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Abstract

Field theory of massive and massless vector particles is consid-
ered in the first-order formalism. The Hamiltonian form of equations
is obtained after the exclusion of non-dynamical components. We
obtain the canonical and symmetrical Belinfante energy-momentum
tensors and their nonzero traces. We note that the dilatation symme-
try is broken in the massive case but in the massless case the mod-
ified dilatation current is conserved. The canonical quantization is
performed and the propagator of the massive fields is found in the
Duffin—Kemmer—Petiau formalism.

1 Introduction

The theory of the unified weak and electromagnetic interaction between ele-
mentary particles including vector particles (Standard Model) is renormalized
field theory [I]. The crucial role plays the spontaneous breaking symmetry
when massless vector fields acquire masses due to the Higgs mechanism.
Nowadays, it is of great importance for searching the scalar Higgs bosons at
Large Hadronic Collider. Anyway, the old problem of describing massive and
massless vector particles is of theoretical interest. It is well known that the
Proca equations for vector particles can be cast into the first-order (the ma-
trix form) Duffin—Kemmer—Petiau (DKP) relativistic wave equation (RWE)
[2], [3], [] (see also [5]). One can find early references on DKP equations in
[6]. The matrix form of RWE is also convenient for the formulation of higher
derivative field equations [7], fields with multi-spin [§], [9], Einstein gravity
equations [10], fields in curved space-time [11], [I12] and quantum chromody-
namics [I13]. There is a vast number of papers devoted to DKP equations,
and, therefore, we mention only some part of them.
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The goal of this paper is to give the systematic description of massive
and massless vector fields in the DKP formalism, to find solutions in the
form of projection matrix-dyads, to obtain the quantum-mechanical Hamil-
tonian, to investigate the dilatation symmetry, and to perform the canonical
quantization.

The paper is organized as follows. In Sec.2, we consider massive and
massless vector fields in the form of RWE with two mass parameters. Solu-
tions of the wave equation for a free massive field are obtained in the form of
matrix-dyads. The quantum-mechanical Hamiltonians are found for massive
and massless vector fields in Sec.3. We obtain the canonical and the sym-
metrical Belinfante energy momentum tensors and the dilatation current in
Sec.4. It is demonstrated that the dilatation symmetry is broken for massive
fields but in the massless case the modified dilatation current is conserved.
In Sec.5, the canonical quantization of massive fields is performed and the
propagator of fields is obtained in the DKP formalism. We draw a conclusion
in Sec.6.

The Euclidean metric is used and the system of units h = ¢ = 1 is
explored.

2 Vector particles in the first-order formal-
ism

Following [14], [9], to consider the massive and massless vector fields, we
introduce the system of equations with two mass parameters

3#?[,“4 + m1¢u =0,

(1)
au'l/)u - a/ﬂ/)u + m2¢[,uu} = 0.

Eq.(1) is the generalization of Proca equations. At m; = mg, after the
renormalization of fields, one arrives at the Proca equations. At m; = 0, we
have the massless case corresponding to the Maxwell equations. Excluding
the antisymmetrical tensor 1y, in Eq.(1), in the general case, we find the
wave equation for the field v, possessing the mass m = /m;my. Thus,
Eq.(1) gives the unified description of massive and massless vector fields.
The fields ¢4 (A = u, [uv]) have the same dimension due to the presence of
the mass parameter ms.



Introducing the wave function [14]

v =t = 0) e @

and the elements of the entire matrix algebra 4%, with properties
(gM,N)AB = 50N B, 6M,A€B,N _ 5AB6M,N’ (3)

where A, B, M, N = p, [uv], the system of equations (1) can be represented
in the matrix form

1
{@M (9149 4 W) 4yt s clnl [vn sl =0. (4)

We imply a summation over all repeated indices. Defining the 10x 10 matrices
_ 1
— vyl el P — ok p — Zlvulv 5
5# € + € ’ € ) 25 ) ( )
Eq.(4) takes the form of the first-order RWE
(BuOu + mu P+ myP) W(z) = 0. (6)

