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Unitals in PG(2, q2) with a large 2-point stabiliser

L.Giuzzi and G.Korchmáros

Abstract

Let U be a unital embedded in the Desarguesian projective plane PG(2, q2). Write M for
the subgroup of PGL(3, q2) which preserves U . We show that U is classical if and only if U has
two distinct points P,Q for which the stabiliser G = MP,Q has order q2 − 1.

1 Introduction

In the Desarguesian projective plane PG(2, q2), a unital is defined to be a set of q3 + 1 points
containing either 1 or q + 1 points from each line of PG(2, q2). Observe that each unital has a
unique 1-secant at each of its points. The idea of a unital arises from the combinatorial properties
of the non-degenerate unitary polarity π of PG(2, q2). The set of absolute points of π is indeed
a unital, called the classical or Hermitian unital. Therefore, the projective group preserving the
classical unital is isomorphic to PGU(3, q) and acts on its points as PGU(3, q) in its natural 2-
transitive permutation representation. Using the classification of subgroups of PGL(3, q2), Hoffer
[14] proved that a unital is classical if and only if if is preserved by a collineation group isomorphic
to PSU(3, q2). Hoffer’s characterisation has been the starting point for several investigations of
unitals in terms of the structure of their automorphism group, see [3, 6, 4, 5, 8, 9, 10, 11, 12, 15, 16];
see also the survey [2, Appendix B]. In PG(2, q2) with q odd, L.M. Abatangelo [1] proved that
a Buekenhout–Metz unital with a cyclic 2–point stabiliser of order q2 − 1 is necessarily classical.
In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that Abatangelo’s
characterisation holds true for any unital in PG(2, q2). In this note, we provide a proof of this
conjecture.

Our notation and terminology are standard, see [2], and [13]. We shall assume q > 2, since all
unitals in PG(2, 4) are classical.

2 Some technical lemmas

Let M be the subgroup of PGL(3, q2) which preserves a unital U in PG(2, q2). A 2-point stabiliser
of U is a subgroup of M which fixes two distinct points of U .

Lemma 2.1. Let U be a unital in PG(2, q2) with a 2–point stabiliser G of order q2 − 1. Then, G

is cyclic, and there exists a projective frame in PG(2, q2) such that G is generated by a projectivity

with matrix representation




λ 0 0
0 µ 0
0 0 1



 ,
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where λ is a primitive element of GF(q2) and µ is a primitive element of GF(q).

Proof. Let O, Y∞ be two distinct points of U such that the stabiliser G = MO,Y∞
has order q2 − 1.

Choose a projective frame in PG(2, q2) so that O = (0, 0, 1), Y∞ = (0, 1, 0) and the 1-secants of
U at those points are respectively ℓX : X2 = 0 and ℓ∞ : X3 = 0. Write X∞ = (1, 0, 0) for the
common point of ℓX and ℓ∞. Observe that G fixes the vertices of the triangle OX∞Y∞. Therefore,
G consists of projectivities with diagonal matrix representation. Let now h ∈ G be a projectivity
that fixes a further point P ∈ ℓX apart from O,X∞. Then, h fixes ℓX point-wise; that is, h is a
perspectivity with axis ℓX . Since h also fixes Y∞, the centre of h must be Y∞. Take any point
R ∈ ℓX with R 6= O,X∞. Obviously, h preserves the line r = Y∞R; hence, it also preserves r ∩ U .
Since r ∩ U comprises q points other than R, the subgroup H generated by h has a permutation
representation of degree q in which no non-trivial permutation fixes a point. As q = pr for a prime
p, this implies that p divides |H |. On the other hand, h is taken from a group of order q2 − 1.
Thus, h must be the trivial element in G. Therefore, G has a faithful action on ℓX as a 2-point
stabiliser of PG(1, q2). This proves that G is cyclic. Furthermore, a generator g of G has a matrix
representation





λ 0 0
0 µ 0
0 0 1



 with λ a primitive element of GF(q2).

As G preserves the set ∆ = U ∩ OY∞, it also induces a permutation group Ḡ on ∆. Since any
projectivity fixing three points of OY∞ must fix OY∞ point-wise, Ḡ is semiregular on ∆. Therefore,
|Ḡ| divides q − 1. Let now F be the subgroup of G fixing ∆ point-wise. Then, F is a perspectivity
group with centre X∞ and axis ℓY : X1 = 0. Take any point R ∈ ℓY such that the line r = RX∞ is
a (q+1)-secant of U . Then, r∩U is disjoint from ℓY . Hence, F has a permutation representation on
r∩U in which no non-trivial permutation fixes a point. Thus, |F | divides q+1. Since |G| = q2 − 1,
we have |Ḡ| ≤ q − 1 and |G| = |Ḡ||F |. This implies |Ḡ| = q − 1 and |F | = q + 1. From the former
condition, µ must be a primitive element of GF(q).

