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Abstract. A new approach to analyze and synthesize texture regions in video 
coding is presented, where texture blocks in video sequence are synthesized 
using graph cut technique. It first identifies the texture regions by video 
segmentation technique, and then calculates their motion vectors by motion 
vector (MV) scaling technique like temporal direct mode. After the correction 
of these MVs, texture regions are predicted from forward and/or backward 
reference frames by the corrected MVs. Furthermore, Overlapped Block 
Motion Compensation (OBMC) is applied to these texture regions to reduce 
block artifacts. Finally, the texture blocks are stitched together along optimal 
seams to reconstruct the current texture block using graph cuts. Experimental 
results show that the proposed method can achieve compared visual quality for 
texture regions with H.264/AVC, while spending fewer bits. 
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1   Introduction 

Texture regions, such as grass, flower, sand, and cloud, appear in many video 
sequences. However, viewers are not sensitive to these texture regions which usually 
spend a lot of coding bits. In [1], it is assumed that for these highly textured regions, 
viewers perceive the semantic meaning of the displayed textures rather than the 
specific details. Thus it is not necessary to code these texture regions at the expense of 
high bit rate. In [2], a scheme of texture analyzer and synthesizer is presented. The 
aim of texture analyzer is to segment video frames and identify the texture regions in 
them. The texture synthesizer warps the identified texture regions by the warping 
parameters sent in the bit stream. The non-textured regions are encoded using 
traditional methods. Their method can save the bit rate up to 19.4% [2] without 
significant loss of visual performance. It achieved good results for rigid objects. 
However, it had to consider the neighborhood of the texture regions for non-rigid 
textures. 



Analysis-synthesis-based codec has already been introduced for object-based video 
coding applications, e.g. see [3]. However, the purpose of the analyzer and 
synthesizer modules in this case is usually the identification and appropriate synthesis 
of moving objects, rather than texture regions. A similar wavelet-based analysis-
synthesis for still image and video coding approach was introduced by Yoon and 
Adelson [4]. Whereas, the algorithm presented is optimized for still images. 

Graph cut was introduced for image and video synthesis in [5]. In their approach 
textures are generated by copying input texture patches. It first searches for an 
appropriate location to place the patch, and then uses a graph cut technique to find the 
optimal region of the patch to paste in the output. This algorithm can generate textures 
perceptually similar to the example ones. 

In this paper, the input sequences are classified into key frames (frames used as 
reference) and non-key frames (frames that are not used as reference). The non-key 
frames are first segmented and then the texture regions are synthesized using graph 
cut. As there is no bit for the MVs of the texture regions, the MVs of the texture 
regions are derived by direct mode. Due to the unreliable characteristic of the direct 
mode MVs, MV correction is required after the direct mode MVs are got. In most 
cases, translation mode is not suitable for texture regions, which present random 
distribution, thus OBMC [6] is applied when the MV correction is finished. After 
OBMC, block artifacts are greatly reduced. Texture regions processed by the 
aforementioned stages seem close to the natural ones. Next, each texture macroblock 
is divided into 4 overlapped patches. Each patch has three candidates, which are 
forward, backward, and bi-directional predictions. The best candidate patch is chosen 
according to the mismatch of pixels in the overlapped region between the new and old 
patches. Then graph cut is processed by finding an optimal seam in the overlapped 
regions, and the existing pixels in the old patches are maintained or updated on the 
different side of the seam. Textures processed by graph cut seem to be smoother, 
more natural and the spatial accuracy remain unchanged. So, it will be hard for 
viewers to find detail differences between synthesized and original texture regions. 

The remainder of this paper is organized as follows. In Section 2 we introduce the 
MV derivation and MV correction in texture regions. In Section 3, we compensate the 
texture regions utilizing OBMC. And in Section 4 graph cut synthesis is presented. 
Experimental results are given in Section 5. Finally, conclusions are drawn in Section 
6. 

