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Abstract

In this paper, we prove the necessary and sufficient maximum principles (NSMP
in short) for the optimal control of system described by a quasilinear stochastic heat
equation with the control domain being convex and all the coefficients containing control
variable. For that, the optimal control problem of fully coupled forward-backward
doubly stochastic system is studied. We apply our NSMP to solve a kind of forward-
backward doubly stochastic linear quadratic optimal control problem and an example
of optimal control of SPDEs as well.
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1 Introduction

In order to provide a probabilistic interpretation for the solutions of a class of quasilinear
stochastic partial differential equations (SPDEs in short), Pardoux and Peng [14] introduced
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the following backward doubly stochastic differential equation (BDSDE in short):

T T T
Yt:§+/ f(s,YS,Zs)der/ g(s,Y;,Zs)dE—/ ZAW, 0<t<T.  (L1)
t t

t
Note that the integral with respect to {B,;} is a “backward It6 integral” and the integral
with respect to {W,;} is a standard forward It6 integral. These two types of integrals are
particular cases of the It6-Skorohod integral (for more details see [14]). Pardoux and Peng

[14] have obtained the relationship between BDSDEs and a certain quasilinear stochastic
partial differential equations (SPDEs in short). More precisely

u(t,x —I—ft (s,z)+ f(s,z,u(s,x),(Vuo)(s,x))] ds
+ft 5, %, (s, );(Vw><, ))dE, 0<t<T,

where u : [0, 7] x R* — R* where d, k € N, and Vu (s, z) denotes the first order derivative
of u (s, x) with respect to x, and

Lu1
Lu = : ,
Luk
with . .
1 o (x) 9¢ (x)
Lo (x ) Z:: o0 ” )Oxﬁxj bi () ox;

(for more details see in [14]).
In 2003, Peng and Shi [17] introduced a type of time-symmetric forward-backward stochas-

tic differential equations, i.e., so-called fully coupled forward-backward doubly stochastic
differential equations (FBDSDEs in short):

v = x4 o f (5,00 Ve 20 Z) ds + [) g (s, ys, Ve, 26, Z Ji =dB,,

Y, = h(yT)—i—LTF(S,yS,Y;,zs,ZS)dS—i—LT Sys,Y;,zs, %—i—ft Zd
(1 2)
In FBDSDES (1.2), the forward equation is “forward” with respect to a standard stochastic
integral dW,, as well as “backward” with respect to a backward stochastic integral dB;; the
coupled “backward equation” is “forward” under the backward stochastic integral dB; and
“backward” under the forward one. In other words, both the forward equation and the
backward one are types of BDSDE (1.1) with different directions of stochastic integrals.
So (1.2) provides a very general framework of fully coupled forward-backward stochastic
systems. Peng and Shi [17] proved the existence and uniqueness of solutions to FBDSDESs
(1.2) with arbitrarily fixed time duration under some monotone assumptions. FBDSDEs
(1.2) can provide a probabilistic interpretation for the solutions of a class of quasilinear

SPDEs.



In this paper, we consider the following quasilinear SPDEs with control variable:

{ u(t,z) = +ft w(5,2) + f(s,2,u(s,2), (Vuo) (s,z) v (s))] ds 1.9
—i—ft (s,z,u(s,x),(Vuo) (s,z),v(s))dBs, 0<t<T,

where u : [0,7] x R? — R* and Vu (s, z) denotes the first order derivative of u (s, z) with
respect to z, and

L”ul
cu=| |
L”uk
with . .
VRN ; 8¢ (x) 9¢ (x)
L’¢ (x) = 5 Z (007),; (z,v) D0z, + Zbi (x,v) T

ij=1 i=
It is worth to pointing out that all the coefficients contain the control variable (For more
details see in Section 5).

Let us describe the problem solved in this paper. Set U,; be an admissible control set.
The definitions of notations used here can be found in Section 2. The optimal control problem

of SPDEs (1.3) is to find an optimal control v() € Uyq, such that

S ()= inf J(v()),

U(')euad

where J (v (+)) is its cost function as follows:

Jw(:)=E [/0 [(s,z,u(s,x),(Vuo) (s,x),v(s))ds+v(u(0,2))]|. (1.4)

As we have known, stochastic control problem of the SPDEs arising from partial observa-
tion control has been studied by Mortensen |9], using a dynamic programming approach, and
subsequently by Bensoussan [2], [3], using a maximum principle method. See [4], [15] and the
references therein for more information. Our approach differs from the one of Bensoussan.
More precisely, we relate the FBDSDEs to one kind of SPDEs with control variables where
the control systems of SPDEs can be transformed to the relevant control systems of FBDS-
DEs. To our knowledge, this is the first time to treat the optimal control problems of SPDEs
from a new perspective of FBDSDESs. It is worth mentioning that the quasilinear SPDEs in
[12] Oksendal considered can just be related to our partially coupled FBDSDEs. Recently,
Zhang and Shi [25], obtained the similar results, however, in their paper, the coefficients o
and g do not contain the control variable, respectively.

This paper is organized as followings. In Section 2, we state the problem and some
assumptions. In Section 3 and Section 4, we give the necessary and sufficient maximum
principle for fully couple forward-backward doubly stochastic control systems, respectively,
in global form. In Section 5, as an application, we study the optimal control of SPDEs. For
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simplicity of notations, we consider the one-dimensional case. It is necessary to point out
that all the results can be extended to multi-dimensional case. In Section 6 the results are
illustrated by solving two problems of optimal control of LQ problem and a special SPDEs
using the Malliavin calculus, respectively

2 Statement of the problem

Let (2, F, P) be a completed probability space, {W;},5, and {B:},5, be two mutually in-
dependent standard Brown motion processes, with value respectively in R% and R/, defined

n (Q, F, P). Let N denote the class of P-null sets of F. For each ¢t € [0,7T], we define
V= o (W, Ogrgt}\/./\/', E?Tia{Br—Bt; tSTST}\/N,

and

Fo=FY\ Fh, vte0,1].

Note that {FV;¢ € [0,T]} is an increasing filtration and {ffT;t € [0,T)} is an decreasing
filtration, and the collection {F;,t € [0,T]} is neither increasing nor decreasing.
We denote M2 (0,T;R") the space of (class of dP ® dt a.e equal) all {F;}-measurable

n-dimensional processes v with norm of || v |y= [E fOT‘U(S)|2dS}§ < 00. Obviously

M?(0,T ;R") is a Hilbert space. For any given u € M? (0,7 ;R") and v € M? (0,7 ; R"),

one can define the (standard) forward Itd’s integral fo usdWy and backward Ito’s integral
/ U5d§ They are both in M? (0, T;R"), (see [14] for detail).

