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Abstract

Consider a quantum system S that interacts sequentially with a chain (environment) of identical
probes C = P + P + . . ., with each interaction governed by a fixed interaction time τ and operator V .
It is known how to construct the asymptotic state (large times) if the initial states of P belong to a
class of so-called reference states. We generalize the analysis to a broader class of initial states, including
the physically important situation of pure states. This is done by a simple modification to the effective
dynamics generator.
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1 Introduction and Main Results

1.1 Introduction

We first give a brief introduction to repeated interaction models. For a more complete overview, see [1]. In
these models one has a chain of probes C = P + P + . . . that interact sequentially with a fixed system of
interest S. We associate the (finite dimensional) Hilbert spaces HS and HP and the W ∗-dynamical systems
(MS , αtS) and (MP , αtP) to S and P, respectively. MS ,MP are the von Neumann algebras of “observables”
that act on HS , HP and αtS , αtP are groups of ∗-automorphims that describe the Heisenberg dynamics. Let
ΩS ∈ HS , ΩP ∈ HP be reference states. These are vectors that are cyclic and separating and determine
states on MS and MP that are invariant under αtS and αtP .

The interaction dynamics of observables onM =MS⊗MP is given by a fixed interaction time τ ∈ (0,∞)
and a self-adjoint interaction operator

V ∈M. (1.1)

During the interval [(m−1)τ,mτ), S interacts with the m-th probe while the remaining probes evolve under
their own free dynamics given by ατP . Each interaction between S and a probe is governed by V and thus
identical.

Let LS and LP be self-adjoint operators on HS and HP that generate the Heisenberg dynamics. That
is,

αtS(A) = eitLχAe−iτLχ , ∀A ∈Mχ, (1.2)

and,
LχΩχ = 0 (1.3)

where χ = {S,P}. These are called the standard Liouville operators, and will take the form

Lχ = hχ ⊗ 1− 1⊗ hχ (1.4)

where hχ are the free Hamiltonians.
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The interacting dynamics between S and an individual P will include the free dynamics of S and P and
the interaction operator V . That is, the self-adjoint operator

L = LS + LP + λV, λ ∈ R, (1.5)

generates the automorphism group eitL · e−itL onM. The total dynamics during the interval [(m− 1)τ,mτ)
are generated by

L̃m = Lm +
∑
n 6=m

LP,n (1.6)

where Lm is an operator on H = HS ⊗HP ⊗ . . . that acts trivially on each probe except the m-th one where
it acts as L. Similarly, LP,n is an operator on H that acts trivially on each probe except the n-th where it
acts as LP .

The repeated interaction dynamics after m interactions of an operator A on H is defined as

αmRI(A) = U∗RI(m)AURI(m) (1.7)

where
URI(m) = e−iτL̃m . . . e−iτL̃1 . (1.8)

We are interested in the expected values of observables on S in the large number of interactions limit.
That is, we are interested in

ω∞(AS) := lim
m→∞

〈αmRI(AS)〉 = lim
m→∞

〈Ψ0, α
m
RI(AS)Ψ0〉, AS ∈MS , (1.9)

where Ψ0 is the initial state of the small system and the probes.
The system S feels an effective dynamics induced by the interaction with the chain C. To determine this

effective dynamics, previous work([1],[5],[7]) on the subject takes

Ψ0 = ΩS ⊗ ΩP ⊗ ΩP ⊗ . . . . (1.10)

That is, they take the small system and the probes to be initially in reference states. This is restrictive,
however, since many physically relevant states are not reference states, the prime example being pure states.
Thus one would like to extend the formalism to account for such states as well. We show how to do this in
Section 1.2.

