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On dependence of the implied volatility on

returns for stochastic volatility models
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Abstract

We study the dependence of volatility on the stock price in the stochastic volatility
framework on the example of the Heston model. To be more specific, we consider
the conditional expectation of variance (square of volatility) under fixed stock price
return as a function of the return and time. The behavior of this function depends
on the initial stock price return distribution density. In particular, we obtain the
“smile” effect near the mean value of the stock price return. For the Gaussian
distribution this effect is strong, but it weakens and becomes negligible as the decay
of distribution at infinity slows down.

Key words: stochastic volatility, the Heston model, conditional expectation of
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1 Introduction

Stochastic volatility (SV) models are quite popular in recent decades due to a
need for reliable quantitative analysis of market data. The most popular ones
are the Heston (Heston 1993), Stein-Stein (Stein and Stein 1991) , Schöble-Zhu
(Schöble and Zhu 1999), Hull-White (Hull and White 1987) and Scott (Scott
1987) models. We refer for reviews to (Miccichè, Bonanno, Lillo and Mantegna
2002; Mitra 2009; Fouque, Papanicolaou and Sircar 2000). The main reason
for introducing the SV models is to find a realistic alternative approach to
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option pricing to capture the time varying nature of the volatility, assumed to
be constant in the Black-Scholes approach.

Nevertheless, SV models can be used for investigation of another properties of
financial markets. For example, in (Dragulescu and Yakovenko 2002) the time-
dependent probability distribution of stock price returns was studied. While
returns are readily known from a financial data, variance (square of the stock-
price volatility) is not given directly, so it acts as a hidden stochastic variable.
In (Dragulescu and Yakovenko 2002) the joint probability density function
of returns and variance was found, then the integration over variance was
performed and the probability distribution function of returns unconditional
on variance was obtained. The latter PDF can be directly compared with
the Dow-Jones data for the 20-years period of 1982–2001 and an excellent
agreement was found. The tails of the PDF decay slower than the log-normal
distribution predicts (the so-called “fat-tails” effect).

Technically our paper is connected with (Dragulescu and Yakovenko 2002).
However, we study the dependence of the variance on fixed returns, thus, we
estimate hidden stochastic variable through the variable that can be easily
obtained from financial data. The result strongly depends on initial distribu-
tion of returns and variance. It is natural that the distributions change their
shape with time. In particular, we show that for Gaussian initial distribution
of returns the expectation of variance demonstrates the ”smile” phenomenon
near the mean value of returns.

To get a formula for the conditional expectation of variance at a fixed return
we prove a lemma that simplifies appreciably the computations. This lemma
can be useful for another problems, since it spares the calculation of the inverse
Fourier transform.

2 General formulas for the conditional expectation

and variance

Let us consider the stochastic differential equation system:

(2.1)
dFt = Adt + σdW1, dVt = Bdt+ λdW2,

F0 = f, V0 = v, t ≥ 0, f ∈ R, v ∈ R,

where W (t) = (W1(t),W2(t)) is a two-dimensional standard Wiener process,
A = A(t, Ft, Vt), B = B(t, Ft, Vt), σ = σ(t, Ft, Vt), λ = λ(t, Ft, Vt) are pre-
scribed functions.
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The joint probability density P (t, f, v) of random values Ft and Vt obeys the
Fokker–Plank equation (e.g.,(Risken 1989))

(2.2)
∂P

∂t
= − ∂

∂f
(AP )− ∂

∂v
(BP ) +

1

2

∂2

∂f 2

(

σ2P
)

+
1

2

∂2

∂v2

(

λ2P
)

with initial condition

(2.3) P (0, f, v) = P0(f, v),

determined by initial distributions of Ft and Vt.

If P (t, f, v) is known, one can find E (Vt|Ft = f), which is the conditional
expectation of value Vt at a fixed Ft at the moment t. This value can be found
by the following formula (see, (Chorin and Hald 2006)):

(2.4) E (Vt|Ft = f) = lim
L→+∞

∫

(−L,L) vP (t, f, v)dv
∫

(−L,L) P (t, f, v)dv
,

when improper integrals from numerator and denominator converge.

Note that if we choose P0(f, v) = δ(v − v0(f))g(f), where v0(f) and g(f) are
arbitrary smooth functions, then E (Vt|Ft = f) = v0(f).

