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Abstract 
 

The major challenges that sign language recognition 
(SLR) now faces are developing methods that solve large 
vocabulary continuous sign problems. In this paper, large 
vocabulary continuous SLR based on transition movement 
models is proposed. The proposed method employs the 
temporal clustering algorithm to cluster a large amount of 
transition movements, and then the corresponding training 
algorithm is also presented for automatically segmenting 
and training these transition movement models. The 
clustered models can improve the generalization of 
transition movement models, and are very suitable for 
large vocabulary continuous SLR. At last, the estimated 
transition movement models, together with sign models, are 
viewed as candidate models of the Viterbi search algorithm 
for recognizing continuous sign language. Experiments 
show that continuous SLR based on transition movement 
models has good performance over a large vocabulary of 
5113 signs. 
 
1. Introduction 
 

Sign language as a kind of gestures is one of the most 
natural ways of exchanging information for most deaf 
people. The goal of sign language recognition (SLR) is to 
provide an efficient and accurate mechanism to transcribe 
sign language into text so that communication between deaf 
and hearing society can be more convenient. Sign language 
recognition, as one of the important research areas of 
human-computer interaction (HCI), has spawned more and 
more interest in HCI society. 

Chinese sign language (CSL) is the language of choice 
for most deaf people in China. CSL consists of about 5500 
conventional vocabularies including postures and gestures. 
With the evolution of CSL, up-to-date CSL can express any 
meaning in natural spoken Chinese with the aid of finger 
spelling. Similar to Stokoe’s analysis of American sign 
language [1], each Chinese sign can be broken down into 
four parameters: hand shape, position, orientation and 
movement. These parameters are performed simultaneously 

and form multiple data streams. Compared with traditional 
speech recognition that only deals with one stream of 
speech signal data, SLR has to handle multiple data streams. 
Moreover, unlike phoneme in speech, in sign language, no 
basic unit is defined in the signs’ lexical forms. 

The major challenges that face SLR now are developing 
methods that will solve large vocabulary continuous sign 
language problems. The research on large vocabulary 
continuous SLR has a profound influence on the naturalness 
of the human-computer interface and is clearly an essential 
requirement for the widespread use of SLR system. For 
continuous SLR, the main issue is how to handle the 
movement epenthesis. The movement epentheses, i.e. 
transition movements between two signs, begin at end of 
the preceding sign and finish at start of the following sign, 
which vary with the sign contexts. The presence of 
movement epenthesis greatly complicates the recognition 
problem, since it inserts a great variety of extra movements 
that are not present in the signs’ lexical forms, instead of 
merely affecting the performance of adjacent signs.  

In continuous speech recognition, context-dependent 
models such as biphone or triphone are generally employed 
for modeling the co-articulation. However, in continuous 
SLR, the number of phoneme extracted manually or 
automatically is so large that the training data becomes very 
sparse. This leads to the impossibility to train the context-
dependent models in large vocabulary SLR.  Directly 
modeling the movement epenthesis between signs also 
exists the same problem as context-dependent models.  

However, transition movements are only related with the 
end of the preceding sign and the start of the following sign, 
so transition movement models in terms of signs have many 
identical and very similar clusters. Thus, we can cluster the 
transition movements so as to reduce their number and 
avoid the sparseness of training data. This can also improve 
the generalization of transition movements, which is very 
suitable for large vocabulary continuous SLR only with 
only certain sentence training samples. Nevertheless, 
transition movement is the temporal sequence of the vector. 
The k-means clustering algorithm cannot handle the 
temporal data because its distance measure builds between 



the two spatial vectors. Volger[2] employed k-means 
clustering with a least-squares distance criterion on the start 
and endpoint of the signs’ lexical forms to produce the less 
possible combining models. However, in the large 
vocabulary size, it is infeasible to manually segment the 
continuous signs because of the huge workload and the 
introduction of man-made errors. Furthermore, there are 
some deviations between the isolated sign performance and 
continuous signs, so it is very difficult to model the start 
and endpoint of movement epenthesis with isolated signs.   

