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Abstract

We consider the geometric random (GR) graph on thed−dimensional torus
with theLσ distance measure (1 ≤ σ ≤ ∞). Our main result is an exact char-
acterization of the probability that a particular labeled cycle exists in this random
graph. Forσ = 2 andσ = ∞, we use this characterization to derive a series which
evaluates to the cycle probability. We thus obtain an exact formula for the expected
number of Hamilton cycles in the random graph (whenσ = ∞ andσ = 2). We
also consider the adjacency matrix of the random graph and derive a recurrence
relation for the expected values of the elementary symmetric functions evaluated
on the eigenvalues (and thus the determinant) of the adjacency matrix, and a re-
currence relation for the expected value of the permanent ofthe adjacency matrix.
The cycle probability features prominently in these recurrence relations.

We calculate these quantities for geometric random graphs (in theσ = 2 and
σ = ∞ case) with up to20 vertices, and compare them with the corresponding
quantities for the Erdös-Rényi (ER) random graph with thesame edge probabili-
ties. The calculations indicate that the threshold for rapid growth in the number of
Hamilton cycles (as well as that for rapid growth in the permanent of the adjacency
matrix) in the GR graph is lower than in the ER graph. However,as the number
of verticesn increases, the difference between the GR and ER thresholds reduces,
and in both cases, the threshold∼ log(n)/n. Also, we observe that the expected
determinant can take very large values. This throws some light on the question of
the maximal determinant of symmetric0/1 matrices.

1 Overview

Consider thed−dimensional unit torusTd = [0, 1]d. For0 < r ≤ 1/2, 1 ≤ σ <∞,

the geometric random (GR) graphQ(σ,d)
n (r) is defined as follows. The vertex set cor-

responds ton pointsXn = {x1, x2, . . . xn} distributed uniformly and independently

in Td. The set of edgesE(Q
(σ,d)
n (r)) is defined as

E(Q(σ,d)
n (r)) = {{xi, xj} : ‖ xi − xj ‖q ≤ r}
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where‖ . ‖q is theLq norm. Then,Q(σ,d)
n (r) is a random graph. In this random graph

model, the presence of an edge is not necessarily independent of the presence of other
edges.

Another random graph model which has been very well studied is the Erdös-Rényi
(ER) random graph, which is defined as follows. Given a numberp, 0 < p ≤ 1, let
H(n, p) denote the graph which has the vertex set{1, 2, . . . n} and an edge set con-
sisting of edges selected with probabilityp (a particular edge{i, j} is present with
probabilityp and the presence of each edge is independent of the presence of other
edges). The ER random graph has been extensively studied. Specifically, the asymp-
totic behaviour (or evolution) of this random graph has received considerable attention
[1, 2]. The most celebrated result of this type [1] can be summarized as follows: if
p = p(n) = (logn + cn)/n, then the random graphGn is almost surely connected
(asn → ∞) if cn → ∞, and is almost surely disconnected ifcn → −∞). Similar
thresholds exist for all monotone graph properties1 [3].

The geometric random graph appears to exhibit similar asymptotic properties. In
[10], a sharp threshold for connectivity has been exhibitedfor the geometric random
graph on the unit square (d = 2 andσ = 2): if r = r(n) and if πr(n)2 = (log n +
cn)/n then the random geometric graph is almost surely connected if cn → ∞, and
is almost surely disconnected ifcn → −∞. The existence of sharp thresholds for
monotone properties in geometric random graphs has been demonstrated in [9]. The
monograph [5] summarizes threshold characterizations of several connectivity related
properties of the geometric random graph. Upper and lower bounds on the diameter of
a geometric random graph in the unit ball have been derived in[4]. The mixing times
of random walks in geometric random graphs have been characterized in [6]. The
limiting distribution of the eigenvalues of the adjacency matrix of a random graph has
been studied in [7], [8]. An asymptotic bound for the second largest eigenvalue of the
adjacency matrix of a geometric random graph has been derived in [11]. Thus, there is
a large body of work on the asymptotic properties of a geometric random graph.