For some classes of systems (2.1) the conditional expectation V (t, f) was found
in (Risken 1989; Albeverio and Rozanova 2009; Albeverio and Rozanova 2010)
within an absolutely different context.

Let us remark that sometimes it is easier to find the Fourier transform of
P (t, f, v) function over f, v variables, than the function itself. We will get
formula allowing to express E (Vt|Ft = f) in terms of Fourier transform of
P (t, f, v) and will apply it for finding an average variance of the stock price,
which depends on known return rate. It is assumed that stochastic volatility
here is modeled in compliance with the Heston law (Heston 1993).

Lemma 2.1 Let P̂ (t, µ, ξ) be the Fourier transform of function P (t, f, v) over
(f, v) variables, which is the solution of problem (2.2), (2.3), and both integrals

from (2.4) converge. Assume that P̂ (t, µ, 0) and ∂ξP̂ (t, µ, 0) are decreasing over
µ at infinity faster than any power. Then E (Vt|Ft = f) determined by (2.4)
can be found as

(2.5) E (Vt|Ft = f) =
iF−1

µ [∂ξP̂ (t, µ, 0)](t, f)

F−1
µ [P̂ (t, µ, 0)](t, f)

, t ≥ 0, f ∈ R,

where F−1
µ and F−1

ξ mean the inverse Fourier transforms over µ and ξ, respec-
tively.
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PROOF. Let us calculate denominator (2.4) formally (we mean the Fourier
transform in the sense of distributions):

∫

R

P (t, f, v) dv =
∫

R

F−1
µ [F−1

ξ [P̂ (t, µ, ξ)]] dv =

F−1
µ [
(

F−1
v [1](ξ), P̂ (t, µ, ξ)

)

ξ

] =
√
2πF−1

µ [
(

δ(ξ), P̂ (t, µ, ξ)
)

ξ

] =
√
2πF−1

µ [P̂ (t, µ, 0)].

Here (., .)ξ means the action of a distribution on the test function of ξ.

Numerator can be found analogously:

∫

R

vP (t, f, v) dv =
∫

R

F−1
ξ [F−1

µ [P̂ (t, µ, ξ)]] dv = F−1
µ [
(

F−1
v [v](ξ), P̂ (t, µ, ξ)

)

ξ

] =

−
√
2πiF−1

µ [
(

δ′(ξ), P̂ (t, µ, ξ)
)

ξ

] =
√
2πiF−1

µ [
(

δ(ξ), ∂ξP̂ (t, µ, ξ)
)

ξ

] =

i
√
2πF−1

µ [∂ξP̂ (t, µ, 0)].

Thus, the lemma is proved. �

Let us define the variance of Vt at a fixed Ft as

(2.6) V ar (Vt|Ft = f) = lim
L→+∞

∫

(−L,L) v
2P (t, f, v)dv

∫

(−L,L) P (t, f, v)dv
− E2 (Vt|Ft = f) ,

provided that improper integrals exist.

Lemma 2.2 With the same assumptions as in Lemma 2.1 the following for-

mula holds:

(2.7)

V ar (Vt|Ft = f) =
(F−1

µ [∂ξP̂ (t, µ, 0)])
2 − F−1

µ [∂2ξ P̂ (t, µ, 0)]F
−1
µ [P̂ (t, µ, 0)]

(F−1
µ [P̂ (t, µ, 0)])2

(t, f).

The proof is absolutely similar to the proof of Lemma 2.1.

3 Example: the Heston model

Of course, there is no explicit formula for the joint probability density func-
tion P (t, f, v) for arbitrary system (2.1). We will consider a particular, but
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important case

(3.1) dft =
(

α− vt
2

)

dt+
√
vtdW1,

(3.2) dvt = −γ(vt − θ)dt+ k
√
vtdW2.

Here γ, k, θ are arbitrary positive constants.

Equation (3.2) describes the process that in financial literature is called Cox-
Ingersoll-Ross (CIR) process, and in mathematical statistics — the Feller pro-
cess (Fouque, Papanicolaou and Sircar 2000; Feller 1951). In (Feller 1951) it
is shown that this equation has a nonnegative solution for t ∈ [0,+∞) when
2γθ > k2.

