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This paper deals with the problem of the realization of low sensitivity narrow BP active filter imple-
menting multiple critical pole approximation methods. Coupled active filter structures are also studied.

The position of a MCP (multiple critical pole) transfer function containing multiple poles is realized
as FLF (Follow the Leader Feedback) and and remaining part as cascade. Further MCP transfer functions
are combined with CBQ (Coupled Biquads), SCF (Shifted Companion Form), and LF (Leap Frog)
structure.

I. INTRODUCTION

Several authors-3 have contributed to the reduction of sensitivities of cascaded
filter structures at the aproximating stage by reducing the critical pole Q value at
the expense of increasing the total degree of the approximating function. In general,
the sensitivity depend on the Q-factors of the poles and the highest Q-factor will
be most relevant. This method gives a more complicated network with more active
and passive elements for its realization.

Premoli and Biey4-6 introduced multiple critical pole (MCP) transfer function
for the approximations of the ideal low-pass filter response compared with the
standard approximation (Butterworth, Chebyshev, etc.) MCP functions. This
makes the realization of active filters in cascaded form simpler.

J. Tow7-8 suggested a GELF configuration to cascade general second-order blocks
with feedback from the output of each section to the input of the first one. This
is applicable to any voltage transfer functions, whereas the FLF is restricted to the
design of symmetrical BP and BR filter.

In this paper, given first is the synthesis procedure for realization of the MCP
transfer function. Then the position of the MCP transfer function containing mul-
tiple poles is realized as FLF topology and the remaining part as cascade. Further,
it has been shown that the lower sensitivities of MCP transfer functions in com-
parison with standard approximating functions can be further decreased by applying
a FLF configuration instead of cascade.
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The following three realizations for sensitivity have been compared"

a) The cascaded realization of a transfer function without MCPs.
b) The cascaded realization of the MCP transfer.
c) The multiloop realization of the MCP transfer function.

II. MULTIPLE CRITICAL POLE FOLLOW THE LEADER
FEEDBACK FILTER

In a low-pass filter, the locations of poles in the complex frequency plane is given
as follows (Fig. 1).

FIGURE Pole locations of the corresponding MCP transfer function.
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The quality factor, Q, of a pole can be found as follows. For a given pole location,
as in Fig. 2:

Q Q factor
N/ai2 + hiE ’pi 1

>Qi
2ai 2ai 2 sin tki

where fpi pole frequency.
The pole pair closest to the jw-axis, i.e., with the highest Q-factor, is critical

from sensitivity point of view of the overall transfer function.
For an nth order transfer function, the critical part can be separated out from

a transfer function

F.(s) F(s)F._2(s)

where F(s) is a second order block and Fn_2(S) is the transfer function containing
remaining poles. In Fig. l(b), the poles of the MCP transfer function have the
same pass band error specifications. When the multiplicity of the critical pole pair
is introduced, the degree of the transfer function is increased by (2m-2), where m
denotes the multiplicity of the critical poles.

FIGURE 2
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A new transfer function can be written as

F + 2(m- 1) [F(S)]UF_2(S) (1)

where F(S) is the new transfer function containing the shifted critical pole pair
and F,_(S) is the new transfer function containing the rest of the shifted poles.

The cascaded realization of second-order blocks is considered a very attractive
solution because of ease of design and tuning.

The MCP part of the BP transfer function is realized as an FLF network. Transfer
function is

m

Fmcp(S) [F’ (S)]m De(S)J
p

D(S) S2 + ppS +

N(S) f; f/p critical pole frequency

Qp critical pole quality factor

I(No(S) )1[Fc(S)lm

The function (2), when realized as an FLF network, will give the following diagram:
(Fig. 3)/3m

Vo-- oVin lVl- /2V2... mVm
v,
V2 TE(S)V,(S) TTEVo(S)

Volt TT2... TmVo(S)

(3)

(4)

FIGURE 3
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from (3) we get

oVi Vo -.j- lVl -J- jl2V2 "+"... mVm
V0 -+- lVl --J- 2V2 "{’- -+- mVm

Win-"
B0

New TF is

F(S)-- Vout/Vin

/3oT,(S)T2(S)... Tm(S)
F(S)

1 + /3,T,(S) + /32Tl(S)T2(S) +... flmT,(S)T2(S)

/30 H T(S)
c=l

m

1 + E j{i fi Ti(S)
i=l j=l

(6)

/3 (i 1, 2,... m) are feedback constants and Ti(S) KiNi(S)/Di(S) are TF of
second order blocks with

oi
Di(S) S -{- S -{- "ii

In order to retain the modularity of the cascaded approach, all the second-order
blocks will be considered equal

Ti(S) T(S) KN(S)/D(S) (7)

Eqn (6) can be written in the form

B,,I IN(S)]
I_D(s)J

F(S)--
[ N(S) ]

(8)
a + ?.= 3 [KD(S)
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Now/3i Mciit (9)

FCS)

