
ar
X

iv
:1

00
9.

36
01

v1
  [

st
at

.M
L]

  1
9 

S
ep

 2
01

0

Pair-Wise Cluster Analysis

David R. Hardoon∗

Department of Computer Science
University College London

London
davidrh@me.com

Kristiaan Pelcksman†

Division of Systems and Control
Dept. of Information Technology Uppsala University, Sweden

kristiaan.pelckmans@it.uu.se

Abstract

This paper studies the problem of learning clusters which are consistently present
in different (continuously valued) representations of observed data. Our setup dif-
fers slightly from the standard approach of (co-) clustering as we use the fact that
some form of ‘labeling’ becomes available in this setup: a cluster is only interest-
ing if it has a counterpart in the alternative representation. The contribution of this
paper is twofold: (i) the problem setting is explored and an analysis in terms of
the PAC-Bayesian theorem is presented, (ii) a practical kernel-based algorithm is
derived exploiting the inherent relation to Canonical Correlation Analysis (CCA),
as well as its extension to multiple views. A content based information retrieval
(CBIR) case study is presented on the multi-lingual alignedEuropal document
dataset which supports the above findings.

1 Introduction

Consider the setup where individual observations come in two different representations(x, y). This
paper focuses on the questions: ‘If we observe a newx, what can be said about the correspondingy,
and vice versa?’ While this abstract problem has obvious relations to classical supervised learning,
its inherent symmetry relates it to unsupervised learning as well. This paper studies the above
problem, specifying the properties to be predicted in termsof pre-specified membership functions.
Figure (1) differentiates the above problem - termed PairWise Cluster Analysis (PWCA) - from
the supervised, unsupervised, semi-supervised, transfer- and multiple-task learning [1] and self-
taught learning [2]. The present learning strategy has direct relations to co-occurrence analysis,
co-clustering [3], kernel Canonical Correlation Analysis(kCCA) [4] and has been motivated by the
previous works of Pelckmans et al. [5] and Sim et al. [6] whichexplore an application in relating
text corpus - microarray expression and multi-attribute co-clustering respectively.

The analysis given in Section 2 phrases the learning problemin terms of the PAC-Bayesian theorem,
much in the spirit of the recent work of Seldin & Tishby [7]. Although, while the latter concerns
density estimation for discrete variables, the presented ideas cover a spectrum of unsupervised learn-
ing (clustering). The analysis presented in [7] concerns, essentially, the same quantityEQ[R(h)]
as in subsection 2.1, equation (6), which characterizes howwell some hypothesesQ aligns with the
distribution underlying the data. Our extension to pairwise clustering is fundamentally different -
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Figure 1: Pictorial representation of different
learning paradigms, extending the picture in [2].
Suppose the aim is to discriminate elephants from
rhinos. When a picture appears in a frame, a cor-
responding class-label is available. In cases: (a)
supervised classification. (b) unsupervised learn-
ing. (c) semi-supervised learning. (d) transfer
learning (the two different colors indicate two
different learning tasks). (e) selftaught learning,
and (f) pairwise cluster analysis (PWCA). Note
that in the latter we try not to find the class la-
bels themselves, but to recover the symbiotic rela-
tion between elephant-egret, and rhino-oxpeckers.
Specifically, the presence of oxpeckers might help
us in predicting the presence of a rhino, and vice
versa.

incorporating a notion of prediction ‘loss’ - while the relation of Kuller-Leibler (KL) divergence and
the norm of an hypotheses establishes a relation with the learning algorithm.

Section 3 (i) derives an effective learning algorithm, boiling down to a quadratic (or a generalized)
eigenvalue problem. This learning machine is closely related to kernel Canonical Correlation Anal-
ysis (see e.g. [8, 4] and references therein). Empirical (ii) evidence for this learning paradigm,
and the proposed algorithm is then presented. We proceed to demonstrated the benefit of learning
structure within the data on a multi-lingual text-corpora [9]. Section 4 indicates a number of open
questions.