In the finite case, one is interested in the exact formula for the appearance of a
certain property in a geometric random graph. An example of such a characterization
is an exact formula for the probability of connectivity of a geometric random graph
on a1-dimensionalunit cube [12], and an exact formula for the probability of exis-
tence of a particular labeled subgraph in the geometric random graph constructed in
thed−dimensional unit cube using theL∞ measure [13]. We will consider the finite
case, and prove an exact characterization of the probability that a labeled cycle appears
in the random graphQ(σ,d)

n (r) (valid for 1 ≤ σ ≤ ∞, and for alld ≥ 1). Using this
characterization, we show that it is possible to get exact formulas and recurrences for
the computation of quantities which are related to cycle probabilities. In particular, we
obtain

1. an exact formula for the appearance of a particular labeled cycle inQ(σ,d)
n (r)

for σ = 2 and forσ = ∞ (the calculation of the corresponding cycle probabil-
ity for H(n, p) is trivial, because the edges inH(n, p) are independent of each

1A property P is said to be monotone if, given that it holds on a graphG, it also holds onG+ e, wheree
is an edge connecting two vertices in G.
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other). This formula immediately yields an expression for the expected number
of Hamilton cycles in the random graph.

2. a recurrence relation for the expected values of the elementary symmetric func-
tions evaluated at the eigenvalues of the adjacency matrix (as a special case,
the expected value of the determinant of the adjacency matrix) of H(n, p) and

Q
(σ,d)
n (r).

3. a recurrence relation for the expected values of the permanent of the adjacency
matrix ofH(n, p) andQ(σ,d)

n (r).

These formulas can be evaluated explicitly and provide concrete information about
random graphs with a finite number of vertices. For example, we observe that cycles
appear earlier in GR graphs than in the ER graph. Specifically, the edge-probability
threshold at which the expected number of Hamilton cycles crosses1 is lower in the
GR graph than in the ER graph. However, the difference between the two thresholds
reduces asn increases. A similar observation can be made about the expected value
of the permanent. The expected value of the determinant can be very different in the
GR and ER models, indicating that for particular values of edge probabilities, the dis-
tribution of graphs in the GR and ER models can be very different. Another interesting
observation is that as the edge probability is varied between0 and1, the expected values
of the determinants of the adjacency matrix can be quite large. In effect, these expected
values provide us some useful information about the largestpossible determinant of a
symmetric0/1 matrix.

2 Preliminaries

We introduce some notation and summarize some well known results to be used in the
subsequent sections.

We useGn to denote a random graph onn vertices (in one of the models described
above). ThenAGn = [aij(Gn)] is the adjacency matrix ofGn, which is a symmetric
random matrix with0/1 entries (the entries of this matrix are correlated ifGn is the
GR random graph).

Let R andC represent the sets of real and complex numbers respectively, and let
Rd, Cd denote thed−dimensional spaces of real and complex d-tuples. The set of
integers is represented byZ, andZd is the subset ofRd consisting ofd−tuples of
integers. Elements of these spaces will be denoted by bold letters such asx,y, ω. Each
x in any of these spaces is ad−tuple(x1, x2, . . . xd). We will use1 ∈ Zd to denote the
d−tuple with each of its entries being1. If x = (x1, x2, . . . xd) andy = (y1, y2 . . . yd)
are two elements of these spaces, then theinner product x.y is

∑

xjyj . TheLσ norm
for these spaces defined in the usual way, and forx, ‖ x ‖σ denotes theLσ norm ofx.
If S ⊂ Rd, thenΞS is the indicator function ofS, so that

ΞS(x) =

{

1 if x ∈ S
0 otherwise

3



For an absolutely integrable functionf : Rd → R, the Fourier transform̂f :
Rd → C is defined as

f̂(ω) =

∫

x∈Rd

e−iω.x f(x)dµ(x)

wheredµ(x) is the volume element inRd at x. Further, iff(x) = f(−x) for all
x ∈ Rd, thenf̂(ω) = f̂(−ω) for all ω ∈ Rd, andf̂ always takes on real values. Iff
is an absolutely integrable function with bounded support,and we define

fp(x) =
∑

u∈Zd

f(x− u) (1)

thenfp is a well defined periodic function, that is,

fp(x+ u) = fp(x) for all u ∈ Zd (2)

which can be expressed by a Fourier series of the form

fp(x) =
∑

u∈Zd

f̂(2πu) e2π i 1.u (3)