In this paper, the temporal clustering algorithm with 
dynamic time warping (DTW) as the distance measure is 
proposed for clustering transition movements between two 
signs, and then the corresponding algorithm is presented for 
training those transition movement models. The training 
algorithm can automatically segment the transition 
movements with a bootstrap iteration, where the temporal 
algorithm is used to cluster transition movements. The 
estimated transition movement models, together with sign 
models, are used for large vocabulary continuous SLR. 
Experiments show that continuous SLR based on transition 
movement models has good performance over a large 
vocabulary. 

The remainder of this paper is organized as follows. 
Section 2 gives an overview of the related work. In Section 
3 we present the transition movement models. In Section 4, 
the temporal clustering algorithm is proposed to 
dynamically cluster transition movements. Section 5 gives 
large vocabulary SLR based on transition movement 
models. Section 6 shows the experimental results. The 
conclusions are given in the last section. 
 
2. Related work 
 

Attempts to automatically recognize sign language began 
to appear in the literature in the 90’s. Following the similar 
path to early speech recognition, many previous attempts at 
sign language recognition focused on isolated sign. The 
recognition methods usually include rule-based matching 
[3], artificial neural networks [4, 5], and hidden Markov 
models [6]. However, because there is no clear pause 
between the individual signs for continuous SLR, explicit 
segmentation of a continuous input stream into the 
individual signs becomes intractable. For this reason, 
together with the effect of movement epenthesis, work on 
isolated recognition often does not generalize easily to 
continuous sign language recognition. 

Starner et al. [7] used a view-based approach with a 
single camera to extract two-dimensional features as the 
input of HMM for continuous American SLR. The word 
accuracy of 92% or 98% was gotten when the camera was 
mounted on the desk or in a user’s cap in recognizing the 
sentences with 40 different signs. HMM was also employed 
by Hienz and Bauer [8] to recognize continuous German 

sign language with a single color video camera as input. An 
accuracy of 91.7% can be achieved in recognition of sign 
language sentences with 97 signs. Furthermore, they 
developed the K-means clustering algorithm to get the 
subunits for continuous SLR [9]. The accuracy of 80.8% 
was achieved in the corpus of 12 different signs and 10 
subunits. 

Liang and Ouhyoung [10] employed the time-varying 
parameter threshold of hand posture to determine end-
points in a stream of gesture input for continuous Taiwan 
SLR with the average recognition rate of 80.4% for 250 
signs. In their system HMM was employed and a Dataglove 
was taken as input device. Sagawa and Takeuchi [11] used 
the changes of hand shape, orientation, and position to 
detect the borders of Japanese sign language words. They 
experimented 10 sentences and got 83.0% accuracy with 
top five choices. 

Vogler and Metaxas [2] used computer vision methods to 
extract the three-dimensional parameters of a signer’s arm 
motions as the input of HMM, and recognized continuous 
American sign language sentences with a vocabulary of 53 
signs. They built context-dependent HMM and modeled 
transient movement to alleviate the effects of movement 
epenthesis over 64 phonemes extracted from 53 signs. 
Experiments showed that modeling the movement 
epenthesis has better performance than context-dependent 
HMM. The reported best accuracy is 95.83%. In addition, 
they used phonemes instead of whole signs as the basic 
units and achieved similar recognition rates to sign-based 
approaches over a vocabulary of 22 signs [12]. 

Gao et al. [13] used a dynamic programming method to 
obtain the context-dependent models for recognizing 
continuous CSL. Datagloves were used as input devices and 
state-tying HMM as recognition method. Their system can 
recognize 5177 CSL isolated signs with 94.8% accuracy in 
real time and recognize 200 sentences with 91.4% word 
accuracy. 

Previous research on sign language recognition focuses 
primarily on the small or medium vocabulary sign language 
recognition. There has been very little work reported on 
large vocabulary sign language recognition. 
 