The first equation describes a return ft on the stock price, in assumption
that the stock price itself obeys a geometric Brownian motion with stochas-
tic volatility. The second equation describes the square of volatility σ2

t = vt
according to the Heston model.

The Fokker–Planck equation (2.2) for the joint density function P (t, f, v) of
return ft and variance vt takes here the following form:

∂P (t, f, v)

∂t
= γP (t, f, v) + (γ(v − θ) + k2)

∂P (t, f, v)

∂v
+
(

v

2
− α

)

∂P (t, f, v)

∂f
+

(3.3)
k2v

2

∂2P (t, f, v)

∂v2
+
v

2

∂2P (t, f, v)

∂f 2
.

Now we can choose different initial distributions for return and variance in
interesting cases. Note that it is natural to assume that initially the variance
does not depend on return, below we consider constant initial variance.

Below we denote E (vt|ft = f) as V (t, f) for short.

3.1 The uniform initial distribution of returns.

We begin with the simplest and almost trivial case. Let us assume that initially
the rate of return is distributed uniformly in the interval (−L, L), (L = const >
0), and volatility is equal to some constant a ≥ 0. Then the initial joint density
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distribution of ft and vt is

(3.4) P (0, f, v) =
1

2L
δ(v − a).

To simplify further calculations we will exclude randomness for t = 0, i.e. we
will assume a = 0.

The function P̂ (t, µ, ξ), the Fourier transform of P over (f, v) and it satisfies
the equation
(3.5)

∂P̂ (t, µ, ξ)

∂t
+
1

2

(

µ+ iµ2 + 2γξ + ik2ξ2
) ∂P̂ (t, µ, ξ)

∂ξ
+i (γθ + ξµα) P̂ (t, µ, ξ) = 0

with the initial condition

(3.6) P (0, µ, ξ) =
π

L
δ(µ).

The first-order equation (3.5) can be integrated. The solution of problem (3.5),
(3.6) takes the form

(3.7) P̂ (t, µ, ξ) =
π

L
δ(µ)

(

4γ2e2γt

(2γeγt + ik2ξ (eγt − 1))2

)
γθt

k2

It is easy to calculate that

(3.8) P̂ (t, µ, 0) =
π

L
δ(µ), ∂ξP̂ (t, µ, 0) =

π

L
δ(µ)iθ

(

e−γt − 1
)

And finally from (3.8), (2.5) and (2.7) we get

(3.9) E (vt|ft = f) = V (t, f) =
iF−1

µ [∂ξP̂ (t, µ, 0)](t, f)

F−1
µ [P̂ (t, µ, 0)](t, f)

= θ
(

1− e−γt
)

,

(3.10) V ar (vt|ft = f) =
θk2

2γ

(

1− e−γt
)2
.

It is evident that here there is no dependence on f and the result is the same
as we could obtain from calculation of mathematical expectation and variance
of vt from equation (3.5).
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3.2 The Gaussian initial distribution of returns.

Let us assume that initially rate of return is distributed according to the
Gaussian law. Then we have the following initial condition:

(3.11) P (0, f, v) =
m√
π
e−m2f2

δ(v), m > 0.

When a = 0, the Fourier transform of initial data over (f, v) is P̂ (0, µ, ξ) =

e−
µ2

4m2 .

Solution of the problem (3.3), (3.11) takes the form:
(3.12)

P̂ (t, µ, ξ) =

√
π

m



− µ(µ− i) + γ2

k2

µ2 + k2γ2 − i(2γξ + µ)





γθ

k2

exp

(

− µ2

4m2
− (αµi− γ2θ

k2
)t

)

∗



− cosh





t

2

√

k2µ(µ− i) + γ2 − i arctan





−k2ξ + iγ
√

k2µ(µ− i) + γ2













−
2γθ

k2

.

