,0) < e+ sup (5lo(u)pl? + (1= 6) =L (y) + 6 B (y) ).
yeK g
Denote p = 0, f(z). Then

(5.8)
. . 1 2 Brg —
< z ——= P o6 )
Hof(@) < iut | it sup (lo)pl’ + (1= 0)=2) + 6 <B"e(y))
Similarly, we have
(5.9)

. 1 B _
Hif()> sup  sup inf (Slo(y)p+(1+0)=L(y) - b Bre(y)).
0<6<1 geD++(Br) YEF0 \2 g
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We define Ig(-;p) : P(Ep) — RU {400} by
. BPg / _
Ip(pu;p) :=— inf / —Zdu N e~ W Brevlg :
slup) == _nof w9 N p(y)

However, we can find a sequence {g,} C D+ (BP) (take for example g,, :=
e where ¢, € C?(Ep) are some smooth truncations of (), such that

p
/ e W BPeCW dyi(y) > lim Sup/ B9 dps.
Ey n— o0 FEo In

Therefore we have
BP
294

(5.10) Ig(p;p) :==—  inf /E ;

geDt+(BP)

Recall that Y? denotes the process corresponding to generator BP ( or
equivalently, BP). It can be directly verified that Y? has a unique stationary
distribution 7P and that Y is reversible with respect to it (see Appendix C
of this article). Let

E(f.g) = / fBgdn?

be the Dirichlet form for Y?. By the material in Section 7 of Stroock [28§]
(particularly Theorem 7.44; note that the diffusion generated by BP has
transition density with respect to Lebesgue measure — e.g. Theorem 4.3.5 of
Knight [24]), we get

(5.11)  Ip(p;p) = 51’(\/%, \/%) = V;/Oooyzﬁ‘ay\/%(y)‘%p(dy)

(see Appendix C.3 for the last equality above). If u in Ip(u;p) is not abso-
lutely continuous with respect to 7P, then the right hand quantity in (5.11)
is viewed as +o0o0. Again through Theorem 7.44 of [28], we also get that Hy,
defined in (3.15), can be expressed as

B 2
Hy(p) = sup <ﬂ/ 0'2d,U—IB(,U§p))
prEP(Ry) Ry

2
(5.12) = sup (% / a?(y)h*(y)=" (dy)
heL2(nP), |7l 2 (rpy=1 Ry

1/2 o)
=% [ ot P an).
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As in Lemma 11.35 of [10],

1 Brg _
f f 2 1—60)—= CBP ¢ — H )
0i%<1ggplf+(3p);§£) <2| (y)pl~+ (1 -0) g (y) + 0e e (y)) o(p)

Using (5.8), this immediately gives
Hof(x) < Ho(0f(z)), [ € Dy.
We will prove a similar inequality estimate for Hy hence giving the following
LEMMA 5.3.
H, f(x) = Ho(0f(2)), f € D, Hof(x) < Ho(0f()), f € Ds.

It remains to prove the estimate for Hi. By the proof of Lemma B.10 of
[10],

1 BP _
sup sup inf (—\U(y)p\2 +(1+ 9)—g(y) — fe CBpeC(y))
0<6<1 ge D++(Br) VER+ \2 g

> inf liminft~!log E¥[e lpl? [y a2 (YE) ds]
I/EP(R+),< > 400 t—00

(5.13)

If we show that

(5.14) lim inf ¢! log E[e2|p| Is Z(Ysp)ds\yop =y] > Ho(p),

t—+o00
then (5.9), (5.13) and (5.14) together give us the estimate for H; in Lemma
5.3. The proof of (5.14) follows essentially the same argument used in Exam-
ple B.14 in Appendix of [10]. Two ingredients need to be emphasized. First,
for each p with Ip(p;p) < oo, by a mollification and truncation argument,

we can find a sequence i, (dy) = %dﬂp (y) with hy, + ¢, € C°(E)p) for

some constant ¢, such that lim, oo Ip(un;p) = Ip(p; p). Second, for every
y € Ey and every h € C°(E)p), the following ergodic theorem holds

(5.15)  lim %E[/O oX(Yds|Y = y] = /OO o?(2)di"(2),

t—o0 — oo
where dY}" = ((m - YM) + u(?;h)ﬂah(?;h)> ds + v(Y")PdW? and where 7"
is the unique stationary distribution of Y.