If f, g : Rd → R are two absolutely-integrable functions, the convolutionf ∗ g is also
absolutely-integrable and is defined as

(f ∗ g)(x) =

∫

u∈Rd

f(u)g(x− u) dµ(u) (4)

and the fourier transform off ∗ g is f̂ ĝ.
Forr ≥ 0, The set

Bd,σ,r(u) = {x ∈ Rd : ‖ x− u ‖σ≤ r} (5)

is termed theσ−ball of radiusr in Rd, centered atu. The volume ofBd,σ,r(u) is
denoted byVd,σ,r. Clearly,

Vd,∞,r = (2r)d (6)

Forσ = 2 [14]

Vd,2,r =
πd/2 rd

Γ(1 + d/2)
(7)

whereΓ is the gamma function. The surface area ofBd,σ,r(u) is denoted byAd,σ,r,
and it is easy to show thatAd,∞,r = 2d(2r)d−1 and thatAd,2,r = dVd,2,r/r. In

Q
(σ,d)
n (r), let βd,σ,r be the probability that two verticesi, j are connected. Clearly, if

0 ≤ r ≤ 1/2, βd,σ,r = Vd,σ,r.
The Bessel’s function of the first kind [15] with parameterν is denoted byJν . The

following result is well known:

Ξ̂Bd,2,r(0)(ω) = (2πr)d/2
Jd/2(r ‖ ω ‖2)
√

‖ ω ‖2
(8)
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3 The probability that a particular labeled cycle ap-
pears in Gn

A labeled cycle inGn of lengthq ≤ n is a sequence of verticesy1,y2, . . .yq such that
{yi,yi+1} ∈ E(Gn) for i = 1, 2, . . . q − 1, and{yq,y1} ∈ E(Gn). Let Θ(Gn, q)
denote the probability that this labeled cycle is present inGn. In both the GR and ER
graph, this probability does not depend on the particular labeled cycle whose existence
is in question. Thus, whenGn is either an ER or a GR graph,

Θ(Gn, q) = Θ(Gm, q), n,m ≥ q. (9)

WhenGn = H(n, p), Θ(Gn, q) can be calculated very easily. Letn > 0 and
1 < q ≤ n. If Gn = H(n, p), then the existence of aq−cycle inGn implies the
presence ofq edges ifq > 2, andq − 1 edges ifq = 2. In the ER random graph
H(n, p), the presence of an edge is independent of the presence of theothers. Thus,

Θ(H(n, p), q) =

{

p if q = 2
pq if q > 2

(10)

In the case of the geometric random graphQ
(σ,d)
n (r), things are more complicated

because the edges are not necessarily independent. Our mainresult is an exact charac-
terization ofΘ(Q

(σ,d)
n (r) for anyσ, d.

Theorem 1 Let 0 < r ≤ 1/2, and q > 1. Then

Θ(Q(σ,d)
n (r), q) =

{

βd,σ,r if q = 2
∑

m∈Zd Ξ̂q
Bd,σ,r(0)

(2πm) if q > 2
(11)

Proof: Let x1,x2, . . .xq be theq > 1 random points which form the labeled cycle of

lengthq (these points are uniformly distributed inTd). Then,Θ(Q
(σ,d)
n (r), q) is equal

to the probability that fori = 1, 2, . . . q − 1,

‖ xi − xi+1 ‖σ ≤ r (12)

and‖ xq − x1 ‖σ ≤ r. Clearly, if q = 2, then the required probability is justβd,σ,r.