2 A Generic Analysis using the PAC-Bayes Theorem

Consider a functionhr : {x} → [0, 1] that verifies, for a given problem setting, how good a certain
‘rule’ r performs on a samplex. The goal of a learning algorithm is to find the best ruler in a given
set of plausible rules (the hypothesis set). Then, learningproceeds by collecting a dataset{Xi}ni=1

of n observations assumed to be sampled independently from identical distributions (i.i.d)1. The
empirical riskRn(hr) and the actual riskR(hr) of an ‘hypothesis’hr ∈ H is defined as

{

Rn(hr) =
1

n

∑n
i=1

hr(Xi)

R(hr) = E[hr(X)],
(1)

where the expectationE[·] concerns the fixed, unknown distribution underlying then i.i.d observa-
tions. For supervised learning problems, (informally) an observationx consists typically of a couple
(z, y) with a covariatez and an ‘output’y. Thenhr is often rephrased ashr(x) = ℓ(y − r(z)),
whereℓ : R → [0, 1] is the ‘prediction loss’ between the actual observationy and its prediction
r(z). In a Bayesian context, we assume that the hypothesishr ∈ H are also ‘stochastic’ elements2,
possessing some notion of likelihood, sayQ : H → [0, 1] such that

∫

H Q(hr)dh = 1. Consider at
first the case whereH is finite, we are interested in what happens on functionsEQ[hr(x)], which is
defined as

EQ [hr(x)] =
∑

hr∈H

hr(x)Q(hr). (2)

If |H| is infinite, then the sum can be replaced by an integral as usual, or EQ [hr(x)] =
∫

H hr(x)Q(hr)dhr. In the analysis we will assume|H| < ∞ in order to avoid technical issues.
Note that this is not quite a regular (well-known) expectationE[·] as before. Now let the Kullback-
Leibler distance be defined for each0 < p, q < 1 be defined asKL(q, p) = q log q

p
+(1−q) log 1−q

1−p
,

1We will use the convention to denote stochastic variables ascapital letters, e.g.X,Y, . . . , while determin-
istic quantities are denoted in lower case, e.g.h, f, i, x, y, n, . . . .

2In a PAC-Bayesian context, we will merely consider weightedsums of the elements inH, rather than
assuming a truly Bayesian setup.
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wherelog(·) denote the natural logarithm. Let the functionP : H → [0, 1] be the prior weighting
function overH. If Q : H → [0, 1] andP : H → [0, 1] are two functions, we extend the definition
as

KL(Q,P ) =
∑

hr∈H

Q(hr) log
Q(hr)

P (hr)
. (3)

We state the PAC-Bayes theorem as in [10]:

Theorem 1 For δ > 0 and forn ≥ 8, we have that with probability exceeding1 − δ we have that
for all Q : H → [0, 1] the following inequality holds:

KL
(

EQ[Rn(hr)], EQ[R(hr)]
)

≤ KL(Q,P ) + log 1

δ
+ log(2

√
n)

n
. (4)

Specifically, this holds for aQn found by an algorithm based on then i.i.d. observations. Note that
this result is currently the most tight inequality, refiningthe ideas presented in [11]. While till date
most applications are found in the context of supervised learning, we will argue in the following that
this theorem finds a ‘natural’ application towards unsupervised learning.

2.1 An Application of PAC-Bayes Towards Clustering

In what follows, assume that then i.i.d. samples{Xi}ni=1 take values in a bounded set inS ⊂ R
d

for a givend ∈ N. In order to use the PAC-Bayes result to the generic application of clustering, we
need to specify the loss functionℓ : Rd → [0, 1] of interest. A ‘cluster’, represented as an indicator
function h : R

d → {0, 1}, is understood here as a member of a user-specified set of indicator
functionsH =

{

h : Rd → {0, 1}
}

. Formally, one defines for a setc ⊂ R
d

hc(x) = I(x ∈ c) =

{

1 x ∈ c

0 x 6∈ c.
(5)

Now, we look a bit closer at what the termEQ[R(hc)] represents in this context.

EQ[R(hc)] =
∑

hc∈H

P(X ∈ c)Q(hc) = E

[

∑

hc∈H

hc(X)Q(hc)

]

, (6)

where the second equality holds by linearity of the expectation, and whereP denotes the probability
rules underlying the data. Consequently, the termEQ[R(h)] characterizes how wellQ alignswith
the distribution underlying the data. Assume that theH is designed such that all setsc corresponding
to ahc ∈ H (i) cover the spaceS and (ii) are disjunct.