LEMMA 54. (5.15) holds.
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ProoOF. By Ito’s formula,

E[C(V)] = E[C(¥)] + Bl /0 BT ds,

. 1
where B"((y) = (m —y+ vyﬁ@yh(y)) () + 557" (y)- Asin (5.6), —((y)
is the dominating growth term in B¢ (y). Therefore, defining a family of
mean occupation measure

t
ﬁ-h(tvyv A) = E[t_l/o I{Y/S}LEA}dSD/Oh = y]v

we have that

t
sup [ ()7 (t.y,d2) = supt B [ (TSI = 4] < Clush() < oc.
t>0 Jz t>0 0

Hence {7"(t,y,-) : t > 0} is tight and along convergent subsequences and
corresponding limiting point 7", we have

t
(5.16) E[t! /O P(TMVds| T = y] - / odi". € Cy(E).

Such 7" is necessarily a stationary distribution satisfying i Bhpdah = 0
for all 1) € C%(Ep). Uniqueness of such probability measure can be proved
by an argument similar to the one in Appendix C. We thus conclude that
there is only one such 7" and that convergence (5.16) occurs along the whole
sequence, not just subsequences. Furthermore, the growth of o2 is dominated
by ¢, and so by uniform integrability argument, (5.15) holds. O

From (3.16), we see that Hy(p) is convex in p € R. Let us denote its
Legendre transform as Lg, then we have the following.

LEMMA 5.5.  The unique viscosity solution to (3.17) is:

(5.17) ug(t,z) := jlé% {uo(O, 2') —tLg (m _t :E/) }

Moreover, ue converges uniformly over compact sets in [0, T] x R x Eqy to ug.

PROOF. We know that g defined by (5.17) solves (3.17) by the Lax for-
mula. That wug is the unique solution follows from standard viscosity com-
parison principle with convex Hamiltonians. The convergence result follows

from multi-scale viscosity convergence results developed in section 4— Lem-
mas 4.1 and 4.2. O
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6. Large deviation, asymptotic for option prices and implied
volatilities. We finish the proof of Theorem 2.1, Corollary 2.1 and Theo-
rem 2.2.

6.1. A large deviation theorem.

PROOF OF THEOREM 2.1. From the previous section we have u.(t,z,y) —
uo(t,z) as € — 0 for each fixed (¢t,z,y) € [0,T] x R x Ey. All we need is
exponential tightness of {X. 5.} to apply Bryc’s lemma and to conclude our
proof. This is obtained as follows.

Let f(x) = log(1 + 2?) and ((y) be defined as in (5.1). Take

f(x)+€3¢(y) for the case § = ¢!
fé(':U? ) = 2
f(z)+eC(y)  for the case § = €.

Note that f(z) is an increasing function of |z| and ((-) > 0, therefore,
for any ¢ > 0 there exists a compact set K. C R such that fe(x,y) > ¢
when = ¢ K.. We next compute Hf.(x,y) (see (3.5)). Observe that since
102 floo+ 1102, f ||l oo < 00, by our choice of ¢(-), He fo(x,y) — —o0 as |y| — oo.
Therefore sup,cp yep Hefe(z,y) = C < oo. For simplicity, we denote X s,
by X¢:. The P and E below denote probability and expectation conditioned
on (X,Y) starting at (z,y).

P(X., ¢ K,)elc—fe@y)—tC)/e
' s, e,s

<E [exp{fxxg,t,m ey / v | s %zs}]
0

€ €

<1

In the above inequalities, the term within expectation in the second line is a
non-negative local martingale (and hence a supermartingale), see [8] [Lemma
4.3.2]. We apply the optional sampling theorem to get the last inequality
above. Therefore

elog P(Xct ¢ K.) <tC+ fe(x,y) — c < const —c,

giving us exponential tightness of X ;.

Let ug’r denote the limit of ucs; when us(0,2,y) = h(z) and § = €,
r = 2,4. Applying Bryc’s lemma we get, {X ¢} for r = 2,4 satisfies a
LDP with speed 1/e and rate function

(6.1) I.(z;x0,t) := sup {h(z)-— ug’r(t,:ro)}.
her(R)
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In Appendix D we check that I(x;xg,t) = tLg (%) where L is the Leg-

endre transform of Hy defined in (3.15); and Iy = lzo—zf

 257%t

O
6.2. Option prices.

