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Abstract

This paper studies the problem of learning clusters whietcansistently present
in different (continuously valued) representations ofevlied data. Our setup dif-
fers slightly from the standard approach of (co-) clusgas we use the fact that
some form of ‘labeling’ becomes available in this setup:westgr is only interest-
ing if it has a counterpartin the alternative representafithe contribution of this
paper is twofold: (i) the problem setting is explored and aalgsis in terms of
the PAC-Bayesian theorem is presented, (ii) a practicalddvased algorithm is
derived exploiting the inherent relation to Canonical @@ation Analysis (CCA),
as well as its extension to multiple views. A content basédrmation retrieval
(CBIR) case study is presented on the multi-lingual aligkedopal document
dataset which supports the above findings.

1 Introduction

Consider the setup where individual observations comeandifferent representatiorig, y). This
paper focuses on the questions: ‘If we observe anemhat can be said about the corresponding
and vice versa?’ While this abstract problem has obviougic#ls to classical supervised learning,
its inherent symmetry relates it to unsupervised learnimgvall. This paper studies the above
problem, specifying the properties to be predicted in teofrire-specified membership functions.
Figure [1) differentiates the above problem - termed Pa@eACluster Analysis (PWCA) - from
the supervised, unsupervised, semi-supervised, traresfier multiple-task learning [1] and self-
taught learning([2]. The present learning strategy hasctiieations to co-occurrence analysis,
co-clustering[[3], kernel Canonical Correlation Analy&€CA) [4] and has been motivated by the
previous works of Pelckmans et al.l [5] and Sim et al. [6] whgiplore an application in relating
text corpus - microarray expression and multi-attributekstering respectively.

The analysis given in Section 2 phrases the learning probsléenms of the PAC-Bayesian theorem,
much in the spirit of the recent work of Seldin & Tishhy [7]. tAbugh, while the latter concerns
density estimation for discrete variables, the presemtead cover a spectrum of unsupervised learn-
ing (clustering). The analysis presented[ih [7] concerasentially, the same quantifjiy[R(h)]

as in subsection 2.1, equatidn (6), which characterizesnehsome hypothese3 aligns with the
distribution underlying the data. Our extension to paieandtustering is fundamentally different -
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Figure 1: Pictorial representation of different
learning paradigms, extending the picturelinh [2].
Suppose the aim is to discriminate elephants from
rhinos. When a picture appears in a frame, a cor-
responding class-label is available. In cases: (a)
supervised classification. (b) unsupervised learn-
ing. (c) semi-supervised learning. (d) transfer
learning (the two different colors indicate two
different learning tasks). (e) selftaught learning,
and (f) pairwise cluster analysis (PWCA). Note
that in the latter we try not to find the class la-
bels themselves, but to recover the symbiotic rela-
tion between elephant-egret, and rhino-oxpeckers.
Specifically, the presence of oxpeckers might help
us in predicting the presence of a rhino, and vice

versa.

incorporating a notion of prediction ‘loss’ - while the rétm of Kuller-Leibler (KL) divergence and
the norm of an hypotheses establishes a relation with tmeifegalgorithm.

Section 3 (i) derives an effective learning algorithm, imgjldown to a quadratic (or a generalized)
eigenvalue problem. This learning machine is closely eeléd kernel Canonical Correlation Anal-
ysis (see e.g.[[8.,14] and references therein). Empiricplegiidence for this learning paradigm,
and the proposed algorithm is then presented. We proceeehtomtrated the benefit of learning
structure within the data on a multi-lingual text-corpd®h [Section 4 indicates a number of open
guestions.