Let L? (Q, Fr, P; R™) denote the space of all { Fr }-measurable R"-valued random variable
¢ satisfying E |¢]? < co.

Definition 1. A stochastic process X = {X;;t >0} is called Fy-progressively measur-
able, if for any t > 0, X on Q x [0,1] is measurable with respect to (F}" x B([0,t])) V

(FE- x B([t,T])).

Under this framework, we consider the following forward-backward doubly stochastic
control system

4

dy (t) = f (t,y (1), Y (1), 2(8), Z (£) v (1)) dt
gty (8), Y (8),2(8), Z (), v () dV, — = (H)dB,
AV (t) = —F (t,y(£), Y (£), 2 (¢ Lo (1)) dt (2.1)
—G(t,y (), <>,z<t> Z<t>,v<t>>dE+z<t>dw7i,
L y(0)=a0, Y(T)=h(y(T)),

where (y (1), Y (1),2(:), Z(-),v(-) e RxR xR x RxR, zg € R, is a given constant, and




T >0,

0,T]*x RxRxRxRxR
0,T]x RxRxRxRxR
0,T]*x RxRxRxRxR
0,7T]x RxRxRxRxR
R - R.

Let U be a nonempty convex subset of R. We define the admissible control set

L1l
=

=9 Q=

Uy = {v (1) € M? (0, T;R); v(t)eU, 0<t<T, ae., a.s.}.

Our optimal control problem is to minimize the cost function:

J(v())=E [/0 Lty @),Y (t),21),Z(t),v(t)dt+2(y(T)) +v Y (0)]| (22
over U,,, where

0,7]x RxRxRxRxR—R,
¢ : R—R,
¥ R — R.

l
An admissible control w (-) is called an optimal control if it attains the minimum over U,q.
That is to say, we want to find a u (), such that
J(u(-))= inf J(v()).
(W)= it J(()
(2.1) is called the state equation, the solution (y;,Y;, z;, Z;) corresponding to u (+) is called

the optimal trajectory.
Next we will give some notations:

Y —F
= V| aco=| 1 |wo.
Z g

We use the usual inner product (-,-) and Euclidean norm |-| in R, R!, and R¢. All the
equalities and inequalities mentioned in this paper are in the sense of dt x dP almost surely
on [0,7] x Q. We assume that

For each ¢ € RIFIFIxIHIxd = A (. () is an F;-measurable process defined on [0, T']
(Hl) with A (" O) c M2 (O,T; R1+1+1><l+1><d) )

(H2) A(t,¢) and h (y) satisfy Lipschitz conditions: there exists a constant k& > 0, such that

|A(t, Q) — A, Q)| <k|[¢—(|, V¢ ¢eRMFFXIE g e (0,77,
h(y) =h@)| <kly—yl, Yy yeR.



The following monotonic conditions introduced in [17], are the main assumptions in this
paper.

(At,Q) = A(t,0),¢—C) < —ul¢ |,

(H3) V= (y,Y,2,2)", (= (3,Y,7 )TeRxRxRxR vt €[0,7).
(h(y)—h(y),y—y) >0, Vy, e R

or
(A0 =A(t.0).¢ =) = nlc =],

(H'3) V¢ =(y,Y,22)", (= (5,Y,22) eRxRxRxR, Vtel0T].

(h(y)~h(5).y—5) <0, vy, 5€R,
where p is a positive constant.

Proposition 2. For any given admissible control v (-), we assume (H1), (H2) and (H3) (or
(H1), (H2) and (H3)’) hold. Then FBDSDEs (2.1) has the unique solution (y;, Yy, 2, Zt) €
M2 (O T: R1+1+1><l+1><d) )

The proof can be seen in [17]. The proof under the assumptions (H1), (H2) and (H'3) is
similar.
We assume:

(i) F, f, G, g, h, I, ®, 7 are continuously differentiable
with respect to (y,Y,z,Z,v), y, and Y;
ii) The derivatives of F, f, G, g, h are bounded,
iii) The derivatives of [ are bounded by C (1 + |y| + |Y| + |z]| + | Z] + |v]);
iv) The derivatives of ® and « with respect to y, Y are bounded by
[ C(1+y|) and C(1+4Y]), respectively.

(H4)

Lastly, we need the following extension of It6’s formula (for more details see [14]).

Proposition 3. Let a € S?([0,T];R"), g € M? %),T];Rk), v e M*([0,T;R>), ¢ €

52 ([O,T]; RkXd) satisfy: oy = ag + fot Beds + f(f vsdBs + fg 5SdWS, 0<t<T.
Then

t t t
ol = Jaol* +2 [ gy ds+2 [ (awrdBe)+2 [ (anddll)
0 0 0

t t
—/wﬁ¢+/wﬁ@,
0 0

t t t
Emfzm%F+m/X%ﬁ9@—E/w$@+E/wﬁ@.
0 0 0



More generally, if ¢ € C? (Rk) ,

bl =6lan)+ [ (8 @) o)+ [ (6 @)y + [ (5 (a0,

5[] @] a3 [ @os] o

t

Here S? (O,T; Rk) denotes the space of (classes of dP ® dt a.e. equal) all Fi-progressively
measurable k-dimensional processes v with

E ( sup |v(t)|2> < o0.

0<t<T

3 A Necessary Maximum Principle for Optimal Forward-
backward Doubly Stochastic Control system

We consider the forward-backward doubly stochastic control system (2.1) and the cost
function (2.2). Let u(-) be an optimal control and (y(-),Y (-),z(:),Z(-)) be the corre-
sponding trajectory. Let v () be any given admissible control such that w (-) + v (+) € Uya.
Since U,q is convex, then for any 0 < p <1, u, (-) = u (-) + pv (-) is also in Uyq.