3. Transition movement models 
 

For continuous sign language recognition, the main issue 
is how to handle the movement epenthesis (i.e. transition 
movements between two signs). In fact, modeling the 
movement epenthesis has been first proposed by Vogler to 
reduce its effect. However, all the possible combinations 
between two signs are so mass, especially in the large 
vocabulary size, that a large amount of continuous 
sentences are required for training those models. 
Furthermore, there are no lexical definitions in the sign 
dictionary for the movement epenthesis, so it is difficult to 



model those movement epentheses. However, movement 
epentheses are usually related with the end of the preceding 
sign and the start of the following sign. In Figure 1, T(V|U) 
represents the transition movement model from Sign U to 
Sign V. Different transition movements between two signs 
have the identical and very similar end-start sequences. 
Thus, we can reasonably cluster those transition movements 
into one class. This will reduce not only the transition 
movement number to avoid the sparseness of training data 
and also improve the generalization of transition 
movements. This is very suitable for large vocabulary SLR. 

 

 

 
 

Figure 1.  The transition movement model between two signs 
 

For the continuous sign language, the start and end of the 
corresponding signs cannot be known, so it is infeasible to 
segment the transition movements with manual annotation. 
In this paper, the training algorithm of transition movement 
models is proposed to automatically extract the movement 
epentheses from continuous sentences and simultaneously 
estimate their model parameters. In the continuous 
sentences, sign model parameters are initialized by the 
isolated sign models, and transition movement parameters 
are trained by the iterative segmented transition data. 
During the iterative process of estimating those parameters, 
sign models and transition models are combined into the 
whole models for the description of the sentences.  

The training algorithm of transition movement models is 
described as follows. 
1) With the isolated HMM models, continuous sentences 

are segmented into the corresponding isolated sign 
sequence using automatic segmentation. 

2) Set the transition movements from the last state of the 
preceding sign to the first state of the following sign as 
the initial values of transition movements. 

3) Cluster the transition movements through the temporal 
clustering algorithm, and train transition movement 
models with the data after being clustered, and train sign 
models with the segmented data and isolated sign data. 

4) Using the new models (transition movement models and 
sign models) to segment continuous sentences into signs 
and the corresponding movement epentheses, and judge 
whether the transition frame number has changed 
compared with the last segmentation, if it has changed 
and then return to Step 3, otherwise save the trained 
models and exit.   

 

4. Temporal clustering 
 

Since the transition movement is the time sequence of the 
vector, the clustering algorithm is required to handle not 
only the spatial vector but also the temporal sequence 
information. Furthermore, there is no criterion to describe 
how many clusters are very rational, so we must 
dynamically cluster the vector sequence according to the 
data distribution. 

The k-means clustering algorithm cann’t handle the 
temporal data because its distance measure only builds 
between the two spatial vectors. Wilpon[14] proposed 
modified k-means algorithm(MKM) for producing the 
robust matching templates for speaker-independent speech 
recognition. However, MKM cannot dynamically cluster 
the data. In this paper, temporal clustering algorithm based 
on MKM is proposed to cluster the temporal sequence of 
the vectors. DTW is employed as the distance computation 
criterion because it can measure the distance between two 
temporal sequences by aligning different time signals and 
normalizing them to a warping function. In the algorithm, 
the corresponding skills are proposed to solve the issues of 
cluster splitting and combination. The proposed algorithm 
can automatically split and combine the centroids according 
to the data distribution to get the more reasonable cluster 
number and centers. The following subsection will discuss 
DTW-based distance computation and temporal clustering 
algorithm in detail. 
 
4.1. DTW-based distances computation 
 

Dynamic time warping (DTW) is to search the best 
warping function using the dynamic programming 
technique so as to minimize the distance between the two 
temporal sequences. Let two temporal sequences 

),...,,( 21 XTXXXX = , ),...,,( 21 YTYYYY = , where iX  and iY  are 
the 48-dimensional vectors. Define the warping function 

)}(),...,2(),1({ Nφφφφ = , where N  is the “normal” duration 
of the two sequences on the normal time scale, and 

))(),(()( nnn YX φφφ = , },,1{)( XX Tn �∈φ , ∈)(nYφ },,1{ YT� . The 
n-th matching pair )(nφ  consists of the )(nXφ  vector in X  
and the )(nYφ  vector in Y .  