Assume thatq > 2. We decomposeΘ(Q
(σ,d)
n (r), q) as follows:

Θ(Q(σ,d)
n (r), q) = Pr(‖ xi − xi+1 ‖σ≤ r, i = 1, 2, . . . q − 1, and ‖ x1 − xq ‖σ≤ r)

= Pr(‖ x1 − xq ‖σ≤ r / ‖ xi − xi+1 ‖σ≤ r, i = 1, 2, . . . q − 1)

×Pr(‖ xi − xi+1 ‖σ≤ r, i = 1, 2, . . . q − 1). (13)

Clearly, since we are looking at i.i.d. points on the unit torusT1, the events‖ x1 −
x2 ‖σ≤ r, ‖ x2 − x3 ‖σ≤ r, . . . ‖ xq−1 − xq ‖σ≤ r are independent of each other,
and the probability of occurence of each isβd,σ,r. Hence,

Pr(‖ xi − xi+1 ‖σ≤ r, i = 1, 2, . . . q − 1) = βq−1
d,σ,r. (14)
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Thus, we can write

Θ(Q(σ,d)
n (r), q) = Ad,σ,q(r) × βq−1

d,σ,r (15)

where

Ad,σ,q(r) = Pr(‖ x1 − xq ‖σ≤ r / ‖ xi − xi+1 ‖σ≤ r, i = 1, 2, . . . q − 1).

We can interpretAd,σ,q(r) in the following manner. Consider a random walk inRd

starting from the originw1 = 0. A pointu1 is chosen uniformly in the ballBd,σ,r(0).
The walk then moves tow2 = w1+u1. Continuing in this manner, if the current point
is wk, the walk moves towk+1 = wk + uk whereuk is chosen uniformly in the ball
Bd,σ,r(0). Since all pointsm ∈ Zd map to the origin0 in the unit torus,

Ad,σ,q(r) = Pr
(

wq +m ∈ Bd,σ,r(0) for some m ∈ Zd
)

(16)

Eachui is generated uniformly fromBd,σ,r(0), and thus, the probability density
function of eachui is

pu(x) =
ΞBd,σ,r(0)(x)

βd,σ,r
(17)

Then, the probability density function ofwk is thek − 1 fold convolution

pk(x) = (pu ∗ pu ∗ . . . ∗ pu)(x) (18)

and the Fourier transform ofpk is

p̂k(ω) =

(

Ξ̂Bd,σ,r(0)(ω)

βd,σ,r

)k−1

(19)

Define the periodic functionsr(x) as follows

sr(x) =
∑

m∈Zd

ΞBd,σ(r)(x−m) (20)

Then, sincer ≤ 1/2,

Ad,σ,q(r) =

∫

x∈Rd

sr(x)pq(x)dµ(x) (21)

The periodic functionsr(x) has a Fourier series representation

sr(x) =
∑

m∈Zd

cme
2π i m.x (22)

with
cm = Ξ̂Bd,σ,r(0)(2πm) (23)

Thus,

Ad,σ,q(r) =

∫

x∈Rd

∑

m∈Zd

cmpq(x)e
2πim.xdµ(x) (24)
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Observe thatpq(x) = 0 when‖ x ‖σ> qr. Thus the integral in Eq. (24) can be
considered to be over a compact set, and the order of summation and integration can
then be exchanged [16], and we can write

Ad,σ,q(r) =
∑

m∈Zd

∫

x∈Rd

cmpq(x)e
2πim.xdµ(x) (25)

For any absolutely integrablef : Rd → R, we have
∫

x∈Rd

f(x)dµ(x) = f̂(0)

Also, by the frequency shift property, the Fourier transform of f(x)eia.x is f̂(ω − a).
Using these facts, we obtain

Ad,σ,q(r) =
∑

m∈Zd

Ξ̂Bd,σ,r(0)(2πm) p̂q(−2πm) (26)

From Eq. (19) and Eq. (26), the theorem follows.�

Using Theorem 1, we can obtain series representations forΘ in terms of the Fourier
transformΞ̂Bd,σ,r(0)(ω). This Fourier transform is relatively easy to compute forσ =
∞ and forσ = 2.