2   MV Derivation and MV correction in texture regions 

In order to achieve better visual performance, some preprocessing techniques are 
required. The first is to identify texture regions in a frame, which can be finished by 
image segmentation. In this paper, we utilize a similar segmentation method as [2]. 
As there is no bit for MVs of texture blocks in bitstream, the MVs of texture blocks 
are derived by direct mode [7]. As is shown in Fig. 1, for each texture block, the 
forward motion vector fwMV and backward motion vector bwMV are calculated as 
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If the co-located block in the backward reference frame was coded in intra mode, we 
got the spatial direct MV to replace the corresponding temporal one. As the MVs 
derived by direct mode may be sometimes unreliable, the MVs of adjacent blocks are 
used to correct or smooth the unsatisfied MVs because of the spatial correlation as 
described in [8]. The aim of the MV correction is to smooth the isolated MVs. If an 
MV has a weak spatial correlativity with adjacent MVs, it is considered as an isolated 
MV. The isolated MVs make motions unreliable and cause block artifacts. So it is 
necessary to correct the isolated MVs by smoothing or median filtering using MVs of 
adjacent blocks. 
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Fig.1 MV Derivation of current block 

Let Block(x,n) be the block in frame n and x=x(i,j) denotes the spatial position at 
(i,j) in one frame and n is the frame number. Similarly, set MV(x,n) to be the MV at 
position x in frame n. To detect the isolated MV of Block(x,n), the distance (MVD) 
between MV(x,n) and its surroundings are calculated and the maximum MVD is 
selected as 

'

'

( )
( , ) ( , ) ( , )

x s x
MaxMVD x n Max MV x n MV x n

∈
= −  (3) 

where s(x) denotes the set of adjacent blocks. 'x is in the same frame as x. A 
threshold T by averaging the adjacent block MVs is computed to determine whether 
the MV(x,n) is isolated. If MaxMVD(x,n) is larger than T, MV(x,n) is isolated and 
should be corrected by MVs of adjacent blocks. In this paper, median filter is utilized 
for its good performance in removing noises. After MV correction, the MV of texture 
block becomes more reliable, and the block artifact is reduced. 



3   Reduction of block artifacts by OBMC 

Block artifacts reduced by just MV correction are not enough. Assign each block an 
MV is under the assumption that the corresponding block is undergoing translational 
movement. However, for texture regions, the pixel is unstructured and the movement 
is irregular. Thus, translational mode is not very suitable for texture regions. However, 
we find that OBMC is very suit for texture regions. As is shown in Fig.2, each pixel 
in the current block is predicted by a weighted average of several corresponding 
pixels in the reference frame. The corresponding pixels are determined by the MVs of 
the current block as well as adjacent blocks. The final pixel value is computed as  
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where hk(x) is the weight of corresponding pixel in neighboring block BBm and should 
be inversely proportional to the distance between x and the center of Bm,kB  . For each 
4x4 block, OBMC is used after MV correction is finished. The block artifacts are 
greatly reduced when OBMC is applied and the texture regions seem smoother and 
more natural. 
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Fig. 2. OBMC with 4 neighborhood MVs  

4   Texture synthesis using graph cut 

In [5], texture is synthesized by copying irregularly shaped patches from the sample 
image into output image. The patch copying process is performed in two stages. 
Firstly, a candidate rectangular patch is selected by performing a comparison between 
the candidate patch and the patches already in the output image. Secondly, an optimal 
(irregularly shaped) portion of this rectangle is computed and only these pixels are 
copied into the output image. The portion to copy is determined by using a graph cut 
algorithm. 



4.1   Selection of the best candidate patch  

Combining with H.264, we divide each texture macroblock into 4 non-overlapped 8x8 
blocks. As is shown in Fig.3, the patch size is set to be 12x12. Each patch contains 
two parts: an 8x8 block and its overlapped regions. So, each macroblock can be 
synthesized by stitching 4 patches together. As each texture block has forward and 
backward MVs, it has 3 candidate patches, i.e. forward, backward and bi-direction 
patches. In order to determine which candidate patch is chosen, we first compute the 
sum of square error (SSE) in the overlapped region， where OV means overlapped  
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region A and region B, IN(x) and IO(x) means the pixel value of position x in the new 
and old patches respectively. Using formula 5, we compute the forward, backward 
and bi-directional Dif, and find the minimum. Then, we set the direction of the chosen 
patch to be the corresponding direction of the minimum Dif. Once the direction is 
determined, we get the best candidate patch. 
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Fig. 3. a patch and its overlapped regions 

4.2   Determination of the optimal seam  

The heart of the patch based synthesis is to determine an optimal seam in the 
overlapped regions. When the optimal seam is determined, the pixels on the opposite 
side of the seam are processed differently. For example, in the overlapped region A, 
the pixels on the left of the optimal seam (red line) maintains the same, while the 
pixels on the right of the red line are updated by the pixels in the current patch. In the 
same way, the pixels above the green line are unchanged, whereas the pixels below 
the green line are replaced by the pixels in the current patch. It can be easily seen that 
the up left corner of the patch is processed twice, which is because it is contained in 
both region A and region B. Pixel values in the right and bottom part of the current 
8x8 block may be changed in the following steps, and it is just the basic idea of the 
patch synthesis. 