Lemma 2.2. In PG(2, q2), let H1 and H2 be two non-degenerate Hermitian curves which have the

same tangent at a common point P . Denote by I(P,H1 ∩ H2) the intersection multiplicity of H1

and H2 at P Then,

I(P,H1 ∩H2) = q + 1. (1)

Proof. Since, up to projectivities, there is a unique class of Hermitian curves in PG(2, q2), we may
assume H1 to have equation −X

q+1

1 +X
q
2X3 +X2X

q
3 = 0. Furthermore, as the projectivity group

PGU(3, q) preserving H1 acts transitively on the points of H1 in PG(2, q2), we may also suppose
P = (0, 0, 1). Within this setting, the tangent r of H1 at P coincides with the line X2 = 0. As no
term X

j
1 with 0 < j ≤ q occurs in the equation of H1, the intersection multiplicity I(P,H1 ∩ r) is

equal to q + 1.
The equation of the other Hermitian curve H2 might be written as

F (X1, X2, X3) = a0 X
q
3X2 + a1X

q−1

3 G1(X1, X2) + . . .+ aqGq(X1, X2) = 0,

where a0 6= 0 and deg Gi(X1, X2) = i + 1. Since the tangent of H2 at P has no other common
point with H2, even over the algebraic closure of GF(q2), no terms Xj

1 with 0 < j ≤ q can occur in
the polynomials Gi(X1, X2). In other words, I(P,H2 ∩ r) = q + 1.
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A primitive representation of the unique branch of H1 centred at P has components

x(t) = t, y(t) = cti + . . . , x3(t) = 1

where i is a positive integer and y(t) ∈ GF(q2)[[t]], that is, y(t) stands for a formal power series
with coefficients in GF(q2).

From I(P,H1 ∩ r) = q + 1,
y(t)q + y(t)− tq+1 = 0,

whence y(t) = tq+1 +H(t), where H(t) is a formal power series of order at least q+2. That is, the
exponent j in the leading term ctj of H(t) is larger than q + 1.

It is now possible to compute the intersection multiplicity I(P,H1 ∩ H2) using [13, Theorem
4.36]:

I(P,H1 ∩H2) = ordt F (t, y(t), 1) = ordt (a0t
q+1 +G(t)),

with G(t) ∈ GF(q2)[[t]] of order at least q + 2. From this, the assertion follows.

Lemma 2.3. In PG(2, q2), let H be a non-degenerate Hermitian curve and let C be a Hermitian

cone whose centre does not lie on H. Assume that there exist two points Pi ∈ H ∩ C, with i = 1, 2,
such that the tangent line of H at Pi is a linear component of C. Then

I(P1,H ∩ C) = q + 1. (2)

Proof. We use the same setting as in the proof of Lemma 2.2 with P = P1. Since the action of
PGU(3, q) is 2-transitive on the points of H, we may also suppose that P2 = (0, 1, 0). Then the
centre of C is the point X∞ = (1, 0, 0), and C has equation cqX

q
2
X3 + cX2X

q
3
= 0 with c 6= 0.

Therefore,
I(P,H ∩ C) = ordt (c

qy(t)q + cy(t)) = ordt (c
qtq+1 +K(t))

with K(t) ∈ GF(q2)[[t]] of order at least q + 2, whence the assertion follows.

3 Main result

Theorem 3.1. In PG(2, q2), let U be a unital and write M for the group of projectivities which

preserves U . If U has two distinct points P,Q such that the stabiliser G = MP,Q has order q2 − 1,
then U is classical.

The main idea of the proof is to build up a projective plane of order q using, for the definition
of points, non-trivial G-orbits in the affine plane AG(2, q2) which arise from PG(2, q2) by removing
the line ℓ∞ : X3 = 0 with all its points. To this purpose, take U and G as in Lemma 2.1, and define
an incidence structure Π = (P ,L) as follows:

1. Points are all non-trivial G-orbits in AG(2, q2).

2. Lines are ℓY , and the non-degenerate Hermitian curves of equation

Hb : −X
q+1

1 + bX3X
q
2 + bqX

q
3X2 = 0, (3)

with b ranging over GF(q2)∗, together with the Hermitian cones of equation

Cc : cqX
q
2X3 + cX2X

q
3 = 0, (4)

with c ranging over a representative system of cosets of (GF(q), ∗) in (GF(q2), ∗).
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3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure Π = (P ,L) is a projective plane of order q.

