
Video Coding by Texture Analysis and Synthesis Using
Graph Cut

Yongbing Zhang1, Xiangyang Ji2, Debin Zhao1, Wen Gao1,2

1Department of Computer Science and Technology, Harbin Institute of Technology, Harbin

150001, P.R. China
2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080,

P. R.China
{ybzhang, xyji, dbzhao, wgao}@jdl.ac.cn

Abstract. A new approach to analyze and synthesize texture regions in video
coding is presented, where texture blocks in video sequence are synthesized
using graph cut technique. It first identifies the texture regions by video
segmentation technique, and then calculates their motion vectors by motion
vector (MV) scaling technique like temporal direct mode. After the correction
of these MVs, texture regions are predicted from forward and/or backward
reference frames by the corrected MVs. Furthermore, Overlapped Block
Motion Compensation (OBMC) is applied to these texture regions to reduce
block artifacts. Finally, the texture blocks are stitched together along optimal
seams to reconstruct the current texture block using graph cuts. Experimental
results show that the proposed method can achieve compared visual quality for
texture regions with H.264/AVC, while spending fewer bits.

Keywords: texture, analysis and synthesis, video coding, graph cut, optimal
seam

1 Introduction

Texture regions, such as grass, flower, sand, and cloud, appear in many video
sequences. However, viewers are not sensitive to these texture regions which usually
spend a lot of coding bits. In [1], it is assumed that for these highly textured regions,
viewers perceive the semantic meaning of the displayed textures rather than the
specific details. Thus it is not necessary to code these texture regions at the expense of
high bit rate. In [2], a scheme of texture analyzer and synthesizer is presented. The
aim of texture analyzer is to segment video frames and identify the texture regions in
them. The texture synthesizer warps the identified texture regions by the warping
parameters sent in the bit stream. The non-textured regions are encoded using
traditional methods. Their method can save the bit rate up to 19.4% [2] without
significant loss of visual performance. It achieved good results for rigid objects.
However, it had to consider the neighborhood of the texture regions for non-rigid
textures.

Analysis-synthesis-based codec has already been introduced for object-based video
coding applications, e.g. see [3]. However, the purpose of the analyzer and
synthesizer modules in this case is usually the identification and appropriate synthesis
of moving objects, rather than texture regions. A similar wavelet-based analysis-
synthesis for still image and video coding approach was introduced by Yoon and
Adelson [4]. Whereas, the algorithm presented is optimized for still images.

Graph cut was introduced for image and video synthesis in [5]. In their approach
textures are generated by copying input texture patches. It first searches for an
appropriate location to place the patch, and then uses a graph cut technique to find the
optimal region of the patch to paste in the output. This algorithm can generate textures
perceptually similar to the example ones.

In this paper, the input sequences are classified into key frames (frames used as
reference) and non-key frames (frames that are not used as reference). The non-key
frames are first segmented and then the texture regions are synthesized using graph
cut. As there is no bit for the MVs of the texture regions, the MVs of the texture
regions are derived by direct mode. Due to the unreliable characteristic of the direct
mode MVs, MV correction is required after the direct mode MVs are got. In most
cases, translation mode is not suitable for texture regions, which present random
distribution, thus OBMC [6] is applied when the MV correction is finished. After
OBMC, block artifacts are greatly reduced. Texture regions processed by the
aforementioned stages seem close to the natural ones. Next, each texture macroblock
is divided into 4 overlapped patches. Each patch has three candidates, which are
forward, backward, and bi-directional predictions. The best candidate patch is chosen
according to the mismatch of pixels in the overlapped region between the new and old
patches. Then graph cut is processed by finding an optimal seam in the overlapped
regions, and the existing pixels in the old patches are maintained or updated on the
different side of the seam. Textures processed by graph cut seem to be smoother,
more natural and the spatial accuracy remain unchanged. So, it will be hard for
viewers to find detail differences between synthesized and original texture regions.

The remainder of this paper is organized as follows. In Section 2 we introduce the
MV derivation and MV correction in texture regions. In Section 3, we compensate the
texture regions utilizing OBMC. And in Section 4 graph cut synthesis is presented.
Experimental results are given in Section 5. Finally, conclusions are drawn in Section
6.