2 A Generic Analysisusing the PAC-Bayes Theorem

Consider a functioi,. : {2} — [0, 1] that verifies, for a given problem setting, how good a certain
‘rule’ r performs on a sample. The goal of a learning algorithm is to find the best rula a given

set of plausible rules (the hypothesis set). Then, learpingeeds by collecting a datage¥; } 1 ,

of n observations assumed to be sampled independently frortidgeledistributions (i.i.d}. The
empirical riskR,,(h,.) and the actual risk (h,.) of an ‘hypothesish,. € H is defined as

{Rn(hr) = & 2y he(X5) 1)
R(h,) = E[h (X)),

where the expectatioR|-] concerns the fixed, unknown distribution underlying thiei.d observa-
tions. For supervised learning problems, (informally) Beervation: consists typically of a couple
(z,y) with a covariatez and an ‘output’y. Thenh,. is often rephrased ds,.(x) = ¢(y — r(2)),
where? : R — [0, 1] is the ‘prediction loss’ between the actual observagjaand its prediction
r(z). In a Bayesian context, we assume that the hypotligsis  are also ‘stochastic’ elemeBts
possessing some notion of likelihood, sgy H — [0, 1] such thatf,, Q(h,)dh = 1. Consider at
first the case wher# is finite, we are interested in what happens on functbp$h, ()], which is

defined as
Eq [he(@)] = > he(2)Q(hy). @)
hrEH
If |#| is infinite, then the sum can be replaced by an integral asluswaEg [h,(z)] =
J3, Pr(2)Q(hy)dh,. In the analysis we will assum@é{| < oo in order to avoid technical issues.
Note that this is not quite a regular (well-known) expectafi|-] as before. Now let the Kullback-
Leibler distance be defined for eath< p, ¢ < 1be defined akL(q, p) = qlog £+ (1—g)log i_;g

1We will use the convention to denote stochastic variablesp#al letters, e.gX, Y, .. ., while determin-
istic quantities are denoted in lower case, &.gf, i, z,y,n, . ...

2In a PAC-Bayesian context, we will merely consider weighseths of the elements i#, rather than
assuming a truly Bayesian setup.



wherelog(-) denote the natural logarithm. Let the functién: % — [0, 1] be the prior weighting
function overX. If @ : H — [0,1] andP : H — [0, 1] are two functions, we extend the definition

as
Q(hr)

KL(Q, P) = Y Q(hy)log Plh)

hrExn
We state the PAC-Bayes theorem as in [10]:

®3)

Theorem 1 For § > 0 and forn > 8, we have that with probability exceeding- 6 we have that
forall @ : H — [0, 1] the following inequality holds:

KL (Eq[Ra(h)) B[R (1 )]) <SG P) 1085+ los2V) @

n

Specifically, this holds for &,, found by an algorithm based on the.i.d. observations. Note that
this result is currently the most tight inequality, refiniting ideas presented in]11]. While till date
most applications are found in the context of superviseghlag, we will argue in the following that
this theorem finds a ‘natural’ application towards unsujsenylearning.

2.1 An Application of PAC-Bayes Towards Clustering

In what follows, assume that thei.i.d. samples{X;}" , take values in a bounded set$hc R?

for a givend € N. In order to use the PAC-Bayes result to the generic appicatf clustering, we
need to specify the loss functidn R? — [0, 1] of interest. A ‘cluster’, represented as an indicator
functionh : RY — {0,1}, is understood here as a member of a user-specified set chtodi
functionsH = {h : R? — {0, 1} }. Formally, one defines for a setc R¢

1 z€c

hc(:c)_l(arec)—{o v de (5)
Now, we look a bit closer at what the terBy [R(h.)] represents in this context.
heeH heeHM

where the second equality holds by linearity of the expamaand wheré denotes the probability
rules underlying the data. Consequently, the t&fgiR(h)] characterizes how wef] alignswith
the distribution underlying the data. Assume that#his designed such that all setsorresponding
to ah. € H (i) cover the spacé and (i) are disjunct.