The functionP : H → [0, 1] is the prior weighting function (think of it as a ‘prior distribution’ over
H). In general, it is up to the user in a specific application to decide how to design(H, P ): it is
good practice to make it equally likely for each hypothesish ∈ H to explain the data by itself, -
suggesting a uniform priorP over this setH- while the result should be useful for the application
in mind. Assume for example that all probability mass (underlying the samples) concentrates in
the set corresponding with a singlehc, andQ(hc) = I(i = j), then this measure equals 1. On
the other hand, if all samples are equally distributed over the |H| setshc ∈ H, the measure equals
1

|H| . This motivates the naming ofEQ[R(h)] as theexplanatory powerof (H, Q). Specifically, if

H = {I(x ∈ [−1, 1]d)}, the explanatory power of(H, Q) is 1, but it however is not very useful,
surprising norfalsifiable.

We argue that this PAC-Bayesian interpretation to clustering is often ‘natural’ because of three rea-
sons. (i) The present analysis does not need to recover the density function underlying the data, a
feature which is highly desirable if working with high-dimensional data. (ii) The set of ‘underly-
ing’ clusters is not recovered exactly, nor assumed to exists in reality. The actual stochastic rules
underlying the observed data only say how well the hypothesis clustering ‘explains’ the data. When
dealing with data arising from complex processes the assumption of a ‘true clustering’ is often an
oversimplification. (iii) The characterization of performance of the found ruleQn in terms of its de-
viation from the priorP is desirable if clustering is meant for looking for ‘consistent’ irregularities.
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Specifically, if the resultQn is not what we (more or less) expected before seeing the data,substan-
tial empirical evidence should be presented motivating this property. Those reasons differentiate the
approach substantially from approaches based on density estimation, or on mixtures of distributions.
Remark that this description of explanatory power is strongly related to the ideas presented in [12].
The following clustering algorithm is then motivated by application of the PAC-Bayesian theory:

Qn = argmin
Q

EQ[Rn(h)] s.t. KL(Q,P ) ≤ ωn, (7)

whereωn > 0. This objective is also motivated from an information theoretical approach to cluster-
ing, as e.g. in [3].

2.2 An Application of PAC-Bayes Towards Pairwise Clustering

Now we explain how the above insights lead to an analysis of the pairwise clustering setup. Let
againZ andY denote respectively the two domains of interest in which pairwise observations(x, y)
are made. A first approach would be to rephrase the pairwise clustering problem as a standard
clustering approach, where instead of the class of indicator functionsHf ⊂ {f : Z → [0, 1]} in the
first domain, one studies the cross-product of this class with the class of indicator functions in the
other domainHf,g = Hf ×Hg, or

Hf,g ⊂
{

h = (fh, gh)
∣

∣

∣
fh : Z → [0, 1], gh : Y → [0, 1]

}

. (8)

However, the reasoning in the introduction suggests another route. To see this, we formalize the
intuition of the pairwise observation(x, y) being a target for prediction: (i) letz ∈ Z represent the
part of a samplex = (z, y) which might be used to predict (a property) of the (unobserved) y ∈ Y;
and/or (ii) giveny ∈ Y, predict (a property) of the corresponding (unobserved)z ∈ Z. Given a
setHf,g: the knowledge of the ‘cluster’ to whichX belongs, will be used to predict the cluster
memberships of the correspondingy.

We will say thatfh explainsz ∈ Z if fh(z) = 1, and similarly thatgh explainsy ∈ Y if gh(y) = 1.
In an ideal case, one would be able to associate exactly one distinctfh ∈ Hf to everygh ∈ Hg (i.e.
describe a permutation). As such, one could predict the cluster gh containingy corresponding to a
givenz. In the worst case, the choice ofg that explainsy is independent ofz being explained by
f . The pairwise clustering setup however differs from such a multi-class classification (structured
output prediction) task as it is essentially symmetric: a givenz is used to predict (cluster membership
of) the correspondingy, and a giveny is used to predict (cluster memberships of) the corresponding
x. Now, a pairwise clusterh = (f, g) ∈ Hf,g was useful for a sample(z, y) ∈ Z×Y if f(z) = g(y).
Alternatively, a pairwise clusterc = (f, g) contradictsa sample iff(z) 6= g(y). This motivates the
following risk function

{

Rn(h) =
1

n

∑n
i=1

I(fh(Zi) 6= gh(Yi))