Returning to intial states given by (1.10), if we let J and ∆ denote the modular conjugation and modular
operator associated to (MS ⊗MP ,ΩS ⊗ ΩP)([3],[4]), then the effective dynamics is given by

Tλ = P eiτKλP, (1.11)

where,
P = 1S ⊗ |ΩP〉〈ΩP | (1.12)

and
Kλ = L− λJ∆1/2V∆−1/2J . (1.13)

Kλ is a C-Liouville operator([8],[9]) such that eitKλ implements the same dynamics as eitL and

KλΩS ⊗ ΩP = 0. (1.14)

Tλ is identified as an operator acting on HS only. If the spectrum of Tλ, λ 6= 0 on the complex unit circle
consists solely of the simple eigenvalue {1} with corresponding eigenvector ΩS , then we have

lim
m→∞

Tmλ = |ΩS〉〈Ω∗S |, (1.15)

where Ω∗S is the unique invariant vector of T ∗λ normalized as 〈Ω∗S ,ΩS〉 = 1. The asymptotic state of
observables on S is then

ω∞(AS) = 〈Ω∗S , ASΩS〉. (1.16)
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1.2 Main Results

We now show how to enlarge the above formalism to allow for a broader range of initial states for P. Since
ΩP is cyclic and separating, one can generate any other state for P by acting on ΩP with an element of
M′P (commutant). That is, for any ΨP ∈ HP , ΨP = (1 ⊗ b)ΩP for some (1 ⊗ b) ∈ M′P . It turns out that
modifying the incoming state of the probes results in a new term in the effective dynamics generator. This
is the main result and is stated in the following theorem:

Theorem 1. For ΨP = (1 ⊗ b)ΩP where b is invertible or [b, hP ] = 0 the discrete dynamics generator is
given by

T
(b)
λ = 〈ΩP , (1⊗ b∗b)eiτKλΩP〉. (1.17)

The proof is found in section 2.

We will now give two examples demonstrating the new results. We consider the case where both the
small system S and the probes P are two-level systems. The von Neumann algebras of observables for the
small system and the probes are (χ = {S,P})

Mχ = M2(C)⊗ 1, (1.18)

which act on the Hilbert spaces
Hχ = C2 ⊗ C2, (1.19)

respectively. We denote by {φ1, φ2} the basis of C2. Then HS has for a basis φi ⊗ φj := φij , i, j = 1, 2. To
avoid confusion, we denote the basis of HP as ψij , i, j = 1, 2.

The free evolution of the small system and the probes is given by

αtχ(A⊗ 1) = eithχAe−ithχ ⊗ 1 (1.20)

where

hχ =

[
1 0
0 −1

]
. (1.21)

We take the reference states of the small system and the probe to be the trace state. That is,

ΩS =
1√
2

(φ11 + φ22) (1.22)

and

ΩP =
1√
2

(ψ11 + ψ22) (1.23)

Then for the small system and the probes the Liouvillian is

Lχ = hχ ⊗ 1− 1⊗ hχ, (1.24)

and the associated modular conjugate and modular operator are

Jχ(α⊗ β) = α⊗ β, ∆χ1⊗ 1. (1.25)

Finally, let a and a∗ denote the annihilation and creation operators, respectively. That is,

a =

[
0 0
1 0

]
, a∗ =

[
0 1
0 0

]
. (1.26)

The interaction between the small system and each probe is governed by a fixed τ ∈ R+ and a self-adjoint
V ∈MS ⊗MP where

V = a⊗ 1S ⊗ a∗ ⊗ 1P + a∗ ⊗ 1S ⊗ a⊗ 1P , (1.27)
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the so-called Jaynes-Cummings interaction [6].

We would now like to consider two different incoming states for the probe. The first will be the state
given by the density matrix

ρ(1) = p
∣∣∣ 1√

2
(φ1 + φ2)

〉〈 1√
2

(φ1 + φ2)
∣∣∣+ (1− p)

∣∣∣ 1√
2

(φ1 − φ2)
〉〈 1√

2
(φ1 − φ2)

∣∣∣, p ∈ [0, 1] (1.28)

In the GNS construction this state is

ΨP =
√

2(p− p2)ψ11 +
2p− 1√

2
ψ12 +

1√
2
ψ22. (1.29)

The operator

1⊗ b = 1⊗
[
2
√
p− p2 0

2p− 1 1

]
∈M′P (1.30)

satisfies ΨP = (1⊗ b)ΩP . This operator is invertible so we have by Theorem 1

T
(b)
λ = 〈ΩP , (1⊗ b∗b)eiτ(K0+λW )ΩP〉. (1.31)

where
K0 = LS + LP , W = V − J V J (1.32)

Now, to determine the asymptotic state of the system we must determine

lim
n→∞

(T
(b)
λ )n = lim

n→∞

(
〈ΩP , (1⊗ b∗b)eiτ(K0+λW )ΩP〉

)n
. (1.33)