[KN(s)]flo L D(S) J
1 +

"=
mCil{li L D(S) J

[KN(S)]flo[ D(S) J
KN(S) mC2/TK2N2(S)

mC + mClill D(S)
+ D2(S) + mCm

flmKmNm(S)
Dm(S)

lifO [KN(S)]m/D(S) J /[1 + flKN(S)] mD(S) (10)

Comparing Eqn. (2) and (10) we get

N<(S) N(S)K(/3o) ’/m

D<(S) D(S) +/3KN(S)

(11)

(12)

Suppose N(S) is a constant. The numerator of

T(S) can be N(S) II
0=

SoN(S) fl20K()
no(S)

D(S) S +- + f12o + /3Kf12oOo

D<(S) S2 + S + lip

(13)

(14)

(15)

Comparing eqn. (14) and (15)

np n0(V1 + /3K)

Now comparing eqn. (14) and (15)

[lo/Qo p/Qp > O. Qo (17)
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Putting Qp in (16) and (17)

no(V’l +
QP lqo Oo

f/p loV’(1 + /3K) (19)

Op OoV’(1 + /3K) (20)

When/3K 0, the FLF network becomes pure cascade and Q0(LP) Qp. In-
creasing the value of ilK, the value of Q0 decreases. In order to maintain the
modularity of two BP blocks after the LP BP transformation, Q0 should be
greater than 0.5

0.5 < Qo < Qp

III. THE PROCEDURE FOR REALIZATION OF A BP FILTER

Can be summarized as follows"

1. For a given BP specification, the LP prototype specifications are calculated.
2. The LP MCP is found that meets the specifications.
3. The Q0 value is chosen for individual section of the LP prototype FLF net-

work.
4. The product/3K is calculated from eqn. (20) can, putting the value of/3K in

(19), we calculate 120: Between/3 & K one of them can be taken as true,
which gives the value of the other.

5. The LP-BP transformation is performed on individual sections.

The resulting network has a form similar to the one in Fig. 3. The second order
blocks must be replaced by fourth order BP blocks with transfer functions.

2 KiS W0i/qi
T,(S)" T2(S) 1-[ Wo-- S +S + W20

qi

Ki gain constant of individual BP block. W0 and Qi pole frequency and pole
quality factor of ith BP block.

The LP-BP transformation of each fourth-order block can be realized as a cas-
cade of two second-order blocks with equal-quality factor if the LP-Q factor is
chosen to be greater than 0.5.

The qi’s, W0i’s can be calculated by the LP-BP transformation formula

g--- S - WZm/2BS.

where W center frequency of BPF and B bandwidth of the BPF.
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Given

Ti(S) ’0S2 + oS + ’1

AA
S3 2W2m)S

__
W2mS

__
4S4 - 0 +(A2+ o Wm

(21)

A second-order LP-to-BP two second-order cascade of BP will be given as

TI(S)T2(S)
S4

(Wo1 -- Wo2)
S2WolWo2/q

(W201 --[- W2-[- W01W02)
S - S

q2

(W01 "- W02)
+ WoWoz S + WoWo (22)

q

Where.

W01 Wm

Wm W02

Comparing coefficients of (21) and (22)

Wo + Wo2
A/Q0

W{2H + W) .-].-
WolW02 Az + 2W2m

(23)

(24)

from (23) and (24), it can be shown

(25)
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and

W.._._v_ qA V’[(qA) 4Q20]
(26)Wm W02 2Q0

where

A ’o/Wm (27)

After determining Q0 value, the remaining problem is to maximize the signal
swing within the filter. This means that the voltage maxima at all the OPAMPS
outputs should be equal. The following formula is used"

/3 1-I Kj Mc,(/3K) (28)
j=l

The single parameter-relative sensitivity can be defined as the relative variation
of a network function F due to small change in a component X.

a(ln F) AF/FS’i don Xi) Axi/xi

AF/F SiAxi/x

N

The relative change in F is AF/F Z SiAxi/xi F is a characterising function of the
i=l

network such as T(S)

AF/F V,i-- S,iAxi/x

The variation in amplitude response with respect to pole frequencies is

a(W) Re[In T(jw)]

A/o Vwo woi/woi
N

i=l

The variation in amplitude response is minimum for MUCROER FLE
MUCROER CASCADE has less sensitivity compared to Chebyshev cascade

but MUCROER CASCADE is the best so far as sensitivity is concerned.
The following example illustrates this:

a) First we consider cascade realization of an 8th order Chebyshev filter with
reflection co-efficient P 10%. (Fig. 4)
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b) Next we consider realization of a 10th order MUCROER filter with P
10%. (Fig. 5)

c) Finally, a FLF realization of a 10th order MUCROER filter with P 10%.
(Fig. 6)

From the reflection co-effecient, one finds the single factor constant using the
formula P V’t2/(1 + t2).

From this, one finds pass band and stop band attenuation. All the filters have
an equal bandwidth BW 0.1 and mid-band frequency Wm 1. For Chebyshev,
cascade the critical pole frequency x Ilp 1.03 and critical pole Q quality factor

0.687 Qp,.
First LP Block to two BP cascade for pure cascade/3K 0 (." /3 0)

l)0t II 1.03
P

using eqn. (25) Q0 Qp, 0.687.