Corollary 1 Let n > 0, 0 < r ≤ 1/2, and 1 < q ≤ n.

Θ(Q(∞,d)
n (r), q) =

{

(2r)d if q = 2

(2r)
dq

( 1 + 2
∑∞

k=1 (sinc(2πkr))
q
)
d

if q > 2
(27)

Proof: Sinceβd,∞,r = (2r)d, the first part of Eq. (27) (forq = 2) follows from
Theorem 1.

Assume thatq > 2. Since we are using theL∞ norm, each of thed projections of
the pointsx1,x2, . . .xq must induce a cycle inT1. Since the projections are indepen-
dent of each other, it follows that

Θ(Q(∞,d)
n (r), q) =

(

Θ(Q(∞,1)
n (r), q)

)d

. (28)

It is easy to see that
Ξ̂B1,∞,r(0)(ω) = 2r sinc(ωr) (29)

Using Eq. (29) and Eq. (28) together with Theorem 1 we obtain the required expression
(we have usedsinc(x) = sinc(−x) to rewrite the series).�

Corollary 2 Let n > 0, d > 1, and 1 < q ≤ n. Then

Θ(Q(2,d)
n (r), q) =







Vd,2,r if q = 2

V q
d,2,r + (2πr)dq/2

∑∞
k=1 ψd(k)

(

Jd/2(2π r
√
k)

(2π
√
k)

1/2

)q

if q > 2

(30)
where ψd(k) is the number of solutions x ∈ Zd to the equation ‖ x ‖2 = k.
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Proof: The proof follows immediately from Eq. (8) and Theorem 1.�

Remark: In order to compute the series in Eq. (30), we need to evaluatethe function
ψd(k). The following recurrence can be used:

ψ1(k) =







1 if k = 0
2 if k 6= 0 and k = m2 for somem ∈ Z

0 otherwise

and ifd > 1,
ψd(k) =

∑

0≤m≤
√
k

ψd−1(k −m2)

4 The expected number of Hamilton cycles in Q
(2,d)
n (r)

The Hamilton cycle problem in geometric random graphs has been studied in [17], in
which the authors show that the threshold for the existence of a Hamilton cycle in a
geometric random graph (in the unit cube) is the same as that for 2-connectivity. The
number of Hamilton cycles in a random graph2 [18] also shows a sharp thresholding
property.

UsingΘ(Gn, n), we can directly get the expected number of Hamilton cycles in
Gn. Denote the expected number of Hamilton cycles in the randomgraphGn by
τ(Gn). Forn > 2, the number of labeled Hamilton cycles in a complete graph onn
vertices is(n− 1)!/2. It follows that, forn > 2,

τ(Gn) = Θ(Gn, n) (n− 1)!/2 (31)

because the probability of each such labeled cycle being present isΘ(Gn, n).
Consider the threshold forGn defined as the smallest edge-probability such that

τ(Gn) ≥ 1. We can use Corollaries 1 and 2 to compute this threshold whenGn =

Q
(2,d)
n (r) andGn = Q∞,d

n (r), and contrast this threshold with that for the ER graph

H(n, p). In Figure 1, we show the thresholds obtained forH(n, p) andQ(2,σ)
n (r). The

computed threshold for the geometric random graph is lower than that for the ER graph.
However, the difference between the two thresholds reducesasn increases. Asymptot-
ically, the threshold for the appearance of a Hamilton cycleseems to be similar in the
GR graph and the ER random graph (this threshold is of the order log(n)/n [17]). An
explanation for this is that asn increases, the end points of a path of lengthn become
less correlated (recall the random walk argument used in theproof of Theorem 1), and
thus, the probability of an edge between the end points of thepath is close to the edge
probability.