PROOF OF COROLLARY 2.1. We follow the proof of Corollary 1.3 in [11]
and show that li%1+elogE [(SQt - K )+] is bounded above and below by
e—

—I,.(log K; z,t).

Recall that we are considering out-of-the-money call options and hence
xo < log K (see (2.4)). Since our rate functions I, (x; xo, t), for both r = 2,4,
are non-negative, convex functions with I,.(zg;zg,t) = 0, they are conse-
quently monotonically increasing functions of x when = > zy. Using this
fact and the continuity of the rate functions, the proof of the lower bound
follows verbatim from the proof in [11]. We refer the reader to [11] for details.

The upper bound follows from [11] once we justify the following limit: for
any p > 1,

(6.2) 111%1+ elog E[SPs,] =0 for both § = ¢* and § = €.
e— ”

Recall the operator A, s defined at the beginning of section 3. By a slight
abuse of notation, we can use A.s to denote the operator acting on the
unbounded function eP* given below:

1 1
Acser = e((r = 502 ()pe” + 0% (e ).

Let
t
Mt = exp {pX€,5,t — pX€7570 _ / e_pXe,J,sA€7éere,5,st} .
0

Then M; is a non-negative local martingale (supermartingale), this follows
from the proof of [8] [Lemma 4.3.2]. By the optional sampling theorem

EM, <1.
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Recall that X 5; = log Sc 5, then

(6.3)
E[sfévt] — E[e8%es1]

t 1/2
< (EMt)l/2 <E [exp {—FpXE,g,o —|—/ e_st,é,sAE’5ers,6,st}:|>
0

(by Holder’s inequality)

t
<1- 2P0 <E [exp {/ e_pX€v5’5Ae7ger€v5’sds}])
0

We simplify and bound the right hand side of the above inequality:

t
E|:eXp {/ e_pXe,(S,sAE’éere,(S,st}]
0

= len{ [ (- 3o 0us i+ 5o (s s |

1/2

— eerptE

et/o
exp{8(s* — p) /O 02(Ye757gu)du]’]
(by change of variable u = $s; recall that § = €? or €*)

et/d
—E |exp{d? < p) [ 0 (Vi)du)
0

where Y, is the process with generator B given in (1.2). By convexity of
exponential functions we get

t
E |:eXp {/ e_pXe,(S,sAE’éere,(S,st}]
0

(6.4) /s
o[ ettt — o

< eerptE

Since § = €2 or €*, €/§ — 0o as € — 0. Therefore, by the ergodicity of YV
and exp{t(p* — p)o?(y)} € L' (dr) (this follows from an argument similar to
proof of Lemma 5.4; note that 0 < 1 — § by Assumption 1.1.3), the right
hand side of the above inequality (6.4) is uniformly bounded for all € > 0.
Putting this together with (6.3) we get (6.2). O
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6.3. Implied volatilities.

PrROOF OF THEOREM 2.2. Recall that X.; = logS.; and z¢ = log Sp.
Note that we have dropped the subscript § in the notation and the depen-

dence on § = €* or € should be understood by context. Our first step is to
show that
(6.5) lim o.(t,log K, z¢)Vet = 0.

e—0t

Once we have shown this, the rest of the proof is identical to that of Corollary
1.4 in [11].
By definition of implied volatility

—log K + ret + 1o2et
Bl(Ses — K)'] S, (mo og K +ret + 507€ )
oeVet

Y log K + ret — %O’?Et
oVt

where @ is the Gaussian cumulative distribution function. Let [ > 0 be the
limit of o.\/et along a converging subsequence. If lim,_,y+ of the left-hand-
side of (6.6) is 0, then [ satisfies

—log K I —log K |
socp(%w)_m(%_i):o.

(6.6)

The only solution of the above equation is [ = 0 and thus we get (6.5).
We therefore need to prove

(6.7) lim E [(Se; — K)*] =0.

e—0t

By (1.5a) we have

t t
St~ K =Sy~ K +e / rSeidt + /e / Seso(Ye)dw,Y.
0 0

It can be verified that E[(S.; — K) — (So — K)]?> — 0, as € — 0, for both
cases d = €* and § = €. Therefore

lim E[(Se; — K)*] = E[(So — K)*] =0

e—0t

as Sy < K (this is an out-of-the-money call option).
O

In the following appendix, we collect some material regarding 1-D diffu-
sions Y and technical but elementary estimates.
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APPENDIX A: POSITIVITY OF THE Y PROCESS