0.687
4+ (0"103)2+ [(4

qi q2 0.103 2

+ 0.1032)2 4 1687/
1/2

13.301.

A
/3110 /3lip, 0.103)WM WM

Second LP block to BP cascade

’02 [’p: 0.0312

A 0.03125, Qp 0.687

q3 q, 31.919

For MUCROER CASCADE

q2 q3 q4 qs 12.737

q 9.4648.

For MUCROER FLF
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Q0 0.5; I0 0.75

/3K 0.89

Applying/3i I-I Kj MCi(K)i we get/33 1.3376;/3. 0.6616
j=l

IV. APPLICATIONS TO THE CBQ SCF AND
LF CONFIGURATIONS

The MCP TF given in the example was tried for CBQ, SCF and LF (Fig. 5). These
were compared to the corresponding 8th order Chebyshev filter realized by the
same structure. The calculation for CBQ is better so far as sensitivity is concerned
in stop band. For SCF realization, the sensitivity curve is almost equal to FLF case.
There are slight differences within pass band, i.e., the SCF design has a little better
sensitivity in a very narrow region around the center frequency, whereas FLF is
better in the rest of the pass band. For both, sensitivities increase in the region
outside the pass band. The CBQ design has very good sensitivity behavior in the
pass band as well as in the stop band. It is much better than the cascade and
somewhat better than the FLF and SCF designs. Outside the pass band, sensitivities
increase but not as much as in some others. The sensitivity of LF structure is the
lowest within the pass band. It has also the lowest ripple in the pass band, i.e., it
is almost constant in that region. At the pass band edges, the sensitivity increases.

V. COMPUTER BASED STUDY OF COUPLED ACTIVE FILTERS
FOR STRUCTURES LIKE FLF, SCF, LF AND CBQ

The formulae for TFs for the structure shown in Fig. 4 and Fig. 5 are as follows:
for Chebyshev cascade:

T(jw) T(jw)’T(jw)’T3(jw)’T4(jw)

MUCROERs cascade:

-TOw) T,(jw)’T2(jw)’T3(jw)’T,(jw)’Ts(jw)

MUCROER FLF:

T(jw)
T,(jw)"T2(jw)"T3(jw)"T4(jw)"Ts(jw)

1 + /3,T2(jw)’T3(jw) + T2(jw)’T3(jw)’T4(jw)’Ts(jw)"
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MUCROER SCF: (Fig. 7):

T,(jw)T2(jw)T3(jw)T4(jw)Ts(jw)
T(jw)

1 + T(jw)T2(jw)/32 + T,(jw)T2(jw)T3(jw)/33

+ T1(jw)T3(jw)T3(jw)T4(jw)/34

+ TI(jW)T2(jw)T3(jw)T4(jw)T5(jw)/35

MUCROER CBQ: (Fig. 8):

TT2T3T4T5
1 + T2T3/3 + T4Ts/32 + TaT3T4l/32

MUCROER LF: (Fig. 9):

TxT2T3T4T5
1 + TT2]3 + T2T3]32 + T3T4133 + T4T5134 + T2T3T4Ts]32]34

+ T1T2T3T4/3/33 + T1T2T4Ts]31134

The TF for individual second-order blocks have been calculated using the data
given in tables.

From the graphs, it can be considered that the sensitivity of the MCP part of
TF can be reduced implementing coupling topologies such as FLF, SCF, CBQ, and
LE It has been found that the LF structure is superior to all from the sensitivity
point of view.

IV. CONCLUSION

In Narrow BP filter realization using multiple critical-pole approximation and cou-
pled-filter structure methods, the internal interaction between different biquads of
the filter by coupling them resulted in lesser sensitivity. There is striking corre-
spondence between pole quality factor and pole frequencies of one biquad to the
other.

Introducing a multiplicity of the critical pole and then coupling each second-
order blocks of low-pass sections results in a large reduction of pole-quality factors,
which resulted in not only sensitivity minimization but also further stability of the
filter if Hurwitz polynomial criterion is consulted.

The cascade design of SCF, CBQ, and LF requires a little less effort than FLF
structure and, even though the quality factors are not very much reduced, it still
adds to sensitivity minimization. It can be concluded that once the multiple critical
portion has been separated and then coupling topology is applied, sensitivity min-
imization results.
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The LF structure is by far the best, but its realization is difficult. The infinite
pole-Q of the second-order section is a bit of nuisance. LC prototype methods are
used. RL methods are used for the rest.
CBQ structure is the simplest, but has more sensitivity compared to SCF and

FLF topology.
The essential points are:

(1) Coupling topology results in reduction of pole-quality factors of individual
LP prototype filters compared to those of Chebyshev filters.

(2) MUCROER examples have lower second-order section Q factors compared
to Chebyshev filters. CBQ, LF, and SCF configurations of MUCROER
polynomial give less sensitivity within the pass band than a cascade design.
CBQ is even better in stop band.

(3) The pole frequencies and quality factors are reduced by a factor of

/(1 + /3K) compared to the critical pole.
(4) This is only applicable to narrow band pass filters. So it is slightly restrictive

in application.
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