2The random graph model used in [18] starts with an empty graphonn vertices, and produces a sequence
of graphs by adding new edges with equal probability. A threshold is then a position in the sequence at which
a property becomes true with high probabililty.
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Figure 1: Threshold forτ(Gn) ≥ 1 plotted as a function of then for the ER graph and
for the GR graph withd = 2, σ = 2

5 The expected value of the determinant and the per-
manent of AGn

LetFGn(x) be the matrixxI +AGn . Define the two polynomials

ΛGn(x) = det(FGn(x))), (32)

and
ΓGn(x) = per(FGn(x)). (33)

The polynomialsΛGn(x) andΓGn(x) have coefficients which are random variables. In
particular, the coefficients inΛGn are symmetric functions of the eigenvalues ofAGn .
Define

Λ̄Gn(x) = E(ΛGn(x)) (34)

and
Γ̄Gn(x) = E(ΓGn(x)) (35)

where the expectation of a polynomialp(x) is the polynomial̄p(x) whose coefficients
are the expectations of the corresponding coefficients inp(x).

The coefficient ofxk in Λ̄Gn(x) is the expected value of the elementary symmetric
function of degreen−k evaluated at the eigenvalues ofAGn . In particular, the constant
term inΛ̄Gn(x) is the expected value of the determinant ofAGn , so that the expected
value of the determinant ofAGn is Λ̄Gn(0). The coefficient ofxk in Γ̄Gn(x) is the
expected number of cycle covers across all subgraphs ofGn with n− k vertices. Also,
the expected value of the permanent ofGn is Γ̄Gn(0).
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There is a strong connection between cycles and permutations, and between per-
mutations and determinants (and permanents). We expect that the characterization of
Θ(Gn, q) will help determine the behaviour of the determinant (and permanent). More
concretely, we show that

Theorem 2 Let Gn be a random graph on n > 0 vertices (Gn is either the ER graph
or the GR graph). Then, for n ≥ 1, the polynomials Λ̄Gn(x) and Γ̄Gn(x) satisfy the
recurrence relations

Λ̄Gn(x) = xΛ̄Gn−1
(x) +

n
∑

q=2

(−1)q−1n− 1!

n− q!
Θ(Gn, q) Λ̄Gn−q(x) (36)

and

Γ̄Gn(x) = xΓ̄Gn−1
(x) +

n
∑

q=2

n− 1!

n− q!
Θ(Gn, q) Γ̄Gn−q (x) (37)

with initial conditions Λ̄G0
(x) = Γ̄G0

(x) = 1.

Proof: We start with the following formulas for the determinant andthe permanent. If
B = [bij ] is ann× n matrix, then

det(B) =
∑

σ∈Sn

(−1)sign(σ)
n
∏

i=1

biσ(i) (38)

and

per(B) =
∑

σ∈Sn

n
∏

i=1

biσ(i) (39)

whereSn is the group of permutations of{1, 2, . . . n}.
Each permutationσ ∈ Sn can be uniquely decomposed into a set of disjoint cycles

on {1, 2, . . . n}. Each cycleC in the disjoint cycle-decomposition of a permutation is
of the form(i1i2 . . . iq), whereσ(ir) = ir+1, r = 1, 2, . . . q− 1 andσ(iq) = i1. The
sign of the cycleC is sign(C) = (−1)|C|−1, where|C| is the number of elements in
C. The sign of the permutation is then the product of signs of the cycles into whichσ
is decomposed. We will say that the pair(i, j) ∈ C if i, j are consecutive elements in
the cycleC (i0 is considered to be afteriq). Then, givenσ, we have

n
∏

i=1

biσ(i) =
∏

C∈σ

∏

(i,j)∈C

bij (40)

For a cycleC, We define
wB(C) =

∏

(i,j)∈C

bij (41)

Then,
det(B) =

∑

σ∈Sn

∏

C∈σ

(−1)|C|−1wB(C) (42)
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and
per(B) =

∑

σ∈Sn

∏

C∈σ

wB(C). (43)

LetB = FGn(x). For a cycleC = (i1i2 . . . iq) in some permutation, we see that if
q > 1, then

E(wB(C)) = Θ(Gn, q) (44)

and if q = 1, then
E(wB(C)) = x. (45)