We introduce the following variational equation of FBDSDEs:

(Cdyt (8) = [fy (by (8),Y (1), 2 (), Z (1), u () y* (1)

iy (by (0),Y (1), 2 (), Z () ,u () Y (1)

FE Ly (), Y (£),2 (1), Z (1), u(t) 2 (1)

FE2 by (£, (1), 2 (), Z (1) ,u(t) 21 ()

FEo by (8),Y (1), 2 (1), Z (1) u () v ()]t

Hay (by (), Y (8), 2 (8), Z (), u () y (1

gy (Y (1),Y (1),2 (), Z (1) ,u () Y (1)

. (L (8),Y (8),2 (1), Z (8),u(®) 2 ()

gz (ty (£), Y (£),2 (1), Z (1), u () Z* (¢)

g0 (L (8), Y (£),2 (1), Z (£) ,u (8) v (O)AW, — 2* () B,
AV (t) = —[F, (t,y (1), Y (), 2 (£), Z () ,u (1) y* (£) (3.1)

Ry (by (1),Y (), 2(8), Z () ,u (1) Y (t)

FE (Ly (), Y (£),2(8), Z (8),u(t) = (¢

FF 6y (8),Y (1), 2 (1), Z (1) ,u () 21 (¢)

FE, (6 (8),Y (£),2 (1), Z (1), u () v (B)]dt

—[Gy Ly (), Y (8), 2 (8), Z (), u () y* ()

+Gy (by (1),Y (), 2 (1), Z () ,u (1)) Y1 (2)

FGL Ly (8),Y (£),2 (1), Z (8),u(®) 2! ()

+Go (Y (£),Y (1), 2 (1), Z (1), u () 21 (¢)

1G, (y (1), (8),2 (1), 2 (8) ,u(t) v (O)]dB, + 2 (1) AW,
Ly (0)=0, Y1 (t) = h, (y(T))y" (T)




From (H3), (H4) and Proposition 2, it is easy to check that (3.1) satisfies (H1), (H2) and (H3).

Then there exists a unique quadruple of (y

(3.1).

L@#), Y (t), 2" (t), Z* (t)) satisfying FBDSDEs

We denote by (y, (t),Y, (t),2,(t), Z, (t)) the trajectory of FBDSDEs (2.1) corresponding

to u, () as followings.

((dy, (1) = [ (ty, (1), Y, (1), 2

dY, (t) = —F (¢, y, (

-G (t>yp( )>
L yﬂ(o):$0> (

)
Yo (t),2
) =

h (yy

+9 (L, (1),Y, (1), 2, (1), Z, (1), u
t),Y,(t), 2 (1),
(

o (1), 2, (1) u, (1) dt
p(< )iV, — 2, (t) dB,,
Z,(t

, ) up (1))
(t) Zy t)>up( ))d %‘I'Zp(t)dwt,

(1)),

Then we will study the solutions depending on parameter to forward-backward doubly

stochastic control system.

Lemma 4. Assume that (H1)-(H4) hold.

Then we have

lim Yo (t) -y (t> _ yl (t)

p—0 P ’
})1_% YP (t) ; Y (t) _ Yl (t) ’

M-

lim P = z (1),
})I_I}(l) ZP (t> p_ Z (t> _ Zl (t) ’

where the limits are in M? (0,T).

Proof. Firstly, we show the continuous
rameter p. Let

=<,

N> N>

dependence of solutions with respect to the pa-
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formula to <gj (t),Y (t)> on [0,77, and by (H4) it follows that

E (5 (7)1 (y,(T)) — h(y (7))
- E/0 (A(tE,) — A(1,€).&,— €) dt

B [ IO 000305 0.2 0) 0 0) + o )
(0.5, (0.2 (1) Z, (8) . u (1))

) R EAUR AU AURIO R 0)
—F (o ()Y (020 (1) 2, (8) . u (1)

B [ 206000302 0.7 00 )+ 0 ()
Gy ()Y (020 (1) Z, (1) u (1))
+E/OTZ<>[<typ<t>,Y<> S (1) 2 (8) u ) + o (1)
=0 (1, (.Y, (0). 2 (). 2, (8 )

[ s+ |7 of + por+|zof ]

e [ o +[rof + ol |zof]

Yo (t

IA

4

+2p%CE | () dt,
o 0

where
&) = (W), Y,(1),2 (), 2, (1), u®)”,
W) = (), Y(1),2(),2(t),ult)",
—F(t,¢) —F(t,¢)
o - | 45 ) weo-( 255
9(t,¢) g(t.&)
Thus we get

T g g T
E/ [|g)(t)|2+’Y(t)’ +EOP + |2 () ]dt§p2CE/ v () dt.
0 0
Then we have (g) t),Y (t),2(t),Z (t)) converge to 0 in M? (0,T) as p tends to 0. Next we
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set

p
AY (t) — YP (t) ; Y (t) ’
Az (t) — <p (t)p_z(t)’
AZ(t) — Zp(t)p_Z(t)’

then

( Ay (t) = LE00Yo0):2p(0)Zp(0 ) o)~ (.Y ()20 ZW:u(0)
p
9 ().Yo (8).25(0) Zo(D0(0) tov() ~o(t(8).Y (1),20.Z(0).u(0) g 77

p
“ Az () dB,

AAY () = K050 20 s O a0 Y Q202040 gy
+ G(tvyp(t)7Yp(t),Zp(t)7Zp(t)7U(t)+P:(t))—G(t7y(t)7Y(t),2(t)7Z(t)7U(t)) dE
_AZ(t)aW,

| Ay (0) =0, AY(T) = tD-te@),

The above equations can be expressed as follows

+g(t, Ay%) LAY (), 02 (1), AZ (1), 0 (1)) AW,
—Az(t)d

1)

CAAY (1) = F (t, Ay (1), AY (1), Az (1), AZ (1), v (1)) dt
G (LAY (), AY (1), Az (), AZ (1) v () dB:
~AZ () diT,

Ay(0)=0, AY (T)= h(yp(T))—h(y(T))’

\ P

where § = f, F, g, G, respectively,

0(t, Ay, AY, Nz, AZ,v) = A? (£) Ay + BY () AY + C? (t) Az + D () AZ + E? (t) v,

11



—l— N —

0(t,9p (1), Yp(t),2p (1), Zp () u(t) +pv(t)) =0(t,y(1), Y (t),20 (1), Zp () ,u(t) +-p(t)) y, (t) —y (t) £ 0,

Yo (t)—y(t) ’
0, otherwise;
o(t, Y, (t),2 Zo(t),u v(t))—0(t, Y (t),2 Zo(t),u v
(ty(t),Yn(t),20(t), Zp(t) (t)+pyﬁg_y(€tz)/(t) (),2p (), Zp (1) u(t)+p (t))’ Y, (t) = Y (t) #0,
0, otherwise;
0(t,y(1),Y (£),25 (), Z, () u(t)+pv(£)) —0(t,y(£),Y (£),2(t), Z, (£) u(t) +po(t
(ty(®),Y (),2p(t), Zp (1) ()pzf(i;_zgt)y() (1),2(t),Zp(t) ()p())’ 2, (t) — 2 (t) £ 0,

0, otherwise;

0t y(@),Y (),2(t), Zp(t),u(t)+pv(t)—0(t.y(t), Y (t),2(),Z (), ult)+pv(t))
: ’ S ROEA0) P Z, () = Z(t) #0,

0, otherwise;

G(tvy(t)7Y(t)7Z(t)7Z(t)7U(t)+p;)1§2§—9(t,y(t),Y(t),Z(t),Z(t),U(t))’ pu (t) # 0,

0, otherwise.