The matrices 3, are Hermitian matrices, ﬂ:[ = f3,. The projection operator

P = P extracts the four-dimensional vector subspace (¢,) of the wave
function ¥, and the projection operator P = P* extracts the six-dimensional
tensor subspace corresponding to the 1y,,). The matrices 3, obey the DKP
algebra

6/161/6& + ﬁaﬁuﬁu = 5;11/501 + 5auﬁm (7)

and matrices P, P are projection matrices

PP=P, P=P, P+P=1, PP=PP=0,
. (8)
ﬁuP‘l’Pﬁu:ﬁm ﬁup‘l'Pﬁu:ﬁu'

At my = my = m, from Eq.(6), we arrive at the DKP equation for massive
vector fields
(Bu0u +m) ¥(z) =0. 9)



For massless DKP equation, corresponding to the Maxwell equations, we put
my = 0 in Eq.(6), and arrive at

(BuOu + maoP) W (x) = 0. (10)

In [14] the case my = mgy = m, Eq.(9), was studied, and in [I5], [I6] the
case m; = 0, Eq.(10), was considered. It should be noted that massless DKP
model describes electromagnetic fields and is invariant under a local U(1)
gauge symmetry and being a fundamental requirement for their description.
The gauge transformations in DKP formalism are given by

' =T+ PO.
Then with the help of Eq.(8),(10), we obtain
(Bu0u +maP) W' = (1 — P)3,0,9.

Thus Eq.(10) is invariant under gauge transformations if the function ® obeys
the equation as follows (see also[15]): 5,0,® = 0. The gauge invariance of
massless DKP equation was also discussed in [17].

Now, we investigate the general case, Eq.(6), including two mass pa-
rameters, m; and my. The Lorentz group generators in the 10-dimension
representation space are given by

T = BubBy = Bu = eV i LD v, (11)
and obey the commutation relations

[Jpcrv J;W] = 5cmjpv + 5pvjou o 5pujcw - 501/qu=

[ﬁ)\a J/u/] = 5Auﬁu - 5}\1/5#7 [F, Juu} = 07 [P> J/u/] = 0.

Eq.(6) is form-invariant under the Lorentz transformations because of Eq.(12).
The Lorentz-invariant is WW = U+nW¥, where U™ is the Hermitian-conjugated
wave function, and the Hermitianizing matrix, n, is given by

(12)

1
n= gmm _ 64,4 + 6[m4],[m4} . §€[mn},[mn]' (13>

The n is the Hermitian matrix, n© = n, and obeys the relations: 7ng,, =
—Bmn (m=1,23), nB, = B4n. With the help of these relations, one finds the
”conjugated” equation

W(z) (ﬂ,ﬁgu —m P — mgP) =0. (14)
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The Lagrangian leading to Eq.(6),(14) is
1— —
£=-5T(x) (BuOu + mu P +myP) W(x)
1— _

In terms of fields 14, the Lagrangian (15) reads

1 * * * mo *
L= 5 <¢[pu]au¢p - % ;ﬂvb[p,u] - ml%% + 7¢[pu]¢[ﬁ#]> +c.c., (16)

where the c.c. means the complex conjugated expression; complex conjuga-
tion * does not act on the metric imaginary unit ¢ of fourth components in
Eq.(16), vy = (¢r,, i), and so on, and we used ¥ = (¢5, —¢f,,;). It is easy

(V]

to verify that Euler-Lagrange equations 0L/0¢4 — 0, (0£/00,14) = 0 lead
to the equations of motion Eq.(1). The Lagrangian (15) (and (16)) vanishes
for fields 14 obeying Eq.(1) (or Eq.(6),(14))).

3 Solutions to the matrix equation

Eq.(6), in the momentum space, for the positive (+p) and negative (—p)
energies, reads

(£ip+ mi P +maP) U(p) = 0, (17)

where p = 8,p,, and the four-momentum being p, = (p, ipo) (p*> = p*> — p3).
One can verify that the matrix of equation (17)

A:t = :l:Z]/)\—l- m1? + mgP, (18)
obeys the “minimal” matrix equation:
(Ax = m) (As — ma) [(Ag —my) (A —mg) +p*] =0, (19)

The non-trivial solutions to Eq.(17) exist if det AL = 0. Therefore, the
eigenvalue of the matrix Ay should be zero, and this requirement results to
the dispersion relation

p2 + mime = 0. (20)