R(h) = P (fh(Z) 6= gh(Y )) ,
(9)

defined again in an ‘empirical’ and an ‘actual’ flavor. This definition measures how many (for how
large a probability mass) datapoints are contradicted by a pairwise clusterh = (fh, gh). Now the
termEQ[R(h)] becomes

EQ[R(h)] =
∑

h∈Hf,g

P (fh(Z) 6= gh(Y ))Q(h), (10)

which basically captures how many mistakes are made when focussing on the subset ofHf,g

as directed byQ. This motivates the following practical approach: (i) given a dataset{Xi =
(Zi, Yi)}ni=1, with the elements taking values inZ × Y, and (ii) a a setHf,g of pairwise clusters
represented ash = (f, g), and a ‘prior’ weighting functionP : Hf,g → [0, 1], then we aim to find
a new weighting functionQn : Hf,g → [0, 1] which is not too different fromP , and which aligns
well with the probability rules underlying the data as

Q∗ = argmin
Q

EQ(R(hc)) s.t. KL(Q,P ) ≤ ω, (11)

whereω > 0. The PAC-Bayes theorem now guarantees that this problem is approximatively solved
based on the data as

Q′
n = argmin

Q

EQ(Rn(hc)) s.t. KL(Q,P ) ≤ ω, (12)
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whereω > 0. The resultingQ′
n will emphasize the pairwise clusters which are most often consistent

with the data. Here we have a natural trade-off between specificity and accuracy, regulated byωn.
If ωn were small, the solutionQ′

n cannot deviate from the uniform distributions over all pairwise
clusters inHf,g, but then many different pairwise clusters will contradicton different samples,
leading in turn to low explanatory power. On the other hand, allowing for arbitraryQ′

n will explain
the individual samples fairly well (allowing a single pairwise cluster per sample), but the PAC-
Bayesian result will not guarantee accuracy of the result anymore.

We now express the ‘regularization term’KL(Q,P ) in a more convenient form.

Proposition 1 (Bound to K.-L. Divergence) Assume|H| < ∞ andP (h) = 1

|H| for all h ∈ H,
then

KL(Q,P ) ≤ log
∑

h∈H

Q2(h) + log(|H|). (13)

This is a consequence of the following inequality on the entropy of a vectorp ∈]0, 1[d with 1T p = 1

h(p) =
∑

i=1

pd log(pd) ≤ log

(

d
∑

i=1

p2i

)

, (14)

by application of Jensen’s inequality. LetsQ ∈ [0, 1]|H| be a vector representing the functionQ
wheresQi = Q(hi) (enumerating the different elementshi ∈ H), then

sQn = argmin
sQ≥0n

∑
i s

Q
i =1

‖sQ‖2 s.t. EQ[Rn(h)] = 0. (15)

implementing the socalledrealizablecase (as in the theory of Support Vector Machines). The op-
timal solutionQn will try to find as many pairwise clusters as possible which are not contradicting
the given data. We illustrate this notion in figure 2. In the ideal case, all observations are explained.
In more realistic cases, merely a few pairwise clusters are found (i.e., the set{h ∈ H : Q(h) > 0}
contains only a few elements).

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8
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Figure 2: Schematic representation of all pairwise clusters in a hypothesis spaceH based on the 5
disjunct intervalsd + [0, 0.2] in either domain (dotted lines). The dots(X,Y ) ∈ R × R represent
samples from an underlying distribution. Suppose the different hypothesis can be factorized as
hc = (f, g), wheref : R → [0, 1] andg : R → [0, 1], being the corresponding indicator functions in
either domain. This means that there are 25 possible different pairwise clustershc (dotted squares),
or |Hf,g| = 25, (a) about70% of the observations (dots) do not contradict the 5 pairwise clusters
(yellow squares) simultaneously; (b) Only one sample (‘�’) contradicts the shown pairwise cluster
hc (yellow squares), while the other two (‘◦’ and ‘×’) are consistent withhc.