From the continuous dependence of solutions with respect to the parameter p, we obtain

})5%149(15) = O, (ty(t),Y (), 2(t),Z(t),u(t),
})ig(l]Be(t) = Oy (ty(t),Y(t),z(t), Z(t),u(t)),
})LI%CG(t) = 0ty (), Y (t),z(t), Z(t),u(t),
}}E}]Da(t) = Oz(Ly(1),Y (t),2(1),2(t),u(t)),
}}g%Ee(t) = 0,y @), Y (), 2(t),2 (), u(t)).

According to the continuous dependence of solutions with respect to the parameter and
the uniqueness of solutions of FBDSDE (3.1), the solutions (Ay (t), AY (t), Az (t),AZ (1))
converge to (y* (t),Y' (¢), 2" (t), 2" (t)) in M? (0, T; R*HH1XH1Xd) a5 p — 0. The proof is
completed.O

Now we give the variational inequality.

Lemma 5. Assume that (H1)-(H4) hold. Then we have

E®, (y(T))y" (T) + Eyy (Y (0)) Y (0)

12



Proof From Lemma 4 and (H4), we can get

il_{% [ ( ())p ’Y( ())] — E’}/y(Y(O))Yl(O),

and

ing B [ 100, 0.V, )2 (0.Z,0) () + po 1)

p—0

On the other hand, since u (-) is an optimal control, it follows that

P T () +pv () = (u()] > 0.

Therefore the desired result is obtained. O
Now we introduce the adjoint equation by virtue of dual technique and Hamilton func-
tion for our problem. From the variational inequality obtained in Lemma 5, the maximum
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principle can be proved by using It6’s formula. The adjoint equations are

((dp(t) = [Fy (t,y (1), Y (), 2(t),Z (1), u(t)p(t)
—fr(ty @), Y (),2(t).Z(t),u(t)q(?)
+Gy Ly (1),Y (8),2(1), Z (), u(t)) k()
—gv L,y (1), Y (),2(1), Z(t) ,u(t)) h(t)
—ly (t,y (1), Y (t),2(t), (),U(t))]dt

+[Fz (ty (1), Y() z(t), Z(t),u(t)p(t)
—fz(ty (), Y (8),2(t), Z(t),u(t))q(t)
+Gz Ly (), Y (1), 2 (1), Z(t),U(t))k‘(t)
=gz Ly (t), Y (t),2(t), () ())h(t)
—lz (t,y (1), (t) 2(t), Z(t),u))]

dg (t) = [F, (t,y (1),Y (t),2 (1), Z(t),U(t))p(t
—fy Ly @), Y (), 2(t),Z(t),u(t)q(?)
+Gy (Ly (), Y (1), 2(t), Z(t),u(t)) k()
—gy(ty() Y(t),2(t),Z(t),u(t)h(t)
—ly (t,y (1), Y (¢),2(t), Z (1) ,u(t))dt
+HE Gy (), Y (1), 2(1),Z(1),u(t)p(?)
—fz(ty() Y(t),2(t),Z(),u(t))q(t)
+GL Ly (). Y (1), 2(1), Z(t),u(t) k(t)
+GL (Ly (1), Y (1), 2(1), Z(t),U(t))k‘(t)
—gz(ty() Y(t),2(t),Z(t),u(t)h
Ly (). Y (1), 2(t), Z (), u®)]d

(t)
[ 2(0) = = (Y (0)), q(T)=—hy(y(T)
(

It is easy to check that FBDSDEs (3.2) satisfies (H1),
solution (p (t),q(t),k(t),h(t)) € M* (0, T; R THHHd) .
We define the Hamiltonian function H as follows:

H(t,y(t),Y (t),z(t),Z(t),v(t),p()

= (¢(®), fty(t), Y(t)az(t)aZ(t)av )

— @), Fty@),Y(t), 2 )

—(k (1), Gty (1),Y (1), 2
+(h (@), gty (), Y (1),2(t), 7 (t
Lty (),Y (t),2(t),Z(t),v(t)).

FBDSDEs (3.2) can be rewritten as

dp (t) = —Hydt — HydW, — k (1) dB,,

dq()_—Hdt Hd§+ht

d
q(T) = —hy (y(T))p(T) + @y (y (T
p()Z—W(Y(O)), 0<t§

14

E  hd W,

)
) P(T) + @, (y(T)).
H2) and (H'3), so it has a unique

(3.2)



where Hg = Hg (t,y (t),Y (t),2(t),Z(t) ,u(t),p(t),qt),k(t),h(t), B=1y,Y, 2z, Z, re-
spectively.
At last, we can claim the first and major result in this paper.

Theorem 6. (Necessary maximum principle) Let u () be an optimal control and let
(y(),Y (:),2(-),Z () be the corresponding trajectory. Then we have

where (p(t),q(t),k(t),h(t)) is the solution of the adjoint equation (3.2).
Proof. Applying Itd’s formula to (y' (¢),q(t)) + (Y (t),p(t)) on [0,T], we have

E [(y' (T),q(T)) + (Y (T),p(T)) — (¥ (0),4(0)) — (¥ (0),p(0))]

+E/O Ly (ty ()Y (), 2(1), Z (), u(t) y" (1)

+ly(ty(),Y() 2(t), Z(t),u(t) Y (t)
e (y (0),Y (1), 2(1), 2 (1), u(t) 2 ()

+lz (ty(),Y (t),2(t),Z(t),u(t) 2" (t)
bty (), Y (1), 2(t), Z(t),u(t)v(t)dt

= E/ (g @), fo by @), Y (1), 2 (), Z (1), u(t))v(t))

=), B (ty @), Y (), 2(t), Z (), u(t))v(t)
—(k(), Gty (), Y (1), 2(1), Z(t),u(t)v ()
H(h (), 90 8y (), Y (8),2(8), Z (), u(t)) v (t)
+ @)l Ly (), Y (1),2(1), 2 (1), u(t)))]dl

From the variational inequality in Lemma 5 and noting (3.3), for any v (-) € U,q such that
u(-)+v(:) € Upg, we have

E/O (Hy (ty (8),Y (8),2 (1), Z(8),u(t),p (), q(t),k(t),h(t),v{))dt = 0.