First, we use the Dyson series expansion to approximate eiτ(K0+λW ):

eiτ(K0+λW ) = eiτK0 + iλ

∫ τ

0

ei(τ−t)K0W eitK0dt− λ2
∫ τ

0

∫ t

0

ei(τ−t)K0W ei(t−s)K0W eisK0dsdt+O(λ3). (1.34)

Next, we substitute this series into (1.17) to get

T
(b)
λ = eiτLS +

iλτ(2p− 1)

2
eiτLS

(
e−2iτ (a⊗ 1− 1⊗ a∗) + e2iτ (a∗ ⊗ 1− 1⊗ a)

)
− λ2τ2

4
eiτLS (aa∗ ⊗ 1− 2a⊗ a− 2a∗ ⊗ a∗ + 1⊗ aa∗ + 1⊗ a∗a) +O(λ3). (1.35)

Using perturbation theory [2] we find that T
(b)
λ has 4 distinct eigenvalues. These are 1, e+(λ), e−(λ) = e+(λ)

and e1(λ) where

e+(λ) = e2iτ
[
1− λ2τ2

2

(
e2iτ − 4p+ 4p2

e2iτ − 1

)]
+O(λ3), (1.36)

e1(λ) = 1− λ2τ2

2
(1 + 4p− 4p2) +O(λ5/2). (1.37)

Since limn→∞(T
(b)
λ )n = |ΩS〉〈Ω∗S | for λ 6= 0, we now need only compute the eigenvector associated to

eigenvalue 1 of T ∗λ . This is found easily to be Ω∗S = ΩS +O(λ2). The asymptotic state is then

ω(1)
∞ (AS) = 〈ΩS , ASΩS〉+O(λ2), AS ∈MS . (1.38)

The second incoming state will be given by the density matrix

ρ(2) = p|φ1〉〈φ1|+ (1− p)|φ2〉〈φ2|, p ∈ (0, 1). (1.39)
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In the GNS construction this state is

ΨP =
1√

2p2 − 2p + 1
(pψ11 + (1− p)ψ22) . (1.40)

The operator

(1⊗ b) = 1⊗
√

2

2p2 − 2p + 1

[
p 0
0 1− p

]
(1.41)

satisfies ΨP = (1⊗ b)ΩP . This operator is diagonal so by Theorem 1 we again use (1.31) - (1.33).
Substituting the Dyson series approximation (1.34) into (1.17) gives

T
(b)
λ = eiτLS − λ2τ2

2(1− 2p− 2p2)
eiτLS

(
(p− 1)2(aa∗ ⊗ 1 + 1⊗ aa∗ − 2a⊗ a)

+ p2(a∗a⊗ 1+ 1⊗ a∗a− 2a∗ ⊗ a)
)

+O(λ3). (1.42)

The matrix representation of T
(b)
λ to second order in the φij basis is triangular and it has 4 distinct

eigenvalues: 1, e+(λ), e−(λ) = e+(λ) and e1(λ) where

e+(λ) = e2iτ
(

1− λ2τ2

2

)
+O(λ3), (1.43)

e1(λ) = 1− λ2τ2 +O(λ3). (1.44)

The eigenvector associated with eigenvalue 1 of T ∗λ can also be found explicitly to be

Ω∗S =
√

2

(
p2

1− 2p + 2p2
φ11 +

(p− 1)2

1− 2p + 2p2
φ22

)
+O(λ2) (1.45)

and so the asymptotic state is

ω(2)
∞ (AS) = 〈Ω∗S , ASΩS〉+O(λ2), AS ∈MS . (1.46)

As a check, we can set p = p = 1
2 in the above examples. In doing so we end up with ω

(1)
∞ (AS) = ω

(2)
∞ (AS)

in both examples as one would expect since (1.28) and (1.39) coincide.

2 Proof of Theorem 1

The proof will be split into two cases: one where b is invertible and the other where [b, hP ] = 0.

2.1 Case 1

We begin with a general result:

Lemma 1. Suppose H is a Hilbert space with dimH <∞, M is a Von Neumann algebra over H and Ω ∈ H
is cyclic and separating. Let B ∈M and B′ ∈M′ (commutant). Then we have
(a) KerB = {0} ⇔ Ψ = BΩ is cyclic and separating for M.
(b) KerB′ = {0} ⇔ Ψ = B′Ω is cyclic and separating for M′.