Other eigenvalues of the matrix Ay are m; and ma, that follows from Eq.(19).
On-shell, p?> = —myms, when m; # my, Eq.(19) becomes

A:I: (A:I: —my — mg) (A:I: - ml) (A:I: - mg) = 0. (21)

b}



Solutions to Eq.(17) in the form of the projection matrix [10] follow from
Eq.(21):
Hi:N(Ai—ml—mg)(Ai—ml)(Ai—m2) ( )
22
= :FNZﬁ (j:zmlﬁP + ngﬁp — mlmg) s

so that ALIlL = 0, where N is the normalization constant. Every column of
the matrix II. is the solution to Eq.(17). The projection matrix obeys the
equation
13 =Tl (23)
that leads to the normalization constant
1

N =— ) 24
mlmg(ml + mg) ( )

This can be verified with the help of Eq.(21). We notice that Eq.(21) is
the minimal polynomial only for the non-degenerate case m; # msy. For the
special case, m; = mo, we have to use the minimal matrix equation on-shell:

We obtain the projection operator from Eq.(25)

1 +ip (£ip — m)
PDK _ 2 2\ _
HEPK = (A2 —3mAL +2m?) = o (26)
Eq.(22) at m; = mgy becomes Eq.(26) .
We use the spin projection operators [10]:
1 2
Sty = 5P (op£1), Sy =1-0, (27)
where , .
o, = L Jo = ———¢ bePalBb0 (28)
= — 57 €abcPaJdbe = — 7 €abcPa c-
T 2]p] P

One can check the relations [Ay, 0,] = 0, S(zil) = S@1), S@1Sw =0, 5(20) =
Sy, A+, S = 0, [A+, S = 0. The projection operators extracting
solutions to Eq.(17) with spin projections £1, 0 in the form of matrix-dyads
are given by

H:I:S(:I:l) = \Ifil : \Il:l:lu HiS(Q) == \If(] : \Ifo. (29)



The matrix-dyad has the matrix elements (¥ - ) ap = ¥, Up. Eq.(29) allow
us to make calculations of different electrodynamics processes with vector
particles in the covariant form [10].

For the case of massless vector particles (photons), the parameter m; = 0
and p?> = 0. Then the matrix of equation (10) is

AY = +ip+ my P, (30)
and satisfies the minimal matrix equation

2
AL (AL )’ =0 (1)

In this case zero eigenvalues of the operator Aio) are degenerated and it is
impossible to obtain solutions in the form of projection matrix-dyads [10],
[16]. In the case of generalized Maxwell equations such difficulty is absent
[18].

4 The Hamiltonian form of equations

4.1 Massive fields

It is very useful to obtain the quantum mechanical Hamiltonian correspond-
ing to equations (1) (or (9)) because the non-dynamical components will be
absent. There was a suggestion in [19] to couple the electromagnetic field in
the PDK equation only at the level of the Hamiltonian form. Some aspects
of Hamiltonian form of PDK equations were considered in [20]. To exclude
the non-dynamical components, we rewrite Eq.(1) in the form of two systems

m2¢[4m] = 847~pm - mw47 a4¢[m4] + anw[mn} + m1¢m = 07 (32>

m2¢[mn] = amwn — Onm, 8n¢[4n} +mapy = 0. (33>

Eq.(32) contain derivatives on the time of the dynamical components 1,
Yma), and Eq.(33) possess only spatial derivatives on auxiliary (non-dynamical)
components 14, Ypny. Replacing non-dynamical components from Eq.(33)
into Eq.(32), we arrive at the equations for the dynamical components

. 1
Zﬁtwm = _m2w[4m} + 8mﬁnlp[4n]7
mq
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(34)

i0ma) = — (OmOntbn — O2tbm) + Mt

We can represent Eq.(34) in the matrix form introducing the six-component

wave function
B(z) = ( J{b:f]fi) ) | (35)

With the help of the elements of the matrix algebra Eq.(3), we rewrite Eq.(34)
in the Schroedinger-like form