We extend this model to account for infiniteH, defined ash = (δz, δy) for each(z, y) ∈ Z × Y,
and whereδx denotes the Dirac delta. When extending the formulation in order to deal with infinite
hypothesis spacesHf,g, we replace vectorssQ by functionsQ : H → R

+, which (for convenience)
are assumed to be elements of a Hilbert spacesH. This space is equipped with a corresponding
inner-product (reproducing kernel)k : H × H → R, implicitly defining H andP . Note that
Q(h) ≥ 0 for all h ∈ H, and

∫

HQ(h)dh = 1. This motivates the replacement of the termKL(Q,P )
by ‖Q‖H. As such (12) is equivalent (up to normalization) to

Q′′
n = argmin

Q

‖Q‖H s.t. EQ[Rn(h)] = 0. (16)

whereQ′′
n(h) ≥ 0 for all h ∈ H, and

∫

HQ′′
n(h)dh = 1. Note that for the majority of pairwise

clusters no data is sampled contradicting the cluster, and asmooth transition ofQ inbetween the
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sample becomes possible. In the remainder we will assume therelevant Hilbert spaceH can be
decomposed additively uniquely asHZ ⊗ HY, and the norm of a functionQ can then be written
as‖Q‖2

H
= ‖F‖2

HZ
+ ‖G‖2

HY
. AssumeHf,g contains all pairwise clustersh = (δz , δy) for all

(z, y) ∈ Z×Y andδ the Dirac delta. Under the assumtion no ties occur in the data, problem (17) is

(Fn, Gn) = argmin
F,G

‖F‖2HZ
+ ‖G‖2HY

s.t. Fi = Gi, ∀i = 1, . . . , n. (17)

enforcing thatF (h) = G(h) for all h ∈ Hf,g, and enforcing again thatF (h) ≥ 0 for all h ∈ Hf,g as
well as that

∫

Hf,g F (h)dh = 1. HereFi = F (δZi
) andGi(δYi

) = Q((δZi
, δYi

)) for all i = 1, . . . , n.
The next section shows how to solve this problem, relaxing the (in)equality constraints.

3 Kernel PairWise Component Analysis

3.1 PWCA for paired Observations

This section studies how the learning problem (17) is solved(approximatively) by an efficient algo-
rithm. LetXa = (XT

1 , . . . , X
T
n )

T ∈ R
ℓ×m andY b = (Y T

1 , . . . , Y T
n )T ∈ R

ℓ×n be matrices whereℓ
is the number of samples andm,n are the number of attributes/features for the first and second rep-
resentation respectively. The functionsQ are parametrised asFvc

(z) = vT
c z andGwc

(y) = wT
c y.

The inequalitiesQ(h) ≥ 0 are enforced by representing this asQ(h) = F 2(f) = G2(h) for
all h ∈ Hf,g. This is imposed by enforcingci =

√

Q((δZi
, δYi

)) = F (δYi
) = G(δYi

), then
∫

H
Q(h)dh = 1 is enforced by imposing the constraintc′c = 1 (similarly, maximizingc′c). As

such (12) becomes
max

c∈Rℓ,vc∈Rm,wc∈Rn
c′c− γ(w′

cwc + v′
cvc), (18)

whereA′ is the transpose of matrix, or vector,A and such thatci = Xa,iwc = Yb,ivc, for i =
1, . . . , ℓ. Associating Lagrange multipliersαi, βi to each of theℓ constraints gives the following
Lagrangian

L =
1

2
c′c− γ

2
(w′

cwc + v′
cvc)−α′(c−Xawc)− β′(c− Ybvc). (19)

Taking derivatives of equation (19) with respect towc,vc, c and setting to zero give the following
conditions for optimality as

∂L
∂wc

= 0 → wc =
1

γ
X ′

aα,
∂L
∂vc

= 0 → vc =
1

γ
Y ′
bβ,

∂L
∂c

= 0 → c = (α+ β).

Setting back into the optimisation in equation (18) gives the following dual problem

max
α∈Rℓ,β∈Rℓ

J =
1

2
(α+ β)′(α+ β)− 1

2γ
(α′Kaα+ β′Kbβ),

whereKa = XaX
′
a andKb = YbY

′
b are the kernel matrices. Taking derivatives and setting to zero

shows thatJ achieves a (local) optimum when

∂J
∂α

= 0 → γ(α+ β) = Kaα (20)

∂J
∂β

= 0 → γ(α+ β) = Kbβ.