In this section we prove positivity of the Y process when % <fB<1lin

(1.1b). Assume m > 0 and Y; > 0. Recall the scale function s(y) defined in
the introduction and let S(y) = [ s(y)dy. By Lemma 6.1(ii) in Karlin and
Taylor [23], to prove that Y; remains positive a.s. for all ¢ > 0, it is sufficient
to show that

lim S(e) = —o0.

e—0T

For 0 < e < 1,

—5(6):/Els(y)dy:[exp{—/ly%dz}dy

1 2m y2_25
- C/e P { VI2F — Dy 1 (1= 5) } @

(where C is a positive constant and 25 — 1,1 — 8 > 0)

1 - . 2€ 21 y2—26
= /2 (positive integrand)dy + C’/6 exp { V2(2F — 1)1 + V(1= ) } dy

€

>C 2m — 400
e
= VAP 0225 — 1) (200251
as € — 01, provided m > 0. Therefore lim,_,+ S(€) = —oc0.

APPENDIX B: GROWTH ESTIMATES FOR SOLUTIONS TO
POISSON EQUATIONS

Assume Y satisfies the Poisson equation

L6 - 02(y)),

Bx(y) = 3

where 72, defined in (3.7), is the average of o%(y) with respect to the invari-
ant distribution 7 (dy), given in (1.4), of the Y process. In this section we
find growth estimates for y.

The right hand side of the above Poisson equation is centered with respect
to the invariant distribution 7 (dy) = %dy (given in (1.4)) and so

(B.1) /000 m(2)(62 — 0%(2))dz = 0;

where

1 Y2(m — z)
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By (1.3),

W = [dast) /Oy\pP(o—z—oz(z))dM(z)
1

- /y%m(y) [/y \plzm(Z)(Zj _02(2))@} dy

is a solution up to a constant, and so

() = L [/m 0—0’2(2))dz]

1/2 Zﬁm

_ ﬁ [/y m(z) (3 — 02(z))dz} .

v2y2Pm(y)

The last equality is by the centering condition (B.1). Given the bounds on
o(y) in Assumption 1.1.3, we can compute the following bounds where the
constants, denoted by ¢, are positive and vary from line to line.

c 2 oo
X0 < o [ s

V2428 m

1-28

2 0y 0 2-28

C|p| € 20—28 —azl=2F — 3

— v4(l—

= 35 z e e V-8 dz
Yy

V2¢ vE(1-5)

. _ 1-28
where v = % > 0. Bounding e=%* above by 1 we get
2 ayl’zﬁ o) ,2—28
/ clp|e 20-28, " 21=5)
NWI S =g | #7770 P4z
v2e¢ vZ(-p) Y
1-23
clpfe /°° 5 { u }d
= u2-28 exp < — U
_ w2 _ 2(1 —
Ve w2 VT vi(1-p)

(by change of variable u = 2%~%)
1-28 —
< clp*e® 201 gy ) y>
< = |V P\ Ay )
1/23_ v2(1-p)
In the last inequality we used

O 201 20-1 ___a
/ {uZ e 0o ﬂ)} du < v*(1 — B)a>2e »20-5 (since g‘i;é < 0). There-
a

fore
1-28

c|p|?ev _ -
Ix’(y)l Sy el asy o oo,

since e® NO( ) as y — o0.
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APPENDIX C: Y¥ PROCESS

Fix p € R. Denote p,(y) := (m—y)+ppo(y)vy® and let Y? be the process
with generator

1
B'g = ip(1)dyg + 50y 05,9, 9 € CZ(Eq).
In this section we calculate the unique stationary distribution and Dirichlet
form of the process YP and we show that it is a reversible process. To this
end, we first compute the scale function and speed measure.

The scale function and speed measure for the Y? process are given by:

sp(y) = exp {— /121 2]//;1;(226)} and my(y) = 2

v2y*Psy(y)

Evaluating the integral in s,(y) we get (the C below denotes a positive
constant that varies from line to line):

Cexp 2mlogy + Vgil 26) 2ﬂJ} if 3=

sp(y) = —28
Cexp pIpT 1) =T + VQ(I 3 —@J} if €

J(y) = /y %dz.