Proof. (a) “⇒” Assume KerB = {0} and consider M ′ ∈M′ such that M ′Ψ = 0. Then 0 = M ′Ψ = M ′BΩ =
BM ′Ω, so M ′Ω ∈ KerB and hence M ′Ω = 0. Since Ω is cyclic forM we have M ′ = 0. Therefore Ψ is cyclic
for M

To show that Ψ is separating, we note that M′Ψ =M′BΩ = BM′Ω = BH = Im(B). But the kernel of
B is trivial, so Im(B) = H and hence Ψ is separating for M.
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“⇐” Assume Ψ is cyclic for M. Then H = M′Ψ = M′BΩ = BM′Ω = BH = Im(B), and therefore
KerB = {0}.

(b) The proof is exactly the same as (a), except change B to B′, M ′ to M andM′ toM (and interchange
the words ‘cyclic’ and ‘separating’).

In other words, states ΨP = (1⊗ b)ΩP , where (1⊗ b−1) exists, are again cyclic and separating. For the
rest of this section we will only consider such ΨP .

For ΨP to be a reference state onMP it would have to determine a state onMP that is invariant under
αtP . The following lemma shows how to construct this state.

Lemma 2. For ΨP = (1⊗ b)ΩP , the Liouvillian L
(b)
P = hP ⊗ 1− 1⊗ bhPb−1 satisfies:

L
(b)
P ΨP = 0. (2.1)

Proof. The proof is straight forward.

L
(b)
P ΨP =

[
(hP ⊗ 1)− (1⊗ bhPb−1)

]
(1⊗ b)ΩP = (1⊗ b) [(hP ⊗ 1)− (1⊗ hP)] ΩP = 0

where the last equality holds since LPΩP = 0 by assumption.

Putting the above two lemmas together, we get the following theorem:

Theorem 2. Given a reference state ΩP one can generate new reference states of the form ΨP = (1⊗b)ΩP ,

b invertible, by a suitable modification of the Liouvillian given by (2.1). The modular data, (Jb,∆1/2
b )

associated to the new reference states can be determined from (J ,∆1/2), the modular data associated to ΩP
by:

Jb =
[
(1⊗ b)J∆1/2(1⊗ b−1)

] [
(1⊗ (b∗)−1)∆1/2(b∗b⊗ 1)∆1/2(1⊗ b−1)

]−1/2
, (2.2)

and,

∆
1/2
b =

[
(1⊗ (b∗)−1)∆1/2(b∗b⊗ 1)∆1/2(1⊗ b−1)

]1/2
. (2.3)

In particular,

Jb∆1/2
b = (1⊗ b)J∆1/2(1⊗ b−1). (2.4)

Proof. We only need to show how to construct the modified modular data. First we must find Sb such that
Sb(M ⊗ 1)ΨP = (M∗ ⊗ 1)ΨP ∀M ⊗ 1 ∈MP :

(M∗ ⊗ 1)ΨP = (M∗ ⊗ 1)(1⊗ b)ΩP
= (1⊗ b)(M∗ ⊗ 1)ΩP

= (1⊗ b)J∆1/2(M ⊗ 1)ΩP

= (1⊗ b)J∆1/2(1⊗ b−1)(1⊗ b)(M ⊗ 1)ΩP

= (1⊗ b)J∆1/2(1⊗ b−1)(M ⊗ 1)ΨP

:= SB(M ⊗ 1)ΨP

By the polar decomposition of Sb:

∆
1/2
b = (S∗bSb)

1/2 =
[
(1⊗ (b∗)−1)∆1/2J (1⊗ b∗)(1⊗ b)J∆1/2(1⊗ b−1)

]1/2
=

[
(1⊗ (b∗)−1)∆1/2(b∗b⊗ 1)∆1/2(1⊗ b−1)

]1/2
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Then, using the fact that ∆
−1/2
b exists and Sb = Jb∆1/2

b we get:

Jb = Sb∆
−1/2
b =

[
(1⊗ b)J∆1/2(1⊗ b−1)