The functionP : H — [0, 1] is the prior weighting function (think of it as a ‘prior digtution’ over
‘H). In general, it is up to the user in a specific application écide how to desigiit, P): it is
good practice to make it equally likely for each hypothésis H to explain the data by itself, -
suggesting a uniform prioP over this setH- while the result should be useful for the application
in mind. Assume for example that all probability mass (uhdeg the samples) concentrates in
the set corresponding with a single, andQ(h.) = I(i = j), then this measure equals 1. On
the other hand, if all samples are equally distributed olvef#| setsh. € H, the measure equals

Wl‘. This motivates the naming &g [R(h)] as theexplanatory poweof (#, Q). Specifically, if

H = {I(z € [-1,1]%)}, the explanatory power dfH, Q) is 1, but it however is not very useful,
surprising noffalsifiable

We argue that this PAC-Bayesian interpretation to clustgis often ‘natural’ because of three rea-
sons. (i) The present analysis does not need to recover tigtyléunction underlying the data, a
feature which is highly desirable if working with high-dimgional data. (ii) The set of ‘underly-
ing’ clusters is not recovered exactly, nor assumed to £xisteality. The actual stochastic rules
underlying the observed data only say how well the hyposheastering ‘explains’ the data. When
dealing with data arising from complex processes the assampf a ‘true clustering’ is often an
oversimplification. (iii) The characterization of perfoamce of the found rul€),, in terms of its de-
viation from the priorP is desirable if clustering is meant for looking for ‘consist’ irregularities.



Specifically, if the resul@),, is not what we (more or less) expected before seeing the sldiatan-
tial empirical evidence should be presented motivatingphoperty. Those reasons differentiate the
approach substantially from approaches based on den8itye¢i®n, or on mixtures of distributions.
Remark that this description of explanatory power is sthpngjated to the ideas presentedlini[12].
The following clustering algorithm is then motivated by &pation of the PAC-Bayesian theory:

Qn = argmin Eg[R,(h)] s.t. KL(Q, P) < wy, @)
Q

wherew,, > 0. This objective is also motivated from an information tregaral approach to cluster-
ing, as e.g. in[B].

2.2 An Application of PAC-Bayes Towards Pairwise Clustering

Now we explain how the above insights lead to an analysis efpdirwise clustering setup. Let
againZ andY denote respectively the two domains of interest in whiclhvgae observationge, y)
are made. A first approach would be to rephrase the pairwisgering problem as a standard
clustering approach, where instead of the class of indidatwtionsH  C {f : Z — [0,1]} in the
first domain, one studies the cross-product of this clads thié class of indicator functions in the
other domairi /9 = H; x H,, or

Hf’gc{h:(fh,gh) fniZ = [0,1],%;\5(%[0,1]}. ®)

However, the reasoning in the introduction suggests anothg¢e. To see this, we formalize the
intuition of the pairwise observatidf, y) being a target for prediction: (i) let € Z represent the
part of a sample: = (z, y) which might be used to predict (a property) of the (unobst#ryes Y;
and/or (ii) giveny € Y, predict (a property) of the corresponding (unobserved) Z. Given a
set#/9: the knowledge of the ‘cluster’ to whicl' belongs, will be used to predict the cluster
memberships of the corresponding

We will say thatf;, explainsz € Zif f;,(z) = 1, and similarly thay,, explainsy € Y if g5 (y) = 1.

In an ideal case, one would be able to associate exactly stirdif;, € 7 to everyg, € H, (i.e.
describe a permutation). As such, one could predict thaaslys containingy corresponding to a
given z. In the worst case, the choice gfthat explaing, is independent of being explained by
f. The pairwise clustering setup however differs from suchudtiralass classification (structured
output prediction) task as it is essentially symmetric:\v@gk is used to predict (cluster membership
of) the corresponding, and a givery is used to predict (cluster memberships of) the correspandi
x. Now, a pairwise cluster = (f, g) € H/9 was useful fora sample,y) € Zx Y if f(z) = g(y).
Alternatively, a pairwise cluster= (f, g) contradictsa sample iff (z) # g(y). This motivates the
following risk function