Due to bounds on ¢ given in Assumption 1.1.3, there exist Cy,Cy > 0 such
that

1
2
ouU

U (z,1)-

Ciy' =P < J(y) < Coy*=Fte,

0<1-B8<1-B+4+0<1 ifF<pB<1
where
1=1-8<1-f+0<2 iff=0

. Therefore
1) sp%y)—>0wheny—>00ry—>oo if%§5<1
% — 0 when |y| — oo if 8=0.

sp(y)

Define for y € Ep,

Sp(y) 1 = /1y sp(z)dz
52-28

B Y 2m 2pp
= [loo{ g g e o

where C' > 0. Observe that S,(y) — —oo as y approaches the left end point
of Ey and Sy(y) — 400 as y — oc.
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C.1. Stationary distribution. Let 7” be an invariant distribution of
the process YP. Suppose it has density function ¥(y), i.e. dnP(y) = ¥(y)dy,
then W is uniquely determined as the solution of

102 1 5 9 %)
22 (P Ew) - a—y (1) () = 0,
satisfying U(y) > 0 for all y and [, ¥ o y)dy = 1. Solving the above dif-

ferential equation, we get W(y) = mp( )[ClS (y) + Ca]. Since ¥ is non-
negative and S,(y) — —oo as y approaches the left boundary of Ey, we
take C’l = 0. The other constant C5 is uniquely determined by the condition

y)dy = 1. Therefore 7P is the unique invariant distribution of Y? and
Eo
is glven by
my(y) 2
2)  drP U(y)dy = —2=dy = dy f E,
(C ) ™ ( ) ( ) Yy = Zl Yy ZlyngBSp(y) Y or y € Ly,

where Z1 = [, my(y)dy.

C.2. Reversibility. Let ¢,v € C%(Ep), then

1 1 2
YBPpdr? = — [ ¢ [ 2y " + iy 90’} —————dy
o Z e |2 ¥ | 2, )
1 y 2pp(y) y 20p(y)
- w[/,f Huzwwf m]dy

_1 d (¥ )d
Z Eowdy <Sp(y)

Integrating by parts twice and using the boundary conditions (C.1), we get

1 W
BPpdr? = — dy = BPadrP .
/Eg¢ L dy< (y)> Y /EO(’D van

C.3. Dirichlet form. By similar calculations as before, when proving
reversibility, we get: for f,g € L?(7P),

£(f.9) =~ | fBgdn"
0

1 d (d'(y)
4 Eof(y)dy <Sp(y)>dy

1 o, 1
=z Eof (¥)d' (y)
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where we integrated by parts once and used (C.1) in the second last line.

APPENDIX D: RATE FUNCTION FORMULAS

Recall the following characterization of the rate functions given in (6.1):

L(z;20,t) = sup {h(z) — ul" (t,20)},
hECb(R)

where 7 = 2,4 correspond to the two regimes 6 = €2 and § = €* respectively.
The ug’r are given in (5.17) and (5.5) respectively as

ug(t, ) = sup {h(a’/) -t <x0 r w’) } ’

z’'eR
/12
h,4 To — T
= - (2527
X

For notational convenience, we will drop the subscript r in I, and, in

the case r = 4 we will denote the term <|x%;2xt'\2) by tL (on—x') The rate

functions can then be rewritten as

= st (o) 0 (22))

heCy,(R) ©'€R

for both regimes » = 2 and r = 4.

LEMMA D.1.

I(x;m0,t) = tL <$Ot_x> .

PROOF. Note that for both cases r = 2,4, L is convex, Lg(0) = 0 and
Ly is a non-negative function. This is obvious for the case » = 4. We can
deduce this in the 7 = 2 case since Hy(p) (defined in (3.15)) is convex and
Hy(0) = 0.

Re-write

I(z;w0,t) = tLg <$0 — :E) + sup inf {h(z)— h(z")
t heC),(R) z’eR
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where J = sup Jj and

hECb(R)

— / _ J—
Jn = inf, {h(:z:) — h(a') + tLo (%) —tLo (mo : x) } Taking o' = z
z'e
in the inf we get J;, < 0 and therefore

(D.1) J <0.

Note that zp and x are fixed. Define a function h* € Cy(R) as follows:

— ! _ —
h*(2') = tLo (%) AtLo <”“’° - x) :

Then

Jpx =0,
and consequently
(D.2) J > 0.

By (D.1) and (D.2), J = 0 and we get

1]

2]

8]
[4]

[5]

[6]
(7l

8]

I(z;20,t) = tLo <azot—x> .
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