] [
(1⊗ (b∗)−1)∆1/2(b∗b⊗ 1)∆1/2(1⊗ b−1)

]−1/2

Now, since we have a reference state ΨP and its associated modular data we can now construct the
effective dynamics generator [1]

T
(b)
λ = Pbe

iτK
(b)
λ Pb, (2.5)

where
Pb = 1⊗ |ΨP〉〈ΨP |. (2.6)

We can however simplify T
(b)
λ slightly since K

(b)
λ = (1⊗ b)Kλ(1⊗ b−1) where Kλ is the C-Liouville operator

associated with ΩP . This is easily seen using Theorem 2:

K
(b)
λ = LS + L

(b)
P + λ(V − Jb∆1/2

b V Jb∆1/2
b ) (2.7)

= LS + (1⊗ b)LP(1⊗ b−1) + λV − λ(1⊗ b)J∆1/2(1⊗ b−1)V (1⊗ b)J∆1/2(1⊗ b−1) (2.8)

= (1⊗ b)(LS + LP + λ(V − J∆1/2V J∆1/2))(1⊗ b−1) (2.9)

= (1⊗ b)Kλ(1⊗ b−1). (2.10)

Thus eiτK
(b)
λ = (1⊗ b)eiτKλ(1⊗ b−1) and

T
(b)
λ = Pb(1⊗ b)eiτKλ(1⊗ b−1)Pb ' 〈ΩP , (1⊗ b∗b)eiτKλΩP〉, (2.11)

as desired.

2.2 Case 2

The second case is more direct. We once again consider ΨP = (1⊗b)ΩP but this time assume that [b, hP ] = 0
i.e., that b be diagonal in the energy eigenbasis. To construct the discrete dynamics generator we simply
plug in the modified initial state Ψ0 = ΩS ⊗ (1⊗ b)ΩP ⊗ (1⊗ b)ΩP ⊗ . . .:

〈αnRI(AS)〉 = 〈Ψ0, eiτL̃1 . . . eiτL̃nASe−iτL̃n . . . e−iτL̃1Ψ0〉
= 〈Ψ0, (U+∗

n )eiτL1 . . . eiτLn(U−∗n )AS(U−n )e−iτLn . . . e−iτL1(U+
n )Ψ0〉

= 〈(U+
n )Ψ0, eiτL1 . . . eiτLnASe−iτLn . . . e−iτL1(U+

n )Ψ0〉

for U−n = exp(−iτ

n∑
j=1

(n− j)LP,j) and U+
n = exp(−iτ

n∑
j=2

(j − 1)LP,j)

Consider: U+
n Ψ0 = exp(−iτ

∑n
j=2(j − 1)LP,j)(ΩS ⊗ (1 ⊗ b)ΩP ⊗ (1 ⊗ b)ΩP ⊗ . . .). The j-th factor in the

chain is:
e−iτ(j−1)LP,j (1⊗ b)ΩP = (1⊗ b)ΩP

Let C ′j = (1 ⊗ b) ∈ M′P act on the j-th factor of the chain. Then U+
n Ψ0 = C ′1 . . . C

′
nΩ := C ′1 . . . C

′
n(ΩS ⊗

ΩP ⊗ ΩP ⊗ . . .) and it follows that

〈αnRI(AS)〉 = 〈C ′1 . . . C ′nΩ, eiτL1 . . . eiτLnASe−iτLn . . . e−iτL1C ′1 . . . C
′
nΩ〉

= 〈C ′1 . . . C ′nΩ, C ′1 . . . C
′
neiτK1 . . . eiτKnASΩ〉

= 〈Ω, C
′∗
1 C
′
1eiτK1 . . . C

′∗
n C
′
neiτKnASΩ〉
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Let P (j) = 1S ⊗ 1P ⊗ . . .⊗ |ΩP〉〈ΩP | ⊗ . . . act non-trivially only on the j-th probe. Then:

〈AS〉n = 〈Ω, P (1)(1⊗ b∗b)eiτK1P (1) . . . P (n)(1⊗ b∗b)eiτKnP (n)ASΩ〉. (2.12)

So the effective dynamics generator is

T
(b)
λ = P (1× b∗b)eiτKλP ' 〈ΩP , (1⊗ b∗b)eiτKλΩP〉. (2.13)
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