0, t€0,t],
v(t) =14 v, telt,t+el,

0, tet+eT].

For Vv € U, we set

Then we have
E/t €<Hv(t>y(t),Y(t),Z(t),Z(t),U(t),p(t)A(t),k‘(t),h(t)),v>dt20-

15



Notice the fact that
E/t €<Hv(t,y(t)>Y(t)72(t)>Z(t)>U(t),p(t),q(t),k(t),h(t))w(t»dt:(l

Differentiating with respect to € at ¢ = 0 gives

The proof is completed. O

4 A Sufficient Maximum Principle for Optimal Forward-
backward Doubly Stochastic Control system

In this section, we investigate a sufficient maximum principle for the optimal control problem
stated in Section 2. For simplicity of notations, we use the subscript label.

Theorem 7. (Sufficient maximum principle). Let (ﬁt; 0, Yy, 2, Zt> be an quintuple
0<t<T

and suppose there exists a solution (ﬁt, Qs l;:t, fzt> of the corresponding adjoint forward-
0<t<T

backward doubly stochastic equation (3.2) such that for arbitrary admissible control v (-) €

U,q, we have .
E/O </2;t, (Yt . th)>2 dt < oo, (4.1)

B [ (o (n-2)) w< 42)

T, . 2
E/ <ht, (yt — ?Jt)> dt < o0, (43)
0
T 2
E/ <qt7 (Zt - Zt)> dt < o0, (44)
0
T - - - L\ 2
E/ <<Y't - Y't) 7HZ (t/gt))/ta Zty Zta'ataﬁtaqt) kt» h’t>> dt < oo, (45)
0
T - - 2
B[ (p (Gt Yin 20~ G (1Y 2))) e <o, (4.6)
0
T ~ ~ - o~ 2
E/ <(yt — i), H. (taﬂuY;,gt, Zy, Ug, Pty G Kt ht)> dt < oo, (4.7)
0
T - . 2
E/ <q~t7 (g (taytyyrtazty Zt) —4g (t/gta}/;a gta Zt>>> dt < 0. (48)
0

16



Further, suppose that for allt € [0,T], H (s, v, Y, 2, 2,0, pr. i, ke, izt> is convexin (y,Y, z, Z,v),

and v (Y) is convex in' Y and ® is convex in y, moreover the following conditions holds

E | H (55, Vi, 2o Zoy s B s i ) | = 00 B [H (1,50, Y20 2 Z 0,5 B B ) | (49)
ve

Then u; is an optimal control.

Proof. Let (y;, Y, 2¢, Zs,v1) = (yt AU Zt(v),vt) be an arbitrary quintuple. Accord-

ing to the definition of the cost function (2.2), we have

Tw) = J(@() = E/OT [l(t,yt,Yt,zt,Zt,vt)—l(t,gt,ﬁ,ét,zt,ﬁtﬂdt

B (@ (yr) = @ ()] + E [y (0) =7 (o)
= Li+I+I3,

where

17



Now applying It6’s formula to <]5t, Y, — fft> + {(Gt, yr — Gp) on [0, 7], we get
<Z3T, Yr — 37T> + {Gr; yr — Ur) — <Z30, Yo — T{/'o> — (G0, Yo — Jo)
= (@, (Ur),yr — Ur) + <7Y (%) , Yo —f/b>

—~
N}

(Zt - Zt) ) <_HZ (tagtaﬁa Zta Zbﬂtaﬁtaqt? ]%t’ Bt>>> dt
>dt
d

t

I
O\H
S

!

+
!

<];:t7 (G (tayta}/;fa 2ty Ztavt) - G (tagtaza Zta Ztaﬁt)

<(Zt - Zt) 9 <_HZ <t7'gt> ﬁa Zta Zta'&taﬁta q~t7 ]%ta il't)

+

)
)
)

<il't> (g (ta Yg, Y;> Zt, Zta Ut) —g <t7 gta Y/;fa Zta Zt7 at)) dt

+
S

Nﬁc\h

N T 5 T T
(=¥ dn+ [ pa (V%) + [ w-goda+ [ ad-i)
0 0 0

!

= [ {(z-2). (-2 (00 Vi 2o i) )
)))at
))at
hos (9t Yoo 2 Z ) = g (850 Vi 2 Z ) ) )
)))a
))aive)

=)
S

z/‘b (G (tvyt7}/l;7 Zt, Ztuvt> - G (tgtuﬁu 2157 Ztuat

+
S

(Zt - 215) ) <_Hz (tv gtv Y/;ﬁu 2157 Ztv rataﬁh Qtv ]%tv iz't)

+
~

!

}/;f - t) ) <_HY <t7ghﬁ’ZhZhrat’ﬁt’qvh]%tuilt

_|_

+
!

}/;f - t) ) <_HZ (tagbﬁ)gtaZtaabﬁt?(jta]%taBt

!

ﬁt) F(taytanaztaztavt)_F<tagt>ﬁ>2ta2taat))>dt

S

+
!

(
(

Dts <G (t,ye, i, 20, Zoyv) — G <t>?]t,}~/ta Zt, Zuﬂt)) dE>
(

+
!

(yt - gt) ’ (_Hy <ta gta ﬁ? 2t7 Zta ataﬁt) (jta ]%ta il't)) > dt

+
!

(= 30) (= H (850 Ve 3 2o 0 v R ) ) B )

+
|

(yt - ﬂt) ) iltth>

N

I
—, ST ST STy T Ty ST, STy ST Ty T Ty T Ty T T S

(7+ (f (t.’lh.}/;. . Z+.’U+X —_ f (t’lltﬁ 2+. Z+’I~l,+\\ dt

_|_



where we claim that

Yr =Yr =h(yr) —h(yr) =hy (g (1)) (y(T) -y (1)),
Yo — Yo = xo — 29 = 0,

po =~y (Yo),

gr = (I)y (?]T) - hy (?j (T))ﬁ (T) :

By Davis inequality, under the conditions (4.1)-(4.8), we can ensure that the stochastic
integral with respect to the Brownian motion have zero expectation. Moreover, by virtue of
convexity of ® and ~, we instantly get

L+I; = E®(yr)—®(yr) +E [V(Yb) —7 <Y0>]