Proof. In AG(2, q2), the group G has q2+ q+1 non-trivial orbits, namely its q2 orbits disjoint from
ℓY , each of length q2 − 1, and its q + 1 orbits on ℓY , these of length q − 1. Therefore, the total
number of points in P is equal to q2 + q + 1. By construction of Π, the number of lines in L is
also q2 + q + 1. Incidence is well defined as G preserves ℓY and each Hermitian curve and cone
representing lines of L.

We now count the points incident with a line in Π. Each G-orbit on ℓY distinct from O and Y∞

has length q− 1. Hence there are exactly q+1 such G-orbits; in terms of Π, the line represented by
ℓY is incident with q + 1 points. A Hermitian curve Hb of Equation (3) has q3 points in AG(2, q2)
and meets ℓY in a G-orbit, while it contains no point from the line ℓX . As q3 − q = q(q2 − 1), the
line represented by Hb is incident with q+1 points in P . Finally, a Hermitian cone Cc of Equation
(4) has q3 points in AG(2, q2) and contains q points from ℓY . One of these q points is O, the other
q−1 forming a non-trivial G-orbit. The remaining q3− q points of Cc are partitioned into q distinct
G-orbits. Hence, the line represented by Cc is also incident with q+1 points. This shows that each
line in Π is incident with exactly q + 1 points.

Therefore, it is enough to show that two any two distinct lines of L have exactly one common
point. Obviously, this is true when one of these lines is represented by ℓY . Furthermore, the point
of P represented by ℓX is incident with each line of L represented by a Hermitian cone of equation
(4). We are led to investigate the case where one of the lines of L is represented by a Hermitian
curve Hb of equation (4), and the other line of L is represented by a Hermitian curve H which is
either another Hermitian curve Hd of the same type of Equation (3), or a Hermitian cone Cc of
Equation (4).

Clearly, both O and Y∞ are common points of Hb and H. From Kestenband’s classification
[17], see also [2, Theorem 6.7], Hb ∩H cannot consist of exactly two points. Therefore, there exists
another point, say P ∈ Hb ∩ H. Since ℓX and ℓ0 are 1-secants of Hb at the points O and Y∞,
respectively, either P is on ℓY or P lies outside the fundamental triangle. In the latter case, the
G-orbit ∆1 of P has size q2− 1 and represents a point in P . Assume that Hb∩H contains a further
point, not lying in ∆1. If the G-orbit of Q is ∆2, then

|Hb ∩H| ≥ |∆1|+ |∆2| = 2(q2 − 1) + 2 = 2q2.

However, from Bézout’s theorem, see [13, Theorem 3.14],

|Hb ∩H| ≤ (q + 1)2.

Therefore, Q ∈ ℓY , and the G-orbit ∆3 of Q has length q−1. Hence, Hb and H shear q+1 points on
ℓY . If H = Hd is a Hermitian curve of Equation (3), each of these q+1 points is the tangency point
of a common inflection tangent with multiplicity q + 1 of the Hermitian curves Hb and H. Write
R1, . . . Rq+1 for these points. Then, by (1) the intersection multiplicity is I(Ri,Hb ∩ Hd) = q + 1.
This holds true also when H is a Hermitian cone Cc of Equation (4); see Lemma 2.3. Therefore, in
any case,

q+1
∑

i=1

I(Ri,Hb ∩H) = (q + 1)2.

From Bézout’s theorem, Hb ∩H = {R1, . . . Rq+1}. Therefore, Hb ∩H = ∆3 ∪ {O, Y∞}. This shows
that if Q 6∈ ℓY , the lines represented by Hb and H have exactly one point in common. The above

4



argument can also be adapted to prove this assertion in the case where Q ∈ ℓY . Therefore, any two
distinct lines of L have exactly one common point.

Proof of Theorem 3.1. Construct a projective plane Π as in Lemma 3.2. Since U \ {O, Y∞} is the
union of G-orbits, U represents a set Γ of q + 1 points in Π. From [7], N ≡ 1 (mod p) where N

is the number of common points of U with any Hermitian curve Hb. In terms of Π, Γ contains
some point from every line Λ in L represented by a Hermitian curve of Equation (3). Actually, this
holds true when the line Λ in L is represented by a Hermitian cone C of Equation (4). To prove it,
observe that C contains a line r distinct from both lines ℓX and ℓ0. Then r ∩ U is non empty, and
contains neither O nor Y∞. If P is point in r∩U , then the G-orbit of P represents a common point
of Γ and Λ. Since the line in L represented by ellY meets Γ, it turns out that Γ contains some point
from every line in L.

Therefore, Γ is itself a line in L. Note that U contains no line. In terms of PG(2, q2), this yields
that U coincides with a Hermitian curve of Equation (3). In particular, U is a classical unital.
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