{Rn(m = 3 X L(fn(Z:) # (%) ©)
R(h) =P (fn(Z) # gn(Y)),
defined again in an ‘empirical’ and an ‘actual’ flavor. Thididiéion measures how many (for how

large a probability mass) datapoints are contradicted bgimvjse clusteih = (fs, gn). Now the
termEg[R(h)] becomes

Eq[R(W)]= Y P(fu(Z) # ga(Y)) Q(h), (10)
heH 9
which basically captures how many mistakes are made whews$itg on the subset @/

as directed byQ. This motivates the following practical approach: (i) giva datase{ X, =
(Z;,Y;)}r,, with the elements taking values i x Y, and (i) a a se{/:9 of pairwise clusters

represented als = (f, g), and a ‘prior’ weighting functiorP : %9 — [0, 1], then we aim to find
a new weighting functiod),, : H/+9 — [0, 1] which is not too different fronP, and which aligns
well with the probability rules underlying the data as

Q. = argmin Eg(R(h.)) s.t. KL(Q,P) <w, (11)
Q
wherew > 0. The PAC-Bayes theorem now guarantees that this probleppi®zaimatively solved
based on the data as
Q,, = argmin Eg(R,(h.)) s.t. KL(Q, P) < w, (12)
Q



wherew > 0. The resulting?’, will emphasize the pairwise clusters which are most oftersistent
with the data. Here we have a natural trade-off between igigcand accuracy, regulated hy, .

If w,, were small, the solutio), cannot deviate from the uniform distributions over all pase
clusters inH/»9, but then many different pairwise clusters will contradict different samples,
leading in turn to low explanatory power. On the other hafidwéng for arbitrary@’, will explain
the individual samples fairly well (allowing a single pais& cluster per sample), but the PAC-
Bayesian result will not guarantee accuracy of the resyitreme.

We now express the ‘regularization teridL(Q, P) in a more convenient form.

Proposition 1 (Bound to K .-L. Divergence) Assumé#H| < oo and P(h) = ﬁ forall h € H,
then
KL(Q, P) < log » | Q*(h) + log(|#). (13)
heH

This is a consequence of the following inequality on the@myrof a vectop €]0, 1[¢ with 17p =1

d
h(p) = > palog(pa) < log <Zp?> : (14)
=1 i=1

by application of Jensen’s inequality. Le® < [0, 1]'*! be a vector representing the functign
Wheres? = Q(h;) (enumerating the different elemeritse ), then

s@ = argmin 592 s.t. Eg[Rn(R)] = 0. (15)
sR>0, 3, s¥=1

implementing the socallebalizablecase (as in the theory of Support Vector Machines). The op-
timal solution@,, will try to find as many pairwise clusters as possible whighraot contradicting
the given data. We illustrate this notion in figlife 2. In thedticase, all observations are explained.
In more realistic cases, merely a few pairwise clustersaued (i.e., the sefh € H : Q(h) > 0}
contains only a few elements).

‘ [9)

| o

Figure 2: Schematic representation of all pairwise clgstea hypothesis spad¢ based on the 5
disjunct intervalsi + [0, 0.2] in either domain (dotted lines). The dqi¥,Y") € R x R represent
samples from an underlying distribution. Suppose the diffe hypothesis can be factorized as
he = (f,g), wheref : R — [0, 1] andg : R — [0, 1], being the corresponding indicator functions in
either domain. This means that there are 25 possible diffgarwise clusters,. (dotted squares),
or |HF9| = 25, (a) about70% of the observations (dots) do not contradict the 5 pairwissters
(yellow squares) simultaneously; (b) Only one samglg)(tontradicts the shown pairwise cluster
h. (yellow squares), while the other twoo{'and ‘x’) are consistent withh...