In order to find an optimal seam in the overlapped region, we have to choose a 
matching quality measure for pixels from the old and new patch. In this paper, we 
choose the simplest quality measure, the luminance difference between pixels in the 
overlapped regions. Let s be the pixel position in the overlapped region, and let N(s) 
and O(s) be the luminance at position s in the new and old patches, respectively. The 
matching quality cost M between pixels, which come from patches N and O, is 
defined to be 
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We then use this matching quality to solve the path finding problem. Considering 
the overlapped region A shown in Fig.3, from the top to the bottom, we find a 
minimum cost path, and record the minimum cost pixels in the path. For the pixels in 
the path and the pixels in the left of the path, pixel values remain the same, whereas 
pixels on the right of the path are replaced by the corresponding ones in the new patch. 

5   Experimental results 

In this paper, we synthesized two well known sequences: flowergarden and 
coastguard with 30fps. Flowergarden contains rigid textures and coastguard contains 
non-rigid textures. All the experiments are implemented based on the H.264/AVC 
reference software JM98. Fig.4 shows results of the traditional methods in H.264 and 
proposed method used for texture regions in sequence coastguard and flowergarden. 
From Fig.4, we can see that the proposed method achieves similar visual performance 
as H.264, while saving the bits above 20%. 

Table. 1 shows that our proposed method outperforms the skip mode in H.264 for 
texture regions at the same bit rate. The maximum PSNR gain is up to 0.34dB for 
sequence coastguard in CIF format compared with the skip mode. And the maximum 
PSNR gain is up to 0.25dB for sequence flowergarden in QCIF format. As texture 
regions only take up a small fraction of the whole frame, and the proposed method is 
only applied to texture regions, the PSNR gain is relatively large compared with the 
whole frame. The detailed information about the bit saving of the proposed method 
compared with H.264 is shown in Table 2. The maximum saving of bits can be up to 
36.29% compared with H.264 for sequence coastguard in CIF format. The maximum 
saving of bits can be up to 21.83% compared with H.264 for sequence flowergarden 
in CIF format. 

Fig.5 shows the rate-distortion curves of the proposed method for sequences 
coastguard and flowergarden compared with the skip mode. It can be easily seen that 
the proposed method can significantly improve the coding efficiency compared with 
the skip mode when spending the same bits. 



6   Conclusions 

In this paper, we propose a video texture analysis and synthesis approach using graph 
cut. It is composed of three steps. Firstly, it segments a frame into texture 
macroblocks and non-texture macroblocks. Secondly, it carries on some 
preprocessing for texture macroblocks, which include MV derivation, MV correction 
and OBMC. Thirdly, optimal texture candidates are determined and stitched together. 
Experimental results show that the proposed method achieves better object and visual 
performances than that when encoded by skip mode for texture regions. Furthermore, 
the proposed method achieves similar visual performance compared with H.264, 
while saving bit rate up to 36% at most. Besides, the proposed method is suitable for 
both rigid and non-rigid textures, which approves its robustness  

 

      
(a) H.264 296 bits                (b) proposed method 224 bits 

      
(c) H.264 5672 bits                (d) proposed method 4528 bits 

 

Fig. 4. Visual comparisons between different methods. (a),(b),(c) and (d) illustrate the results 
for H.264 encoded and the proposed for sequences coastguard(QCIF) and flowergarden(CIF) 

Table 1. PSNR comparison between the proposed method and the skip mode   

Average PSNR gain Video 
Sequence 

Format 
QP=30 QP=32 QP=34 QP=36 

CIF 0.2363db 0.2757db 0.1847db 0.1589db flower 
QCIF 0.2514db 0.1167db 0.0926db 0.0736db 
CIF 0.2186db 0.241db 0.343db 0.2353db coastguard

QCIF 0.1563db 0.1557db 0.1649db 0.085db 



Table 2. Bit rate comparison between the proposed method and H.264 

Average bits saving Video 
Sequence 

Format 
QP=30 QP=32 QP=34 QP=36 

CIF 21.83% 18.06% 20.02% 11.54% flower 
QCIF 10.45% 9.3% 3.53% 6.48% 
CIF 36.29% 34.97% 29.45% 19.94% coastguard 

QCIF 15.55% 21.91% 28.6% 2.1% 
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Fig. 5 Rate-distortion curves for skip mode and proposed method for texture regions in 
sequences coastguard and flowergarden. 
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