For convenience, we setΘ(Gn, 1) = x.
Also, if C1, C2, . . . Ct are vertex-disjoint cycles inGn, then the presence ofCi is

independent of the presence ofCj for j 6= i, and

E(

t
∏

i=1

wB(Ci)) =

t
∏

i=1

E(wB(Ci)). (46)

It follows that
Λ̄Gn(x) =

∑

σ∈Sn

∏

C∈σ

(−1)|C|−1Θ(Gn, |C|). (47)

Similarly,
Γ̄Gn(x) =

∑

σ∈Sn

∏

C∈σ

Θ(Gn, |C|) (48)

The counting of permutationsσ ∈ Sn can be carried out by fixing the cycleC which
contains1 and counting permutations of elements not inC. For1 ≤ q ≤ n, LetDq be
the set of cycles of lengthq which contain1. We observe that

|Dq| = (q − 1)!

(

n− 1
q − 1

)

,

because each cycle inDq is determined by the choice ofq − 1 elements (other than1)
out ofn− 1 elements, and there areq − 1! distinct cycles onq elements.

Let N = {1, 2, . . . , n} and letP (A) be the set of permutations of the setA ⊂ N.
Then, we can write

∑

σ∈Sn

∏

C∈σ

(−1)|C|−1 Θ(Gn, |C|) (49)

as

n
∑

q=1





∑

C∈Dq

(−1)|C|−1 Θ(Gn, q)





∑

σ∈P (N−C)

∏

D∈σ

(−1)|D|−1 Θ(Gn, |D|)







 (50)

where the innermost summation overP (A) is taken to be1 if A = φ. Since|C| = q
for eachC ∈ Dq, we can rewrite Eq. (50) (using Eq. (9) to replaceΘ(Gn, |D|) by
Θ(Gn−q, |D|)) as

n
∑

q=1

(

n− 1
q − 1

)

(q−1)! (−1)q−1 Θ(Gn, q)





∑

σ∈P (N−C)

∏

D∈σ

(−1)|D|−1 Θ(Gn−q, |D|)



 .

(51)
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The inner summation in Eq. (51) is justΛ̄Gn−q(x), and thus, the recurrence relation for
Λ̄Gn(x) follows. The recurrence relation for̄ΓGn(x) can be shown to hold in a similar
manner, completing the proof of Theorem 2.�

Remark: The result in Theorem 2 holds for any random graphGn in which the proba-
bility of appearance of a labeled cycle depends only on its length and the probability of
appearance of a set of vertex-disjoint cycles is the productof probabilities of appear-
ance of the elements in this set.

For n > 0, 0 < k ≤ n, let Fn,k(t1, t2, . . . tn) denote the elementary symmetric
function

Fn,k(t1, t2, . . . tn) =
∑

{i1,i2,...ik}∈{1,2,...,n}
ti1ti2 . . . tik (52)

Fork = 0, defineFn,k = 1, and defineFn,k = 0 if n < k or if k < 0. Now, let F̂n,k

denote the expected value ofFn,k evaluated on then eigenvalues ofAGn . Then, the
expected value of the determinant ofAGn is just F̂n,n. Then, we have the following
corollary of Theorem 2.

Corollary 3 For the random graph Gn, if n > 0, and 0 < k ≤ n, then

F̂n,k = F̂n−1,k +

n
∑

q=2

(−1)q
n− 1!

n− q!
Θ(Gn, q) F̂n−q,k−q (53)

Proof: Follows from Theorem 2 by noting that the coefficient ofxk in Λ̄ is F̂n,n−k. �

Note that in both models, if the edge probability is1, thenΘ(Gn, q) = 1, andGn

is always the complete graph, so that the expected value of the determinant ofGn is
(−1)n−1 × (n− 1). Using Theorem 2, we obtain the following identity forn > 0:

n = 1 +
n
∑

q=2

n− 1!

n− q!
× ((n− q)− 1) (54)

Also, the permanent of the complete graph onn vertices is the number of derangements
of the setN = {1, 2, . . . n}. Thus, the recurrence proved in Theorem 2 yields the
following identity for the number of derangementsdn of N

dn =

n
∑

q=2

n− 1!

n− q!
dn−q, (55)

with the initial conditionsd1 = 0, andd0 = 1.
We use these ecurrence relations to compute these expected values forn ≤ 20

in the GR and ER models3. Some interesting conclusions can be drawn from these
calculations.