We see that P̂ (t, µ, ξ) exponentially decreases over µ. That is why we can use
formula (2.5) and obtain (after cumbersome transformations) the following
integral expression:

V (t, f) = 2γθ

∫

R

Ψ(t, µ, f)
sinh

(

t
4

√
k2(4µ2+1)+4γ2

)

(

cosh

(

t
4

√
k2(4µ2+1)+4γ2

)√
k2(4µ2+1)+4γ2+2γ sinh

(

t
4

√
k2(4µ2+1)+γ2

))dµ

∫

R

ψ(t, µ, f)dµ
,

(3.13)

where

Ψ(t, µ, f) = e
−µ2+iµ(4f−4tα−1)

4m2 ∗







k2(4µ2 + 1) + γ2
(

cosh
(

t
4

√

k2(4µ2 + 1) + 4γ2
)√

k2(4µ2 + 1) + 4γ2 + 2γ sinh
(

t
4

√

k2(4µ2 + 1) + γ2
))2







γθ

k2

.

Let us remark that if a 6= 0, we can also get a similar formula, but it will be
more cumbersome.
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3.3 “Fat-tails” initial distribution of return

Integral formula, analogous to (3.13) can be obtained for initial distributions
intermediate between uniform and Gaussian ones. For example, as initial dis-
tribution we can take

P (0, f, v) = K(1 +m2f 2)q δ(v), m > 0, q < 0,

with an appropriate constant K. Exact formula for the Fourier transform
P̂ (t, µ, ξ) can be found for q = −1

2
, −n, n ∈ N. For all these cases P̂ (t, µ, ξ)

decays as |µ| → ∞ sufficiently fast and Lemma 1 can be applied for calculation
of V (t, f).

For example, for q = −1 the difference with (3.12) is only in the multiplier

e−
µ2

4m2 : it should be changed to

(

e−
µ
m − e

µ
m

)

H (µ) + e
µ
m ,

with the Heaviside function H .

3.4 “Smile” volatility effect and asymptotic behavior for small time parame-

ters

It turns out that if in the Heston model the average volatility is considered as
a function of the rate on return, we will observe a “smile” volatility effect. This
”smile” is different from one which can be seen on plot of volatility against
strike price in the case of a standard option model (e.g. (Derman and Kani
1998)). The effect appears in numerical calculation of both integrals in (3.13)
with the use of standard algorithms. Thus, we plotted the function V (t, f)
for three consequent moments of time (Fig. 1) and for the following values of
parameters:

γ = 1, k = 1, θ = 1, α = 1, m = 1.

The “smile” volatility effect can be found by analytical methods as well. In-
deed, let us fix rate of return f . Then from (3.13) by expansion of integrand
functions into formal series as t→ 0 up to the forth component and by further
term-wise integration (series converge at least for small f and m) we will get
that

V (t, f) = γθt− 1

2
γ2θt2 +

1

6
γθ
(

γ2 + 2f 2m4k2 − fm2k2 −m2k2
)

t3−

1

6
γθ
(

8γ k2f 2m4 − 4
(

γ + 4m2α
)

k2m2f − 4 (γ + α)m2k2 + γ3
)

t4 +O(t5).
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Hence for small t we find that

V (t, f) =
1

3
γ θ t3(1− γ t)m4k2f 2 −

(

2

3
αm2 t +

1

6
(1 − γ t)

)

t3γ θm2k2f+

1

6
(γ t− (1− α t)) θ γt3m2k2 + γ θ t− 1

2
γ2θ t2 +

1

6
γ3θ t3 − 1

24
γ4θ t4

is a quadratic trinomial over f with a minimum in point f = 4m2α t−γ t+1
4m2(1−γ t)

, for
t > 0.

The “smile” effect holds for initial “fat-tails” power initial distributions as well.
Nevertheless, this effect weakens as the decay of the distribution at infinity
becomes slower.

Fig.2 presents the function V (t, f) for three consequent moments of time for
the initial distribution of return p(f) given by formula

p(f) =
1

π

1

1 + f 2
.

The values of parameters are

γ = 10, k = 1, θ = 0.1, α = 10.

It seems that the curves are strait lines, but the analysis of numerical values
shows that the “smile” still persists near the mean value of return. One can
still find formal asymptotics of V (t, f) as t→ 0,

V (t, f) = γθt− 1

2
γ2θt2 − γθ

R4(f, γ, k)

R6(f)
t3 + γ2θ

R8(f, γ, k, α)

R4(f)
t4 +O(t5),

where we denote by Rk a polynomial of order k with respect to f . We do not
write down these polynomial, let us only note that R4(f,γ,k)

R6(f)
∼ 1

2f2

(

k2

8
− γ2

)

and R8(f,γ,k,α)
R4(f)

∼ 16f4

3
(2γ2 − k2) as |f | → ∞.