2 MV Derivation and MV correction in texture regions

In order to achieve better visual performance, some preprocessing techniques are
required. The first is to identify texture regions in a frame, which can be finished by
image segmentation. In this paper, we utilize a similar segmentation method as [2].
As there is no bit for MVs of texture blocks in bitstream, the MVs of texture blocks
are derived by direct mode [7]. As is shown in Fig. 1, for each texture block, the
forward motion vector fwMV and backward motion vector bwMV are calculated as

1 4
fw B

b B
D

TDMV M
TD

= × V (1)

1
4

()b B D
bw B

D

TD TDMV M
TD

V−
= × (2)

If the co-located block in the backward reference frame was coded in intra mode, we
got the spatial direct MV to replace the corresponding temporal one. As the MVs
derived by direct mode may be sometimes unreliable, the MVs of adjacent blocks are
used to correct or smooth the unsatisfied MVs because of the spatial correlation as
described in [8]. The aim of the MV correction is to smooth the isolated MVs. If an
MV has a weak spatial correlativity with adjacent MVs, it is considered as an isolated
MV. The isolated MVs make motions unreliable and cause block artifacts. So it is
necessary to correct the isolated MVs by smoothing or median filtering using MVs of
adjacent blocks.

1B2B

3B

4B

Fo rw ard referen ce B ack w ard referen ce C u rren t fram e

DTD

BTD

Fig.1 MV Derivation of current block

Let Block(x,n) be the block in frame n and x=x(i,j) denotes the spatial position at
(i,j) in one frame and n is the frame number. Similarly, set MV(x,n) to be the MV at
position x in frame n. To detect the isolated MV of Block(x,n), the distance (MVD)
between MV(x,n) and its surroundings are calculated and the maximum MVD is
selected as

'

'

()
(,) (,) (,)

x s x
MaxMVD x n Max MV x n MV x n

∈
= − (3)

where s(x) denotes the set of adjacent blocks. 'x is in the same frame as x. A
threshold T by averaging the adjacent block MVs is computed to determine whether
the MV(x,n) is isolated. If MaxMVD(x,n) is larger than T, MV(x,n) is isolated and
should be corrected by MVs of adjacent blocks. In this paper, median filter is utilized
for its good performance in removing noises. After MV correction, the MV of texture
block becomes more reliable, and the block artifact is reduced.

3 Reduction of block artifacts by OBMC

Block artifacts reduced by just MV correction are not enough. Assign each block an
MV is under the assumption that the corresponding block is undergoing translational
movement. However, for texture regions, the pixel is unstructured and the movement
is irregular. Thus, translational mode is not very suitable for texture regions. However,
we find that OBMC is very suit for texture regions. As is shown in Fig.2, each pixel
in the current block is predicted by a weighted average of several corresponding
pixels in the reference frame. The corresponding pixels are determined by the MVs of
the current block as well as adjacent blocks. The final pixel value is computed as

,() () (),k m k mp x h x r x d xΨ = Ψ + ∈∑ B (4)

where hk(x) is the weight of corresponding pixel in neighboring block BBm and should
be inversely proportional to the distance between x and the center of Bm,kB . For each
4x4 block, OBMC is used after MV correction is finished. The block artifacts are
greatly reduced when OBMC is applied and the texture regions seem smoother and
more natural.

1x

2x

3x

4x
0x

0 0()h x

1 0()h x

2 0()h x

3 0()h x

4 0()h x

,1mB

,2mB

,3mB

,4mB

Fig. 2. OBMC with 4 neighborhood MVs

4 Texture synthesis using graph cut

In [5], texture is synthesized by copying irregularly shaped patches from the sample
image into output image. The patch copying process is performed in two stages.
Firstly, a candidate rectangular patch is selected by performing a comparison between
the candidate patch and the patches already in the output image. Secondly, an optimal
(irregularly shaped) portion of this rectangle is computed and only these pixels are
copied into the output image. The portion to copy is determined by using a graph cut
algorithm.