1
ms

1
10, P (z) = [mle[m‘”’m — mpe™t - —gmlimlg 9,

my
1 (36)
+— (5[m4]’"8m8n — &t[m‘l]’m&i) O(x),
mao
where the Hamiltonian is given by
H = mlg[m4],m . ngn,[4n}
(37)

L L enimig g, 4 L (g[m‘*lv"aman - e[m‘*lvma;i).
mq mo

We have implied that m; # 0, my # 0. The Hamiltonian (37) is simplified
for the choice m; = mq = M

1
m

The six-component wave function (35) corresponds to three spin states with
positive (for particles) and negative (for antiparticles) energies and does
not contain auxiliary components. We can introduce the minimal inter-
action of vector particles with electromagnetic fields by the replacement
0, — 0, —ieA,, where A, is the vector-potential of electromagnetic fields.
One may verify using the properties (3) that the matrix Hamiltonian (37) in
the momentum space obeys the minimal equation

(7_[2 — p2 — m1m2) (H2 + p2 — mlmg) =0. (39)

If m; > 0 and my > 0, the physical eigenvalue of the Hamiltonian squared
follows from Eq.(39): p2 = p? + mymy. The projection operator extracting
states with positive (py) and negative (—pg) energies is given by

Yy ==

1
4p0p2 (7‘[ + p()) (H2 + p2 — mlmg) s (40)



so that X2 = Y., Yo H = HXL = +peXy, where py = /p% + mymy. The
projection operator (40) allows us to get solutions to the Hamiltonian equa-
tion (36).

4.2 Massless fields

In the case of massless vector fields (photons), we put m; = 0 in Eq.(32),(33)
and arrive at

m2w[4m] = 54¢m - mw4a 54¢[m4] + an,lvb[mn} =0, (41)

It is impossible to exclude the component 1, from Eq.(41),(42). Therefore,
we need to consider the 14 as a dynamical component for the massless fields.
To have the evolution of the v, in time, we add to Eq.(41),(42) the Lorentz
condition 0,,v,, + 0494 = 0. After the exclusion the non-dynamical compo-
nent ¥, from Eq.(41), one finds the equations as follows:

Z&twm = _m2w[4m} - amw47
i@tw = anwnv (4?))
1
10 = - (OmOatn = Ot

Introducing the seven-component wave function

nio=( i ) .

and using the elements of the entire matrix algebra Eq.(3), we represent
Eq.(43) in the Hamiltonian form

Z&gq)o(l') = H(](I)(](I),

(45)

1

HO _ _m2€n,[4n] + (84,m . Em,4) am 4+ <€[m4},naman . €[m4},mar2l) )
)

With the help of Eq.(3) one can check that the Hamiltonian (45) in the
momentum space satisfies the minimal equation

Hi (H3 - p?) =0. (46)
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The projection operator extracting states with positive (pg = |p|) and nega-
tive (pp = —|p|) energies is

1
a1 = iw (Ho £ |p|) M3, (47)

2
and (EQ_L) = X4, ¥ Ho = HoX+ = +[p|X}, where |p| = \/m

5 The energy-momentum tensor and dilata-
tion current

With the help of the general equation [21]

.o PN
T = s + 09 w) 7 (5,50) Suwl.  (48)

we obtain the canonical energy-momentum tensor

75, = 5 (27(@) 5,3() - 5T (@)5,0,9() (49)

where we took into consideration that the Lagrangian (15) vanishes for fields
obeying the equations of motion. With the aid of Eq.(2),(3),(5) the canonical
energy-momentum tensor in the component form becomes

1

T/fl/ = 5 (Qbf;)u}aywp — w; yw[pu}) + c.c.. (50)

It is easy to verify, using Eq.(1), that the energy-momentum tensor (50)
(and (49)) is conserved tensor, 9Ty, = 0. The canonical energy-momentum
tensor is not the symmetric tensor, Tp, #+T oy and its trace is

c * 1 *
Tuu - m1¢u¢ﬂ - §m2¢[uu]¢[#’/]‘ (51>

Now we investigate the dilatation symmetry by considering the canonical
dilatation current [22]