It is very interesting to study the limiting behavior of V (t, f) as |f | → ∞ and
t→ ∞. We do not dwell here on this quite delicate question at all and reserve
it for future research. Some hints can be found in (Dragulescu and Yakovenko
2002; Gulisashvili and Stein 2006; Gulisashvili and Stein 2010).

3.5 Modifications of the Heston model

Let us analyze the situation when the coefficient γ from equation (3.2) depends
on time. For some interesting cases of this dependence one can find the Fourier
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Figure 1. Figure 2.

transform of P (t, f, v) and formula for V (t, f). For example, if we set γ = 1
T−t

,
then we get a Brownian bridge-like equation (see, (Øksendal 2002)) describing
square of volatility behavior with start at v0 = a > 0 and end at vT = b ≥ 0.
Here the solution will be represented in terms of integrals of Bessel functions
and the solution is cumbersome.

It may seem that the described approach, which helps to find the conditional
expectation of volatility under fixed returns in the Heston model, can be suc-
cessfully applied in other variations of this model. This is true when initial
rate on return has a uniform distribution. However, this situation is trivial,
because the answer does not contain f and is equal to the expectation of re-
turn obtained from the second equation of model. In the case of non-uniform
initial distribution of return (for instance, Gaussian) formula (2.5) may be
non-applicable, even when explicit expression for P̂ (t, µ, ξ) can be found. The
cause is that P̂ (t, µ, ξ) increases as |µ| → ∞. For example, if we replace equa-
tion (3.2) with

(3.14) dvt = −γ(vt − θ)dt + kdW2, γ, θ, k > 0,

under initial data (3.11), a = 0, we will get

P̂ (t, µ, ξ) =

√
π

m
exp

(

k2t

8γ2
µ4 − i

k2t

4γ2
µ3 −

(

θ t

2
+

k2t

8γ2
+

1

4m2

)

µ2 + i

(

θ

2
− α

)

tµ

)

,

whence it follows that the coefficient of µ4 in exponent power is positive when
t is positive. This means that integrals from (2.5) are divergent.

4 Possible application

Basing on our results one can introduce a rule for estimation of the company’s
rating based on stock prices. The natural presumption is that company’s rating
increases when return on assets increases and volatility decreases. Hence for
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estimation of the company’s rating one can use (very rough) index R(t, f) =
f/V (t, f), where V (t, f) is calculated by formula (3.13). Figs. 3 and 4 shows
the plot function R(t, f) for three consequent time points for Gaussian and
power distributions, respectively. Parameters as in Figs. 1 and 2. We can see
that in the Gaussian case the index does not rise monotonically with return.

Figure 3. Figure 4.

5 Conclusion and further work

In this article the Heston model has been analyzed not in terms of finding an
option fair price based on suggestion about stochastic behavior of volatility.
Our goal is to determine volatility itself given rate on return data. This prob-
lem has been solved by calculation of the average volatility under a fixed rate
on return and under the supplementary condition on initial distribution of
return and volatility. Namely, different cases of initial distribution of returns
have been studied: uniform, Gaussian and “fat-tails” distribution, intermedi-
ate between them. We found the effect of the “smile” volatility near the mean
value of the stock price return for the Gaussian initial distribution and for
certain distributions decreasing at infinity slower then the Gaussian one (for
which we succeed to find the Fourier transform of the joint probability density
of return and variance explicitly). For the Gaussian distribution this effect
is strong, but it weakens and becomes negligible as the decay of distribution
at infinity slows down. This effect is different from the traditional volatility
“smile” in the sense that the plot has been considered as a function of return,
but not a strike price function.

Formulas for the conditional variance at fixed return V (t, f) are obtained in
the present work in the integral form, we compute the integrals numerically
using standard algorithms and did only simple formal asymptotic analysis of
the formulas for small time. Of course, analysis of the formulas for larger t and
f and the asymptotics of V (t, f) as |f | → ∞ and t → ∞ is very important
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open question. Moreover, the dependence of the characteristics of the “smile”
on the properties of the initial distribution of returns has to be studied in
general case, not only for separate examples, as it was done here.
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