> E<q)y(ﬂT)ayT—ﬂT>+E<7Y (%) ,Yb—ffo>

T
= E/ << HY (t yta}/;faZtaztautaptaqtaktah't>>dt

0
T ~ ~

E/ < Ds, t ytaYtaZuZt,Ut) F(tagtanagtaztaat>>>dt
0
T

E/ < (t yt7}/;57Zt7Zt7ut7pt7qt7kt7ht>>dt
0
T ~ ~

+E/ < ( t yh}/;ﬁzt’Ztv/Ut) g (t7gt7}/;7ét7zt7/at)>>dt

0
T

E/ <<Zt HZ (t qu;t,Zt,Zmutapta%,kt,ht)>dt
0
T ~ ~

E/ < ty t yh}/;ﬁzt’Zt’/Ut) G <t7gt7}/;7étvzt7/at>)>dt
0
T

E/ < 2t — Zt (t yta}/;fazt7Zt7Ut7pt7qt7kt7ht>>dt
0

+E/ <ht7 ( (tyhmvzh Ztuvt) - 9 (tm@t’i;;"%t’ Ztvlat>>> dt

0

= —01F+ o9+ o3+ oyt 2,
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where

[1]
|

T
1 = E/ <Hy (tagtay;faétaztuatvﬁtvgtaktuht> 7(yt_gt)> dt
0

T
+E/ <Hy

0

T
+E/ <H

0

T
+E/ <HZ

0

T
EZ == _E/ <ﬁt7F(t7yt7}/;7ztvzt7/Ut) _F<t7gt7}g7étvzt7/at>>dt
0

S

t, Y, i, %0, Zy, s s i ];?m ilt) ; (YQ — f@) > dt

VS

t? gtv i/;/’ Zh Ztu rahﬁt’ gtv ];;tv ilt) ) (Zt - 2t)> dt

/N

t? gtv i/;’ '%tv Zt7 at?ﬁh dtv ];;tv ilt) ) (Zt - Zt)> dt

T
E3 = E/ <gtug(t7ytvmvztvztvvt) -9 <t7gt7}guétvztvat>>dt
0
T ~ ~ ~
E4 - _E/ <kt>G(t>ytanazt>Zt>,Ut) _G <t>?jt,Yta2t>Zt>ﬂt>>dt
0

T
ES - E/ <ht>g(taytanaztaztavt) — g (tagtanagtaztaﬂt)>dt-
0

Noting the definition of H and Iy, we have

I, = E/OZ[
[

l (t7 Yt }/;57 Zt, Ztv Ut) - l (ta gtv Y/;u 287 ZS’ at>:| dt

= E H <t7ytvm7zt7Zt7vt7ﬁt7qvt7]%t7ilt) - H <t7gtvﬁvgtaZtuatvﬁtvgta%tuﬁt)} dt

T .
-E

+
=
!