We extend this model to account for infinit¢, defined as = (4., 9,) for each(z,y) € Z x Y,
and where),, denotes the Dirac delta. When extending the formulatiorrdeoto deal with infinite
hypothesis spacég/¢, we replace vectors, by functions@ : # — R*, which (for convenience)
are assumed to be elements of a Hilbert spd€esThis space is equipped with a corresponding
inner-product (reproducing kernet) : H x H — R, implicitly defining # and P. Note that
Q(h) > Oforallh € H,and[,, Q(h)dh = 1. This motivates the replacement of the teiih(Q, P)

by ||@Q|lm. As such[(IP) is equivalent (up to normalization) to

Qn = argmin [Qller st Eg[Rn(h)] = 0. (16)

where@(h) > 0 forall h € H, ande Q! (h)dh = 1. Note that for the majority of pairwise
clusters no data is sampled contradicting the cluster, asrd@oth transition of) inbetween the



sample becomes possible. In the remainder we will assumeetéreant Hilbert spac&l can be
decomposed additively uniquely &, @ Hy, and the norm of a functiop can then be written
as||Qllf = IIFl7, + IGl3,. AssumeH/ contains all pairwise clusters = (4., d,) for all

(z,y) € Z x Y andé the Dirac delta. Under the assumtion no ties occur in the gatdlem [1V) is

(Fy,Gy) = argmin||F||f, +||Gllf1, st F, =G, Vi=1,...,n. (17)
PG

enforcing that?”(h) = G(h) forall h € #/+9, and enforcing again that(h) > 0 forall h € H/9 as
wellasthatf, ,, F'(h)dh = 1. HereF; = F(éz,) andG;(dy,) = Q((dz,,0y;)) foralli = 1,...,n.
The next section shows how to solve this problem, relaxiegithequality constraints.

3 Kernd PairWise Component Analysis

3.1 PWCA for paired Observations

This section studies how the learning problén (17) is so{aggroximatively) by an efficient algo-
rithm. Let X = (X7 ,..., XD)T e R>™andY? = (Y{,...,Y,])T € R®™ be matrices wheré
is the number of samples and n are the number of attributes/features for the first and soem
resentation respectively. The functiosare parametrised &5,_(z) = v. z andGy, (y) = wly.
The inequalities(h) > 0 are enforced by representing this @sh) = F?(f) = G?(h) for
all h € H/9. This is imposed by enforcing; = /Q((0z,,0y,)) = F(dy,) = G(dy,), then
J5, Q@(h)dh = 1 is enforced by imposing the constraitic = 1 (similarly, maximizingc'c). As
such [12) becomes

max c'c—y(wWiw, + viv.), (18)

ceR’, v . ER™,w.ER"

where A’ is the transpose of matrix, or vectot,and such that; = X, ,w. = Y ;v,, for i =

1,...,¢. Associating Lagrange multiplieks;, 3; to each of the/ constraints gives the following
Lagrangian
1
L = ECIC - %( 'we+Vive) —ad/(c — X,w.) — B'(c - Ypve). (19)

Taking derivatives of equatiof (]L9) with respectw, v., c and setting to zero give the following
conditions for optimality as

oL 1., ocC oL
awc —O-}Wc— ;Xaa, avc %

Setting back into the optimisation in equatiénl(18) givesftbllowing dual problem

=0—c=(a+p).

1
=0—=v.= _nlﬂv
Y

1 !/ 1 ! /
el T = Sla+p)(a+p) - %(a Koa + B'KuB),

whereK, = X, X, andK, = Y,Y, are the kernel matrices. Taking derivatives and settingto z
shows that7 achieves a (local) optimum when

0
% =0 — vy(a+B8) =K« (20)
2—‘;:0 = Y(a+B)=Kp.