DS =z, 15, + 11,dP, (52)
where or
II, = =-U
H a (8,}1/) ﬁlﬂ (53)



and the matrix d defines the field dimension. For the Bose fields the d is the
unit matrix. From Eq.(52),(53), we obtain
8HD/3 =T° (54)

o

where the conservation of the current was used
Oudy = 0M(iﬁ5u\11) = 0. (55)
The analogous relation follows from [22]

. oL _ oL
OuDjy =T, (d+1) 9,0 + SodV + Wd— — 4L

_ — 1
=T (mP + maP) U = iy — 5oty

In Eq.(56), we took into account that for the charged particles the ¥ and
W are the independent wave functions. The dilatation symmetry is broken
because of massive parameters m; and ms. In the massless case, m; = 0, the
dilatation current D, is also not conserved, but later we will introduce the
modified conserved current.

To obtain the symmetrical the energy-momentum, we use the expression
for the Belinfante tensor [22]

(56)

T8 = = (g + 05 Xpua) (57)

N —

where ]
Xgpa = 5 ¥ — 11, J5,V — 11, J5,¥] + c.c.. (58)

The additional complex conjugated term in Eq.(58) and the factor 1/2 in
Eq.(57) are specific for our first-order formulation of charged fields. From
Eq.(2),(5),(53), we obtain the tensor Xg,q:

Xpua = OapP3¥py) — SapV3¥ng) — Valipu + Vg ¥a + e (59)

With the help of expressions (59),(57), and equations of motion, we obtain
the Belinfante symmetric energy-momentum tensor

TE, = ma (Vi + Uiy ian) — ma (V50 + 0505
(60)
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1 * *
500 (V30e1 + Ut -
From Eq.(60), one finds the trace of the energy-momentum tensor
T2 = 2miii. (61)

In the case of massless fields, m; = 0, the trace of the Belinfante symmetric
energy-momentum tensor vanishes. We note that the trace of the canonical
energy-momentum tensor (51) does not equal zero for massless fields. We
evaluate a modified Belinfante dilatation current [22]

DY =, Tp +V,, (62)

e

where the field-virial V), is given by
V=1, — 1, J,,V = =UB,V + US,J,, V. (63)
Using (2),(5),(11), one finds

* 1 *
auvu = —mﬂ/))\@b/\ - §m2¢[pu}¢[ul/}' (64)

As a result of Eq.(61),(62),(64), we obtain
1
0.DF =T% + 9,V = mupiibx — §m2¢{uy]¢w = 0,D5. (65)

i.e. the same result (see Eq.(56)). For the massive fields, m; # 0, the
dilatation symmetry is broken. For massless fields (m; = 0), the currents
Dy, Df also are not conserved, but one can introduce the new conserved
current

D,=D! -V, =T, (66)

s
so that 0,0, = 0. Thus, massless fields (charged and neutral electromag-
netic fields) possess the dilatation symmetry with the new dilatation current
(66). Conformal symmetry of massless DKP equation also was investigated
in another formalism in [23].

6 The canonical quantization of massive fields

The normalized solutions to Eq.(6) with definite energy-momentum in the
form of plane waves can be written as follows:

W) = [T () expipe). (67)
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where p? = p? — p2 = —mymay, V is the normalization volume, and s = +1,0
is the spin index. The function W4(+p) obeys Eq.(17), and we explore the
normalization conditions on the charge

/qf 2)800E) (2)dz = £0,y, /qf 2)B 0P () e =0,  (68)

where @ii) (x) = (\Ifng)(:E))Jr n. The field operators in the second quantized
theory are given by

=
&
Il

S [ap 0 (@) + b 0O ()]
" (69)

0 T @) + 0,0 (@)

U =Y

p?s

where the positive and negative parts of the wave function ¥*)(z) are defined
by Eq.(67). The creation and annihilation operators of particles, al‘; s Qps
and antiparticles b}, b, s obey the usual commutation relations

p,s?
[ailh& a;_’,s’] = 583’51010’7 [ap,sv a;D’,S’] = [a;-,sv a;_’,s’] = Ov
[bp&b;_s] = 583’51010’7 [bpsvbp’s] [b;_svb;_s] = 07 (7())
[a;lhsvbp’,s’] = [ansvb;_’,s] - [ ;_svb ] = [ ;svb;— s] = 0.