S

+
tq o
<~4—1
e
=
ES
=
&
N
&
S~—
|
e
/N
S
<
=
o
H\Nz
=
~~~—" - 1
o,
~

[
&=

|
[1]
[11<°

2 — 83— 54— S,

where

T
e = E/ [H <t>yt,Yt,Zt>Zt>Ut>25t,C]t,ktaht) - H (t>??t,Y1t,ZtaZuﬂuZ;t,C]takt,htﬂ dt.
0
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On the one hand, by the virtue of convexity of H (t, v, Y, 2, Z,v, P, G, ke, izt) with respect
to (y,Y, 2, Z,v), we obtain

v

H (tvytu}/;hZt7Zt7’Ut7ﬁt7qvt77%t7ilt) - H (tugtaﬁagtuZtuﬂtaﬁtvgtu%tuilt)

Hy (t gbﬁ)gta Ztaﬁbﬁt)(jta z‘lta ilt) (yt - gt)

o Hy (1,3 Yis 20 Zay e B s R ) (V= V3
+H, <t7?3t7}~/¥,Zt,Zt,ﬂt7l3t7gt,]%t, t) 2 — %)
+Hz (taﬂuﬁ,ét,z,@t,ﬁt@t,/ft, t)( )
+H, (t yt,Kt,Zt,Zt,utapt>Qt,kt,ht> )

(4.10)

On the other hand, we know

E [Hu (t,?]mf{t,gﬁ Ztuﬂt7ﬁt7gt7 ];;tu 7%) (v — ﬂt)} > 0.

Consequently, associating with (4.10), we claim that

Then,

v

[1]

T
E/ [H <t>yt,Yt,2t,Zt>UuZ§t>q~t,iﬁtj%) —H (taﬂt,ift,ét,Zt,ﬁuﬁt,q},iﬁt,ﬁtﬂ dt
OT ) ) o
E/ H, (@?jtﬂ/%,gu Zy, Uty Dty Gt Kt ht) (ye — 9¢) dt
" T
+E/ Hy (t yt,Yt,Zt,Zt,uuptaQt,kt,ht) ( Yi) dt
OT
+E/0 H, (ta?jui/t,gt, Zy, Ty, Prs s %ta iLt) (2e — %) dt

T
E/ HZ (ta’gta}/;a Zta Ztaabﬁtaqta kta ht) (Zt - Zt) dt
0

it follows that

JW()=J(u() = Lth+l;
= Zg— D9 — D3 — o4 — 25
—E1+Z+ 53+ 54+ 55
1—Z2— 23— 24— Z5
~E +E+E3+Eq+Es

Y
(1]

I
e



Since Yv (+) € Uyq is arbitrary, we say that @ (-) is an optimal control. The proof is complete.
O

5 Applications to optimal control problems of stochastic
partial differential equations

In this section, we will give necessary and sufficient maximum principles for optimal
control of SPDEs. Let us first give some notations from [14]. For convenience, all the
variables in this section are one-dimensional. It is necessary to point out that all the results
in this section can be extended in multi-dimensional case, but we use the notations in general
case. From now on C*(R;R), Cf, (R;R), C¥(R;R) will denote respectively the set of
functions of class C* from R into R, the set of those functions of class C* whose partial
derivatives of order less than or equal to k are bounded (and hence the function itself grows
at most linearly at infinity), and the set of those functions of class C* which, together with
all their partial derivatives of order less than or equal to k, grow at most like a polynomial
function of the variable x at infinity. We consider the following quasilinear SPDEs with
control variable:

u(t,» +ft (s,2) + f (s,2,u(s,2), (Vuo) (s,z),v (s))] ds
{ o elomutons (es) o oy, 0% LT 6.1)

where u : [0,7] x R — R and Vu (s,z) denotes the first order derivative of u (s, z) with
respect to x, and
L”ul
cu=| .
L“uk

with Lo (z) = %ijzl (00%); (z,0) gf(fg; + 520 b (2, 0) a(gg). In the present paper, we set
d=k=1, and

RxR >R,

RxR >R,
0,7T]x RxR xR xR —R,
0,T]x RxR xR xR —R,
R - R.

SN - 9 o

In order to assure the existence and uniqueness of solutions for (5.1) and (5.3) below, we
give the following assumptions for sake of completeness (see [14] for more details).
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be CH(RxR;R), oeC(RxR;R), heC}RR),
ft, - v) el (RXxRxR;R),  f(,z,y2v)e M*(0,T;R),
g, -v)eCH(RxRxR;R), g(,z,y,z2v)€ M (0,T;R),
Vie[0,T],zeR,yeR, ze R,veR.

(A2) There exist some constant ¢ > 0 and 0 < a < 1 such that for all (¢,z,y;, z;,v) €
0, T]x RxR xR xR, (i=1,2),

{ |f(tax>ylazlav) _f(taxay2922>v)|22 < C(|yl —y%|2+|21 _22|22)7
‘g(tvx7ylvzluv>_g(t7x7y2uz2av)| Sc‘yl_y2| —|—Oé|21—22‘ .

Let U,q be an admissible control set. The optimal control problem of SPDE (5.1) is to
find an optimal control UE*,) € Uy,q, such that

T )= it ().

where J (v (+)) is the cost function as follows:

Jw(:)=E [/0 [(s,z,u(s,x),(Vuo) (s,x),v(s))ds+v(u(0,2))]|. (5.2)

Here we assume [ and ~ satisfy (H4). We can transform the optimal control problem of
SPDEs (5.1) into one of the following FBDSDEs with control variable:

Xt (s) =2+ [0 (X (1) v () dr + [ 0 (X0 (1) v (1) IV,
Y87 (s) = b (X5 (7)) + [ f (r, X5 (r), Y5 (7)), 287 (r) 0 (r) dr
Fh 81X 0) Y10, 24 1), ) a,
— [Tzt (rydW,,  0<t<s<T,
where (X5 (1), Y"" (), Z% (1) ,v(-)) € R x R x R X R, x € R. The corresponding optimal
control problem of FBDSDEs (5.3) is to find an optimal control v* (-) € Uyg, such that
J@* ()= inf J(v(
)= (),

ad

(5.3)

where J (v (+)) is the cost function the same as (5.2):

Jw())=E [/0 [(s,X(s),Y(s),Z(s),v(s))ds+~ (Y (0))].

Now we consider the following adjoint FBDSDEs involving the four unknown processes
(p(t),q(t),k(t),h(t)):
dp (t) = (frp () + gvh () = by) dt + (F2p () — g2k (£) — 1) AW, — ki (£) d B,
dq (t) = (fxp () = bxq (t) + gxk (t) — oxh (t) — Ix) dt + h (t) aw, (5.4)
p(0) =—w (Y (0), ¢(T)=-hx(X(T)p(T), 0<t<T.
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It is easy to see that the first equation of (5.4) is a “forward” BDSDE, so it is uniquely
solvable by virtue of the result in [14]. The second equation of (5.4) is a standard BSDE,
so it is uniquely solvable by virtue of the result in [13]. Therefore we know that (5.4) has
a unique solution (p(-),q(-),k(-),h(:)) € M*(0,T;R x R x R X R). Define the Hamilton
function as follows:

H(t,X,Y,Z,v,p,q,k,h) = H(taXayaan>'Uap>Qakah)
Lt X,Y. Zv)—k-g(t,X.Y,Z,v)
+Q'b(X>'U)_p'f(taXaKZ>U)+h'U(X>'U)'

(5.5)
We now formulate a maximum principle for the optimal control system of (5.3).
Theorem 8. Suppose (A1)-(A2) hold. Let (X (-),Y (-),Z(-),u(-)) be an optimal control

and its corresponding tragectory of (5.3), (p(:),q(-),k(-),h(-)) be the solution of (5.4).
Then the maximum principle holds, that is, for t € [0,T], Yv € Uy,

(H (X @),Y(),Z@),v"t),p@),q@), k), h(t),v—0"() >0, ae., as.

Proof. Noting that the forward equation of (5.3) is independent of the backward one, we
easily know that it is uniquely solvable. It is straightforward to use the same arguments in
Section 3 to obtain the desired results. We omit the detailed proof. O

From the results in [14], we easily have the following propositions.

Proposition 9. For any given admissible control v (), we assume (A1) and (A2) hold.
Then (5.3) has a unique solution (X4 (-), Y5 (-), Z4(-)) € M?(0,T;R x R x R).

Proposition 10. For any given admissible controlv (-), we assume (A1) and (A2) hold. Let
{u(t,z);0 <t <T,z R} be a random field such that u(t,x) is Fr-measurable for each
(t,z), u e C%([0,T] x R;R) a.s., and u satisfies SPDE (5.1). Then u (t,z) = Y (t).

Proposition 11. For any given admissible control v (-), we assume (A1) and (A2) hold.
Then {u (t,z) =Y (t);0 <t < T,z € R} is a unique classical solution of SPDE (5.1).

Set the Hamilton function

H (t,x,u,Vuo,v,p,q,k,h) = [(t,x,u,Vuo,v) —k-g(t,z,u, Vuo,v)