We are able to observe that at optimuifya = K;3, which illustrates a direct relationship to
KCCA condition. Due to limited space we do not explore thatiehship to KCCA within the
scope of this manuscript. Equatién20) can be rewritten as

Ka OE (& 2 I[ I[ o

e )3 =L ] B &
wherel, is the identity matrix ané, is a matrix of zeros, both of sizex ¢. This equation may be
solved as a generalized eigenvalue problem in the forodzof= ABx. Alternatively, we observe



that by setting3 = (%Ka - I) a, we can expres$Kaa = 7—12KbKaoz - %Kba, which results in
the following generalized eigenvalue problem &or
KyK,a =~ (K, + Kp) a, (22)
and by setting? to be the Cholesky decomposition &% K, such thatk;, K, = RR’ we obtain the
following symmetric eigenvalue problem
Lia =vR™ (K, + K;)) R " a.

It may be necessary to regularize equation (21) with somd saiae 7 on the diagonal. This will
result in our optimisation being rewritten as

o 3] (=[] 8]

Furthermore, the above eigenvalue problem can be writtgh-ad L K, — 71, ) a and
Y

KyKoa = 2(I — 2 1)) + v (T K, + 71 K e,

which can be solved as a quadratic eigenvalue problem |dtdsifrom the conditions for optimality
that a new samplé&,, ¥,) can be projected in the learnt semantic space by the fursction

F(Ry) =wWlx, = %a’Ka(xa,ia),
G(Fb) = V.yp = %BIKb(va}_’b)'

Then it is also reasonable to assign the sanipley,) to the cluster(1,.. ., ¢) which has highest
(absolute) factor{sF(ia)ﬁ and|G (yb)ﬁ respectively.

3.2 PWCA for Multiview Observations

In this section we generalize our methodology to multiplms. Expressing optimization in equa-
tion (18) for three sources gives
1 / /y / !/ /
ma; —cc— (W, wW.+V.v.+ 2z %), 23

ceR’f,wceRM,v):eRn,zceRs 2 2( ere €ne 7e) (23)
such that; = X, w. = Xp;v. = X2, fori = 1,... £. Taking derivatives of equatiof (23)
with respect tow .., v, z., ¢c and setting to zero will give the conditions for optimali§ubstituting
these conditions back into equatiénl(23) gives the follgndnal problem

. 1 / 1 / / /

aew,ﬁmeaﬂé,uew J = 5(05 thtv)(atfty)— Z(a Koo+ BB + v Kev),
whereK, = X, X/, K, = X; X, andK. = X. X/ are the kernel matrices. Taking derivatives and
setting to zero shows thgt achieves a (local) optimum when

oTJ 0T

B B 9T oJ
— =0—->vy(a+B+v) = K, a, 98

da :0_>7(a+ﬂ+u):KcV

which can be rewritten as

K, 0 0] [« I, I, I/ T«
b & BB 4 0

0, 0, K. v I, I, I, |v
where agair, is the identity matrix an@, is a matrix of zeros, both of sizex ¢. Therefore, without
loss of generality, we can extend this to multiple- 1, ..., s views, wheres > 2, similarly to the
previously proposed multi-view extension for CCA by [8]chithat
Ky ... Oy o I, ... Iy| |0
R R A E R B
Og KS (6 Ig Ig Qg

This equation may be solved as a generalized eigenvaluéspnab the form ofAx = ABx.



4 Experiments of PWCA on Europal

We proceed to compare PWCA to KCCA for a mate-retrieval tdsk[lL4,[ 15/ 16], i.e. given a
document queryy; in languager to retrieve the (exact) matching document in the paireddagg
y. For this purpose we use the multi-lingual Europal daté@jewfhich has a total of 11968 aligned
documents. We use the following eight languages with the bmmof features/words in brack-
ets; da - Danish (78720), de - German (153499), en - Engli8BG®), es - Spanish (171821), it -
Italian (66548), nl - Dutch (105318), pt - Portuguese (6§93 sv - Swedish (51116). We use
linear kernels throughout and arbitrarily set the regaktion parameter to = 0.01 for both meth-
ods. Finally, the performance is evaluated using Averageifion (AP) [1¥] which is computed
asAP = %Zle Ii wherel; is the rank location of the exact paired document for quergueo
mentq;. ThereforeAP = 0.5 indicates that the paired document is on average situatedatton

I = 2. We select the rank by sorting the, absolute, inner produadtses ofF'(q;)'G(y;) (as well
as for F(x;)'G(q,)) for all possible paired test documents, i.e. we rank theeretd documents
according to their similarity (in the learnt space) with aurery. In our experiments we use the
CCA formulation as proposed byl[8] for both pair- and mulgw.