The measure ))(),(( nnd YX φφ  is defined as the 
Euclidian distance.  The goal of DTW is to search the 
minimal accumulating distance and the associated warping 
path, that is: 
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The warping functions used in our experiment satisfy 
endpoint constraints, monotony constraints and one-step 
local continuity constraints. Unlike in speech recognition, 
we do not put any region constraint to the DTW search so 
as to get the best path among the possible candidates.  

Sign VSign U T(V|U) 



The minimum partial accumulated distortion along a path 
from )1,1(  to ),( YX ii  is defined as: 
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where XX iT =)( 'φ  and YY iT =)( 'φ .  
The auxiliary parameter ),( YX iiψ  is defined to record a 

point before the point ),( YX ii  in the local optimal path. 
The recursive relations according to the constraints are 
given as follows: 
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where )}1,(),1,1(),,1{(),( '' −−−−∈ YXYXYXYX iiiiiiii . 
Through the dynamic programming search, the minimal 

distance ),( YXD  between the two temporal sequences and 
the associated warping function pair φ  are gotten at last. 
 
4.2. Temporal clustering algorithm 
 

Let },...,,{ 21 VOOO=Π  be a data set for V  temporal 
sequences to be clustered. Temporal clustering algorithm is 

to dynamically cluster the c  centers, and get j

c

j
Γ=Π

=1
� .  

The temporal clustering algorithm is described as follows: 
1. Initialization: 

Calculate all distances ),( ji OOd  using DTW. Set the 
initial parameters: c - the number of clusters, C - the 
expected number of clusters, Nθ  - the minimum number of 
samples in each cluster, Cθ  - the threshold of the 
intercluster distance that determines whether to combine or 
not, t - the number of iteration, and maxt - the maximum 
iterations. 
2. Initialize the cluster centers:  

The method described in [16] is employed to set the 
initial cluster centers. It splits the clusters from one to the 
expected number C  step by step. 
3. Classification: 

According to the minimum DTW distance rule, each 
sample is classified to the corresponding center.  

For each cluster, if its sample number is less than Nθ , 
then this cluster is discarded, and set 1−= cc , and re-
classify the samples in this cluster. 
4. Recalculate the cluster center: 

The recalculation is described by the following two steps: 
First, find the pseudo-average center O ′ . A particular 

element in the cluster has the largest population of elements 
(subset of the cluster) whose distance to the particular 
sample falls within a threshold. If several patterns have the 
same largest count of samples with distances below the 
threshold, then the element that has the smallest average 

distance to all samples in the subcluster is chosen as the 
pseudo-average center. 

Second, all samples in jΓ  are warped to the pseudo-
average center O ′ . We then group the samples according to 
their individual warping paths with respect to O ′ . The 
vectors that are aligned to the same index i  are then 
averaged to produce an average vector for the new cluster. 
The resultant sequence with vectors indexed from 1 to OT ′  
(duration for O′ ) is the average cluster center )( jm Γ . 
5. If 02 modt =  or Cc 2≥ , then goto step 7, else goto step 6. 
6.  Cluster splitting: 

Calculate intracluster distance jλ  for each cluster j : 

∑ Γ
Γ

=
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j
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Find the cluster maxjΓ with the maximum intracluster 

distance, if Nj θ2max ≥Γ  or 2/Cc ≤ , then split maxjΓ as 
follows. Find two temporal sequences 1pO  and 2pO  
satisfying ),(),( 4321 pppp OOdOOd ≥  for any other pair 

3pO , 4pO  in maxjΓ . Two sequences 1pO  and 2pO  are used 
as the new cluster centers to replace original cluster, and set 