+q-b(z,v) —p- f(t,x,u, Vuo,v) + h-o(z,v).

Now we can state the maximum principle for the optimal control problem of SPDE (5.1).

Theorem 12. (Necessary maximum principle) Suppose u (t,x) is the optimal solution
of SPDE (5.1) corresponding to the optimal control v*(-) of (5.1). Then we have, for any
veU andt €10,T], x € R,

(H, (t,z,u(t,z), (Vuo) (t,z),v* (t),p(t),q (), k(t),h(t),v—0"(t) >0, ae., as.
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Proof. By virtue of Proposition 10, 11 and 12, the optimal control problem of SPDEs (5.1)
can be transformed into the one of FBDSDEs (5.3). Hence, from Theorem 9, the desired
result is easily obtained. O

Next we apply our sufficient maximum principle to get the following result.

Theorem 13. (Sufficient maximum principle) For Vt € [0,T], let © = 0 (t) € Uyq with
corresponding solution U (t,z) of (5.1) and let (X t),Y (t),Z(t),0 (t)) be quaternion and
(p (1) ,(j(t),l%(t),fz(t)) be a solution of the associated adjoint FBDSDEs (5.3) and (5.4),
respectively. Assume that H (t,X,Y, Z,v,p(t),q(t), k (1), ﬁ(t)) is convex in (X,Y, Z,v),

and v (Y') is convex in'Y', moreover the following condition holds

B [H(6X 0,7 #),20).00),50).3(0),k0),h0)]

— infE [H (t,X(t),Y(t),Z(t),v,p(t),q(t),/%(t),ﬁ(t))] .

veld
Then v (t) is an optimal control for the problem (5.2).

Proof. Noting above assumptions, by Theorem 8, it is fairly to get desired result. O
Remark 1 In [12], Bernt Oksendal proved a sufficient maximum principle for the optimal
control of system described by a quasilinear stochastic heat equation, that is

ay (t,z) { = LY (t,2) +b(t,2, Y (¢, 2),v ()] dt

+o (t,x,Y (t,z),u(t)) dW;
(t,z) € [0,7]xG.

(5.6)
Y (0,2) =& (x); red (5.7)
Y (t,x) =n(tx); (t,x) € (0,T) x 0G. (5.8)

Here G is an open set in R™ with C! boundary 0G and

n 82 n a
Lo(x) =) ay (@) 5———0+ ) bi(w) 5—¢,  6€C* (R
ij=1 v i=1 !

where a (z) = [a;; (%), <, IS a given symmetric definite symmetric n X n matrix with
entries a;; (z) € C?(G)NC (G) for all 4,j = 1,2,--+ ,n and b; (z) € C* (G) N C (G) for all
i,7=1,2,--- n. For more detail, see [12]. It is worth to pointing out that our method to get
the sufficient maximum principle is completely different from his, and the most important

thing is that in our SPDEs; all the coefficients contain the control variables, while in [12],
the coefficients a and b do not satisfy it (for more details see Theorem 2.1-Theorem 2.3 in

12).
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6 Applications

Theoretically, the maximum principles presented in Section 3 and Section 4 characterizes
the optimal control through some necessary and sufficient conditions. However, it is not
immediately feasible to implement such principles directly, partially due to the difficulty of
computing fully coupled forward-backward doubly stochastic system. In this section, we give
two special examples and show how to explicitly solve them using our maximum principle.

6.1 Example 1

We provide a concrete example of forward-backward doubly stochastic L(Q) problems and
give the explicit optimal control and validate our major theoretical results in Theorem 6.
(Necessary maximum principle). First let the control domain be & = [—1,1]. Consider
the following linear forward-backward doubly stochastic control system. We assume that
l=d=1.

dy (1) = ((6) = Z (6) + v (1)) AW, = = (1) d B,

AY (1) = — (2 (t) + Z (t) + v (1)) dB, + Z () AW, (6.1)

y(0)=0, Y (I)=0, tel0,T],

where 7' > 0 is a given constant and the cost function is

Jw() = %E/O (2 () + Y2 () + 22 (1) + 22 () + o* (1) dt
+%EY2 (0) + %Eyz (T).
(6.2)

Note that (6.1) are linear control system. According to the existence and uniqueness
of (6.1), it is straightforward to know the optimal control is u (-) = 0, with the optimal
state trajectory (y (t),Y (t),z(t),Z(t)) =0, t € [0,T]. Notice that the adjoint equation
associated with the optimal quadruple (y (¢),Y (¢),2(¢),Z (t)) =0 are

~
Il

|
)~<
—~
=
oL
~

|
o
=
~—

|
>
=
~—

|
N
—~
=
Q‘l

|
o
—~
N2
S

+
Y=k () = h(t) — 2 (1)) dB; + h (£) AW, (6.3)

Obviously, (p(t),q(t),k(t),h(t)) =0 is the unique solution of (6.3). Instantly, we give the
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Hamiltonian function is

H(ty(t),Y (t),2(t), 2 (), v,p(t),q(t), k(t),h(t)
(

() + Y2 (t) + 22 (t) + 2% (t) + %)
k(t)(z(t)+ Z(t) +v)
h(t)(z(t) = Z(t) +v)

V7.

9
2

2

o = 4

It is clear that, for any v € U, we always have
E(H, (ty(t),Y(),z(t),Z#),u),p),q) kt),h?),v—u(t)) =0.

6.2 Example 2

In this subsection we will provide a special optimal control of SPDEs by Theorem 14.
(Sufficient maximum principle). We now introduce some notations. For any random vari-

able F' of the form F' = f(W (hy),...W (h,);B(k1),...B(ky)) with f € C°(R"P),
hi, .. hy € L2 ((0,T), R, ky, ...k, € L2 ([0, T], R') , where

we let
DtF:if;(W(hl),...W(hn);B(kl),...B(k:p))hi(t), 0<t<T.

For such an F', we define its 1,2-norm as:

1
T 2
1F|l,, = (E {F2+/ |DtF|2dtD :
0

S denotes the set of random variable of the above form. We define the Sobolev space:
Dh2 — g”'nl,Z'

The "derivation operator” D. extends as an operator from D' into L? (Q; L*([0,T], R")).
Now we modify the stochastic reaction-diffusion equation considered in [12] which can
be described the density of a population at time ¢ € [0, 7] and at the point x € R as follows.

{ u(t,x) :x—i-ftT[vZ(s)Au(s,x)+u(s,x)+Vu(s,x)v(s)]ds (6.4)

+ftTu(s,x)d s, 0<t<T,
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and r € R, v € U,q. The two Brownian motions W and B are one-dimensional. Suppose we
want to minimize the following performance criterion

J(U):E{/OTW(S)ds—i-u(O,x) :

Y

where v > 1. In this case the Hamiltonian gets the form

H(t,X,Y,Z,v,p,q,k,h)
.

= L k(Y +2)—pY + .
S

Obviously, it is convex in (Y, Z,v). The corresponding FBDSDEs are

Xt (s)=ax+ [v(r) dWT,
Y (s) = X”(T>+f (Y52 (r) + Z5 (r)) dr (6.5)
+f Y (r)d §—fs ZH (rydW,, 0<t<s<T,

It is easy to obtain the solutions of (6.5) are
Y4 (s) =E [ X" (T) exp {Wr — W, + By — B,}| 7] . (6.6)
Besides, the adjoint processes are

)= (p(s) + k(s))ds + p (t) dW, — k (s)dB,,
s) = h(s)dW,, (6.7)

The solutions of (6.7) are

p(s) = E[—exp{W,+ W, + Bs — B }| Fsl,
q(s) = E[-p(T)|FV],
h(s) = Dgq(s), ae,0<t<s<T.
(6.8)
The function

v — H(t,X>Y> Z,v,p,q, k> h)

U“/
= L kY —pYV 4w
S

is minimum when
v(t)=(h(t)", 0<t<T.
where, h (t) are given by (6.8).
Acknowledgments. The authors would like to thank the referees for their helpful
comments and suggestions.
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