3The recurrence relations were directly computed usinglong double precision arithmetic. For higher
values ofn one would need to use higher precision arithmetic.
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Figure 2: The expected value of the determinant plotted as a function of the edge
probability forn = 20 in the ER and GR (withd = 3, σ = ∞) models.

Consider the plot in Figure 2, in which we compare the behaviour of the determi-
nant ofG20 as a function of the edge probability. The graph has been plotted for the
ER graph and for the GR graph withd = 3. The behaviour of the determinant in the
two models is quite different, and clearly, so is the distribution ofGn.

In Figure 3, we show a plot of the expected value of the permanent of AGn (for
n = 20) as a function of the edge probability in the ER and GR (d = 1) models. We
can also define a threshold for the expected permanent as the smallest edge probability
for which the expected value of the permanent is≥ 1. A comparison of this threshold
for the GR and ER graphs shows that this threshold is lower forthe GR graph, but
the two thresholds come closer asn increases (see Figure 4). Thus, the permanent of
the GR graph grows more rapidly than that of the ER graph. Thisis expected since a
labeled cycle is more likely in the GR graph.

5.1 Graphs with large determinants

Looking at Figure 2, we see that for intermediate values of the edge probability, large
magnitudes appear in the plots of the expected value of the determinant. For instance,
we observe that, in the ER random graph withn = 20, the largest absolute value of the
determinant is3787.81, and this provides a lower bound on the maximal determinant
of a symmetric20× 20 0/1 matrix .

For a general (non-symmetric)n×n 0/1 matrix, the determinant is bounded above
by (n+1)(n+1)/2/2n [19]. The number of (possibly non-symmetric)n×n 0/1matrices
which achieve this bound is also known forn ≤ 9 [20]. However, similar characteriza-
tions of the determinants ofsymmetric 0/1 matrices are not so common. For example,
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in [21], the authors show that forn ≥ 7, the maximal determinant of the adjacency
matrix of a(n − 3)-regular graph onn vertices is(n − 3)3[n/4]−1. Forn = 20, this
works out to be1377 which is less than the largest observed determinant value inthe
evolution ofH(20, p).

Thus, the recurrence formula for the expected value of the determinant seems to
provide some useful information about the maximal determinant of a class of sym-
metric 0/1 matrices (in effect, we have a lower bound on the largest value of such
determinants). Also, if the expected determinant is large,then it may be possible to
find a symmetric0/1 matrix with large determinant by using a Monte Carlo sampling
approach. An estimate of the second moment of the determinant of the random graph
will throw more light on this possibility.

6 Conclusions

We have derived an exact characterization of the probability of existence of a labeled
cycle in geometric random graphs on a unit torus with an arbitrary number of dimen-
sions, and with an arbitraryLσ distance metric). This cycle probability can be calcu-
lated in terms of the Fourier transform of the indicator function of a ball inLσ. Explicit
expressions for this Fourier transform can be easily computed in theσ = ∞ andσ = 2
case.

From the cycle probability, one gets the expected number of Hamilton cycles in the
geometric random graph. These exact expressions complement the asymptotic thresh-
old results for the existence of Hamilton cycles in geometric random graphs (as in [17]).
We observe that as the edge probability increases, a Hamilton cycle appears earlier in
the GR graph than in the ER graph.

The cycle probabilities can also be used to find the expected values of the determi-
nant (and more generally, the expected values of the elementary symmetric functions
evaluated at the eigenvalues of the adjacency matrix) and the permanent of the adja-
cency matrix of the random graph. We obtain recurrence relations for these quantities
and illustrate them by a few calculations. In particular, the determinant exhibits very
different behaviour in the two models. Also, large magnitudes of the determinant are
observed in the evolution of the random graphs. This throws some light on the as yet
unresolved question of the maximal determinant of symmetric 0/1 matrices.
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