1+= cc , then goto step 8. 
7. Cluster combination:  

For all the cluster centers, calculate the intercluster 
distances ))(),(( ji mmd ΓΓ  between all the pairs. Find the 
pair with the minimum interclass distance ))(),(( qp mmd ΓΓ , 
if Cqp mmd θ<ΓΓ ))(),(( , then combine pΓ  and qΓ . Using 
DTW the optimal path between the sequences pΓ  and qΓ  is 
gotten. Let T  be the warping path length for φ , and the 
new cluster m  is calculated as follows: 

))()((
2
1

)()( kqkpk YX
mmm φφ Γ+Γ= , Tk ,...,2,1=     (6) 

Replace these two clusters with new cluster m , set 
1−= cc . 

8. 1+= tt , if maxtt < , then return to step 3,  otherwise, save 
the clusters data and exit. 
 
5. Large vocabulary SLR based on transition 
movement models 
 

In this section, we will discuss how to use the trained 
transition movement models for large vocabulary sign 
language recognition. Transition movement models and 
sign models are combined into the candidate models of the 
Viterbi search algorithm for large vocabulary SLR. 
However, because the candidate models are so huge that the 
pruning operation has to be employed to make the system 
performance in real time.  

Each sign has its own trajectory in sign space, if an 
observation vector is close to the trajectory, then the sign 



may be active at that time, else the sign will be inactive. For 
each observation vector, how to judge if a sign is active is 
very important to speed up the recognition process. If only 
a small fraction of signs is active at a frame, the most likely 
active signs are those which are active at previous frame 
due to the continuous property of gestures. Only these 
active signs need to be further searched at the next frame, 
thus a large mount of computation load can be saved.  

According to the analyses above, the rules of adding new 
words and eliminating words are obtained for the candidate 
selection in the search process. The details are as follows: 

Adding new words: Calculate the first state probability 
of all the words excluding the candidates at the last frame, 
if the word is greater than certain threshold, then enter the 
candidates of current frame, and the other state probabilities 
of this word needn’t to be further calculated at this frame.  

Eliminating words: For all the candidates of the last 
frame, if all the state path scores of a word are less than 
certain threshold, then this word is eliminated from the 
current candidates, and its path will not be further searched. 
 
6. Experiments 
 

In our experiments, two Cybergloves and three Pohelmus 
3SPACE-position trackers are used as input devices. Two 
trackers are positioned on the wrist of each hand and 
another is fixed at signer’s back (as the reference tracker). 
The Cybergloves collect the variation information of hand 
shape with the 18-dimensional data each hand, and the 
position trackers collect the variation information of 
orientation, position, and movement trajectory.  

In order to extract the invariant features to signer’s 
position, the tracker at signer’s back is chosen as the 
reference Cartesian coordinate system, and the position and 
orientation at each hand with respect to the reference 
system are calculated and can be taken as invariant features. 
By this transformation, the data are composed of a relative 
three-dimensional position vector and a three-dimensional 
orientation vector for each hand. In the case of two hands, a 
48-dimensional vector is formed, including the hand shape, 
position and orientation vector. As each component in the 
vector has different dynamic range, its value is normalized 
to [0,1]. 

Experimental data consist of 25565 sign samples over 
5113 isolated signs with each sign having five samples. The 
vocabulary is taken from the Chinese sign language 
dictionary. Four samples are used as the training set and the 
rest one samples are used as the isolated sign test set. 
Continuous sign language database consist of the 1500 
sentence samples with 750 different sentences over a 
vocabulary of 5113 signs. The sentences are extracted from 
the 200M corpus which is composed of China Daily and 
Family Collection Book. 

The first experiment validates that the proposed temporal 
clustering algorithm can cluster similar sequences into one 
class. Database consists of 1268 samples from 317 signs 
which are random selected among 5113 signs, each having 
four samples. Because the corresponding classes are known 
beforehand, the clustering validation can be judged. The 
expected cluster center is set to 317. After the processing of 
temporal clustering algorithm, the 309 cluster centers can 
be obtained. The 301 centers are the same as the sign data, 
and each has four samples. The rest 8 centers are the 
sample combination of two signs. 