From Eq.(68)-(70), one can find the commutation relations for different times
[War(2), Uy ()] = [War(x), Uy (2)] =0, [Was(), On(2)] = Nuw(z, "),

NMN(va/) = NJ\—i/_[N(xvx/) - NJ\_/[N(xvx/)v

(71)
Niin(e,2) = 3 (¥ @), (T7@))
Nyl 2) =3 (€0 (@) (@i‘%:ﬂ))}v.

We obtain from Eq.(67),(71)

Nii(a,) = 35 70 7 (Wl (Vo) esplebin(e =) (72)
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From Eq.(27), one finds that the equation
S(+1) + S(_l) + S(O) =1, (73)
is valid. Then, from Eq.(22),(29), we obtain

:f:lﬁ (j:zmlﬁP + ngﬁp — mlmg)

mims (my + ms) (74)

Iy = Z (\Ils(:l:p)) ’ (@s(:l:p)) -

s

and Eq.(72) reads

NZ\:ZN(Iax/) = Z

p

myms

expltip(z—a')
2poV ) MN

(75)

ﬁ,ﬁu (mlﬂuPau + mlﬁuﬁﬁu — mlmg) ,
Ay(zx—2a'),
mime MN
where we introduce the singular functions [21]
1 1
Ai(x) =) oy CPUPT), A(2) = > gy S(ipn). (76)

p

With the aid of the function [21]
Ao(z) = i (As(z) = A(2)), (77)

and using Eq.(71),(75)-(77), one finds

Nurw(z, x,) _ (ﬁuau (mlﬂupau + mzﬁupau - mlmg)) Aolz — x').
mime MN
(78)
The function Ag(z) vanishes when ? = x* —* > 0 [2I]. One can check with
the help of Eq.(7), that the relation

) 5“8H (mlﬁuPau + m25“?8“ — m1m2)

(ﬁ,ﬁu + mlﬁ + mgP
mi1me

_ (mlﬁ + mgP) ﬁ,ﬁu (82 B m1m2) '

mims a
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holds. Using the equation [21] (02 — mlmg) Ai(z) = 0, from Eq.(75),(79),
we arrive at

(Bu0u + mu P +myP) N*(,2) = 0. (80)

The vacuum expectation of chronological pairing of operators (the propaga-
tor) is defined as [21]

(TV(2)Wn(y))o = Ny (z —y)
(81)
= 6 (x0 — yo) Nyyn (2 = ) + 6 (yo — 20) Nyyn (2 — v),
where 6(z) is the theta-function. Then, one obtains from Eq.(81) the prop-
agator:

_ 0y (M1 B, PO, + maB,Pd, — mima
() Ty = 20 (Mt maB PO — )

mims

where
Aoz —y) =0 (0 —yo) Ay (z —y) + 0 (yo — 70) A_(x — y). (83)

With the help of the equation [21] (85 - mlmg) A.(z) = id(z), and from
Eq.(79),(82),(83), we find

(8.0 +mu P+ maP) (T(x) - U(y))o = iw B.0,8(x — ). (84)
11M2

At the chose m; = my = m, and taking into consideration Eq.(8), P+P =1,
the propagator (82) and Eq.(84) are simplified. The above equations are not
valid for the massless case, m; = 0, because of singularities. For the massive

case, the propagator (82) can be used for calculations of quantum processes
with vector particles in the first-order formalism.

7 Conclusion

We have considered the massive and massless vector fields in the DKP for-
malism. Solutions in the form of matrix-dyads obtained allow us to make
quantum-electrodynamics calculations of processes with vector particles in
the covariant form. After the exclusion of the non-dynamical components the
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Hamiltonian forms of equations for massive and massless fields are obtained.
One may consider particles in external electromagnetic fields at the level of
the Hamiltonian form. The canonical and symmetrical Belinfante energy-
momentum tensors found possess their nonzero traces. We investigate the
dilatation symmetry in the first-order formalism. It was demonstrated that
the dilatation symmetry is broken in the massive case but in the massless
case the modified dilatation current is conserved. The canonical quantization
is considered in the DKP form and the propagator of the massive fields is
obtained. Quantization of fields and the propagator found make it possible
to use the perturbation theory for different quantum calculations in a simple
manner.
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