We are able to observe that at optimumKaα = Kbβ, which illustrates a direct relationship to
KCCA condition. Due to limited space we do not explore the relationship to KCCA within the
scope of this manuscript. Equation (20) can be rewritten as

[

Ka 0ℓ
0ℓ Kb

] [

α
β

]

= γ

[

Iℓ Iℓ
Iℓ Iℓ

] [

α
β

]

, (21)

whereIℓ is the identity matrix and0ℓ is a matrix of zeros, both of sizeℓ × ℓ. This equation may be
solved as a generalized eigenvalue problem in the form ofAx = λBx. Alternatively, we observe
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that by settingβ =
(

1

γ
Ka − I

)

α, we can express1
γ
Kaα = 1

γ2KbKaα− 1

γ
Kbα, which results in

the following generalized eigenvalue problem forα

KbKaα = γ (Ka +Kb)α, (22)

and by settingR to be the Cholesky decomposition ofKbKa such thatKbKa = RR′ we obtain the
following symmetric eigenvalue problem

Iℓα = γR−1 (Ka +Kb)R
−1

′

α.

It may be necessary to regularize equation (21) with some small value τ on the diagonal. This will
result in our optimisation being rewritten as

[

Ka 0ℓ
0ℓ Kb

] [

α
β

]

= γ

[

Iℓ(1 + τ) Iℓ
Iℓ Iℓ(1 + τ)

] [

α
β

]

.

Furthermore, the above eigenvalue problem can be written asβ =
(

1

γ
Ka − τIℓ

)

α and

KbKaα = γ2(Iℓ − τ2Iℓ)α+ γ(τIℓKa + τIℓKb)α,

which can be solved as a quadratic eigenvalue problem. It follows from the conditions for optimality
that a new sample(x̄a, ȳb) can be projected in the learnt semantic space by the functions

{

F (x̄a) = w′
cx̄a = 1

γ
α′Ka(xa, x̄a),

G(ȳb) = v′
cȳb =

1

γ
β′Kb(yb, ȳb).

Then it is also reasonable to assign the sample(x̄a, ȳb) to the cluster(1, . . . , ℓ) which has highest
(absolute) factors|F (x̄a)|ℓ1 and|G(ȳb)|ℓ1 respectively.

3.2 PWCA for Multiview Observations

In this section we generalize our methodology to multiple views. Expressing optimization in equa-
tion (18) for three sources gives

max
c∈Rℓ,wc∈Rm,vc∈Rn,zc∈Rs

1

2
c′c− γ

2
(w′

cwc + v′
cvc + z′czc), (23)

such thatci = Xa,iwc = Xb,ivc = Xc,izc, for i = 1, . . . , ℓ. Taking derivatives of equation (23)
with respect towc,vc, zc, c and setting to zero will give the conditions for optimality.Substituting
these conditions back into equation (23) gives the following dual problem

max
α∈Rℓ,β∈Rℓ,ν∈Rℓ

J =
1

2
(α+ β + ν)′(α+ β + ν)− 1

2γ
(α′Kaα+ β′Kbβ + ν ′Kcν),

whereKa = XaX
′
a, Kb = XbX

′
b andKc = XcX

′
c are the kernel matrices. Taking derivatives and

setting to zero shows thatJ achieves a (local) optimum when

∂J
∂α

= 0 → γ(α+β+ν) = Kaα,
∂J
∂β

= 0 → γ(α+β+ν) = Kbβ,
∂J
∂ν

= 0 → γ(α+β+ν) = Kcν.

which can be rewritten as
[

Ka 0ℓ 0ℓ
0ℓ Kb 0ℓ
0ℓ 0ℓ Kc

][

α
β
ν

]

= γ

[

Iℓ Iℓ Iℓ
Iℓ Iℓ Iℓ
Iℓ Iℓ Iℓ

][

α
β
ν

]

,

where againIℓ is the identity matrix and0ℓ is a matrix of zeros, both of sizeℓ×ℓ. Therefore, without
loss of generality, we can extend this to multiplei = 1, . . . , s views, wheres ≥ 2, similarly to the
previously proposed multi-view extension for CCA by [8], such that







K1 . . . 0ℓ
...

. . .
...

0ℓ . . . Ks













α1

...
αs






= γ







Iℓ . . . Iℓ
...

. . .
...

Iℓ . . . Iℓ













α1

...
αs






.