 

 
Figure 2.  The description of the words “J” and 
“ninety”, left for “J”, and right for “ninety” 

 
In the 8 centers, they can be classified into three 

categories.  One is that the two signs have the same action, 
such as zhu-ren(director) and zhu-chi(preside). The second 
is that two signs have the same postures, but only small 
differences in position, such as zhong-zu(race or tribe) and 
zhong-lei(category). The third is that two signs have very 
similar postures, where one has slight movement and the 
other hasn’t. For example J and jiu-shi(ninety) in which the 
sign J is static, and ninety has a slight movement of first 
finger. Figure 2 shows the description of J and ninety.  

From the experiments above we can know the temporal 
clustering algorithm can effectively cluster the segments 
with high similarity into the same cluster. 

The second experiment is to analyze the factors 
influencing the isolated sign accuracy. There are two factors 
that can directly influence the recognition accuracy of 
HMM. The first factor is the number of states (N) and the 
other is the number of mixture component (M). N depends 
on the number of potential phonemes of the sign, where 
phoneme is defined as a dynamic continuous sign data of 
the variability of hand shape, position and orientation being 
very stable. The value of M is determined by the 
distribution of sign data. To get the best parameters for 
HMM, experiments are performed, where N is set to 2, 3, 4, 
5, and M is set to 1, 2,3, 4, 5, 6, respectively. 

As shown in Figure 3, the best accuracy 95.4% for 5113 
isolated signs can be gotten when M=3 and N=3. When M 
grows from 1 to 3, the recognition performance is also 
improved. However, if M increases from 3 to 6, the 
recognition rate stays similar or even slightly decreases. 
Thus, M=3 is regarded as the best number of mixture 
component. Though N=5 and N=3 have the comparative 
accuracy from the Figure 5, N=3 is chosen because of its 
less computational complexity. 
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Figure 3. The relations between the model parameter M, N 

and the isolated sign recognition accuracy  
 

The third experiment is to test the performance of 
transition movement models for continuous sign language 
recognition. Among 1500 sentence samples, 750 sentences 
are used as training and another 750 samples as the test set. 
Those sentences consist of the words from 3 to 15 with the 
average 6.6 words each sentence.  
 

Table 1. The accuracy for continuous SLR 

Method Accuracy Time 
Transition 

movements models 
90.8% (S=279, 
I=53, D=127) 

1.29 
second/word

 
All experiments are performed with the bigram language 

model on the PIV1600 (512M Memory) PC. S, I and D 
denote the error numbers of substitution, insertion and 
deletion, respectively. The whole number of signs in the test 
set is 4994 and the number of transition movements without 
clustering is 3945. The candidates for recognition consist of 
546 clustered transition movements and 5113 signs, where 
their models have 3 states and 3 mixture components. Table 
1 shows that the recognition rate of 90.8% for transition 
models is gotten on the test set. Experiments also show that 
transition models can also be performed in real time without 
clear delay.  

 
7. Conclusions 
 

In this paper, continuous sign language recognition over 
a large vocabulary with 5113 signs is first implemented 
based on transition movement models. Aiming at the a large 
amount of transition movements between two signs, we 
present the temporal clustering algorithm with dynamic 
time warping as the distance measure and the corresponding 
algorithm for automatically segmenting and training those 
transition movement models. The clustered models can 
improve the generalization of transition movement models, 
and very suitable for large vocabulary continuous SLR with 
certain training samples of typical sentence. Experimental 

results show that continuous SLR has a recognition rate of 
90.8% on 1500 sentence samples over a large vocabulary of 
5113 signs. Furthermore, the temporal clustering algorithm 
can be further extended to extract the basic units from 
Chinese sign language and automatically seek the 
anonymous gestures. 
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