In the first of our two experiments, for each pairing comhrabf languages, we randomly select
500 paired-documents for training and 5000 for testing. dredysis has been repeated 10 times and
averaged across. The results given in table 1 are the APgrarcross of all possible language-
pair combinations for the language indicated in the coluinen ¢olumndais the average of all the
language pairing witlda - x¥. We are able to observe that PWCA is able to perform, on gegra
on a par with KCCA. The mean AP across all languages for KCAR4435 whereas for PWCA it

is 0.4459.

Table 1: We compare KCCA and PWCA on a bilingual mate-retliéask (see text for language

abbreviation). The reported results are the AP for retnigthe exact paired document in another
language, averaged across all possible language-pairicatitn for the language indicated in the

column. The results are averaged over 10 repeats of thesaaly

da de en es it nl pt Y
KCCA | 0.4174] 0.3839| 0.4979 | 0.4243] 0.4572 | 0.4023] 0.4939 | 0.4714
PWCA | 0.4294 | 0.4416 | 0.4747| 0.4344 | 0.4368| 0.4111 | 0.4679| 0.4716

In the second experiment we extend the previous analysistiiirgual mate-retrieval task, i.e.
we train on an aligned document corpus from three languafjeseas during testing we compute
the mean average precision of all the individual pair-wisgevretrieval tasks (of the three lan-
guages). In other words, we train on the trilingual aligningfnda-de-enwhile we test the query
retrieval on the bilingual task ada-de, da-en, de-enin this experiment we randomly select 500
tripartite-documents for training and 2000 for testing.eDa increased complexity we only repeat
the analysis, for each 3 language combination, once. Thétsagven in tabl€R, as in the previous
table, are the mean average precision for the language gtetee column and all its possible tripar-
tite combinations (without repetition, i.e. for exampii-da-enis not be allowed). We are clearly
able to see the improvement gained by PWCA over KCCA despiteasing the training alignment
complexity. Furthermore, not only did the added alignegjlaage not hinder the mate retrieval task,
it improved performance as visible when comparing tBbleth teible 2.

Table 2: We compare KCCA and PWCA on a trilingual mate-retti¢ask (see text for language
abbreviation). The reported results are the mean averagéspm for retrieving the exact paired
document in another language for all possible tripartitaisimations of the language stated in the
column (without repetition) for training.

da de en es it nl pt sv
KCCA | 0.3687| 0.3290| 0.3930| 0.3742| 0.3792| 0.3501| 0.3917| 0.3909
PWCA | 0.5407 | 0.5155 | 0.5427 | 0.5394 | 0.5310 | 0.5246 | 0.5406 | 0.5504




CCA (and KCCA) does not seek to maintain any pre-existingecstire within the views while seek-
ing to maximise correlation across the views. This aspexttritay lead to over-fitting when having
multiple views, PWCA addresses this by directly seeking #ontain internal structure by trying to
find as many pairwise (or n-wise) clusters as possible whichat contradict the given data. We
hypothesis that the PWCA performance improvement is a thiesalt of the clustering condition.

5 Discussion

This study presented a novel learning paradigm and cornelpg algorithm that aims at finding
structure (pairwise clusters) in paired (multi-view) ohsgions. A case study on bilingual and
trilingual mate-retrieval task, and a motivation using BA¢-Bayesian results are given. While this
paper described a theoretical as well as applied proof afeguin many issues including efficiency,
out-of-sample extensions and relations to other techsigem@ain.
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