This equation may be solved as a generalized eigenvalue problem in the form ofAx = λBx.
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4 Experiments of PWCA on Europal

We proceed to compare PWCA to KCCA for a mate-retrieval task [13, 14, 15, 16], i.e. given a
document queryqi in languagex to retrieve the (exact) matching document in the paired language
y. For this purpose we use the multi-lingual Europal dataset [9], which has a total of 11968 aligned
documents. We use the following eight languages with the number of features/words in brack-
ets; da - Danish (78720), de - German (153499), en - English (60369), es - Spanish (171821), it -
Italian (66548), nl - Dutch (105318), pt - Portuguese (66922) and sv - Swedish (51116). We use
linear kernels throughout and arbitrarily set the regularization parameter toτ = 0.01 for both meth-
ods. Finally, the performance is evaluated using Average Precision (AP) [17] which is computed
asAP = 1

ℓ

∑ℓ
i=1

1

Ii
whereIi is the rank location of the exact paired document for query docu-

mentqi. ThereforeAP = 0.5 indicates that the paired document is on average situated atlocation
I = 2. We select the rank by sorting the, absolute, inner productsvalues ofF (qi)

′G(yj) (as well
as forF (xi)

′G(qj)) for all possible paired test documents, i.e. we rank the retrieved documents
according to their similarity (in the learnt space) with ourquery. In our experiments we use the
CCA formulation as proposed by [8] for both pair- and multi-view.

In the first of our two experiments, for each pairing combination of languages, we randomly select
500 paired-documents for training and 5000 for testing. Theanalysis has been repeated 10 times and
averaged across. The results given in table 1 are the AP averaged across of all possible language-
pair combinations for the language indicated in the column (i.e. columnda is the average of all the
language pairing withda - xx). We are able to observe that PWCA is able to perform, on average,
on a par with KCCA. The mean AP across all languages for KCCA is0.4435 whereas for PWCA it
is 0.4459.

Table 1: We compare KCCA and PWCA on a bilingual mate-retrieval task (see text for language
abbreviation). The reported results are the AP for retrieving the exact paired document in another
language, averaged across all possible language-pair combination for the language indicated in the
column. The results are averaged over 10 repeats of the analysis.

da de en es it nl pt sv
KCCA 0.4174 0.3839 0.4979 0.4243 0.4572 0.4023 0.4939 0.4714
PWCA 0.4294 0.4416 0.4747 0.4344 0.4368 0.4111 0.4679 0.4716

In the second experiment we extend the previous analysis to atrilingual mate-retrieval task, i.e.
we train on an aligned document corpus from three languages whereas during testing we compute
the mean average precision of all the individual pair-wise mate-retrieval tasks (of the three lan-
guages). In other words, we train on the trilingual alignment of da-de-enwhile we test the query
retrieval on the bilingual task ofda-de, da-en, de-en. In this experiment we randomly select 500
tripartite-documents for training and 2000 for testing. Due to increased complexity we only repeat
the analysis, for each 3 language combination, once. The results given in table 2, as in the previous
table, are the mean average precision for the language stated in the column and all its possible tripar-
tite combinations (without repetition, i.e. for example;da-da-enis not be allowed). We are clearly
able to see the improvement gained by PWCA over KCCA despite increasing the training alignment
complexity. Furthermore, not only did the added aligned language not hinder the mate retrieval task,
it improved performance as visible when comparing table 1 with table 2.

Table 2: We compare KCCA and PWCA on a trilingual mate-retrieval task (see text for language
abbreviation). The reported results are the mean average precision for retrieving the exact paired
document in another language for all possible tripartite combinations of the language stated in the
column (without repetition) for training.

da de en es it nl pt sv
KCCA 0.3687 0.3290 0.3930 0.3742 0.3792 0.3501 0.3917 0.3909
PWCA 0.5407 0.5155 0.5427 0.5394 0.5310 0.5246 0.5406 0.5504
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CCA (and KCCA) does not seek to maintain any pre-existing structure within the views while seek-
ing to maximise correlation across the views. This aspect that may lead to over-fitting when having
multiple views, PWCA addresses this by directly seeking to maintain internal structure by trying to
find as many pairwise (or n-wise) clusters as possible which do not contradict the given data. We
hypothesis that the PWCA performance improvement is a direct result of the clustering condition.

5 Discussion

This study presented a novel learning paradigm and corresponding algorithm that aims at finding
structure (pairwise clusters) in paired (multi-view) observations. A case study on bilingual and
trilingual mate-retrieval task, and a motivation using thePAC-Bayesian results are given. While this
paper described a theoretical as well as applied proof of concept, many issues including efficiency,
out-of-sample extensions and relations to other techniques remain.
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