4.1 Selection of the best candidate patch

Combining with H.264, we divide each texture macroblock into 4 non-overlapped 8x8
blocks. As is shown in Fig.3, the patch size is set to be 12x12. Each patch contains
two parts: an 8x8 block and its overlapped regions. So, each macroblock can be
synthesized by stitching 4 patches together. As each texture block has forward and
backward MVs, it has 3 candidate patches, i.e. forward, backward and bi-direction
patches. In order to determine which candidate patch is chosen, we first compute the
sum of square error (SSE) in the overlapped region， where OV means overlapped

()2() ()N O
x OV

Dif I x I x
∈

= −∑ (5)

region A and region B, IN(x) and IO(x) means the pixel value of position x in the new
and old patches respectively. Using formula 5, we compute the forward, backward
and bi-directional Dif, and find the minimum. Then, we set the direction of the chosen
patch to be the corresponding direction of the minimum Dif. Once the direction is
determined, we get the best candidate patch.

Current block
8x8

Overlapped region B
12x4

Overlapped region A
4x12

Fig. 3. a patch and its overlapped regions

4.2 Determination of the optimal seam

The heart of the patch based synthesis is to determine an optimal seam in the
overlapped regions. When the optimal seam is determined, the pixels on the opposite
side of the seam are processed differently. For example, in the overlapped region A,
the pixels on the left of the optimal seam (red line) maintains the same, while the
pixels on the right of the red line are updated by the pixels in the current patch. In the
same way, the pixels above the green line are unchanged, whereas the pixels below
the green line are replaced by the pixels in the current patch. It can be easily seen that
the up left corner of the patch is processed twice, which is because it is contained in
both region A and region B. Pixel values in the right and bottom part of the current
8x8 block may be changed in the following steps, and it is just the basic idea of the
patch synthesis.

In order to find an optimal seam in the overlapped region, we have to choose a
matching quality measure for pixels from the old and new patch. In this paper, we
choose the simplest quality measure, the luminance difference between pixels in the
overlapped regions. Let s be the pixel position in the overlapped region, and let N(s)
and O(s) be the luminance at position s in the new and old patches, respectively. The
matching quality cost M between pixels, which come from patches N and O, is
defined to be

() () ()()2
, ,M s N O N s O s= − (6)

We then use this matching quality to solve the path finding problem. Considering
the overlapped region A shown in Fig.3, from the top to the bottom, we find a
minimum cost path, and record the minimum cost pixels in the path. For the pixels in
the path and the pixels in the left of the path, pixel values remain the same, whereas
pixels on the right of the path are replaced by the corresponding ones in the new patch.

5 Experimental results

In this paper, we synthesized two well known sequences: flowergarden and
coastguard with 30fps. Flowergarden contains rigid textures and coastguard contains
non-rigid textures. All the experiments are implemented based on the H.264/AVC
reference software JM98. Fig.4 shows results of the traditional methods in H.264 and
proposed method used for texture regions in sequence coastguard and flowergarden.
From Fig.4, we can see that the proposed method achieves similar visual performance
as H.264, while saving the bits above 20%.

Table. 1 shows that our proposed method outperforms the skip mode in H.264 for
texture regions at the same bit rate. The maximum PSNR gain is up to 0.34dB for
sequence coastguard in CIF format compared with the skip mode. And the maximum
PSNR gain is up to 0.25dB for sequence flowergarden in QCIF format. As texture
regions only take up a small fraction of the whole frame, and the proposed method is
only applied to texture regions, the PSNR gain is relatively large compared with the
whole frame. The detailed information about the bit saving of the proposed method
compared with H.264 is shown in Table 2. The maximum saving of bits can be up to
36.29% compared with H.264 for sequence coastguard in CIF format. The maximum
saving of bits can be up to 21.83% compared with H.264 for sequence flowergarden
in CIF format.

Fig.5 shows the rate-distortion curves of the proposed method for sequences
coastguard and flowergarden compared with the skip mode. It can be easily seen that
the proposed method can significantly improve the coding efficiency compared with
the skip mode when spending the same bits.

6 Conclusions

In this paper, we propose a video texture analysis and synthesis approach using graph
cut. It is composed of three steps. Firstly, it segments a frame into texture
macroblocks and non-texture macroblocks. Secondly, it carries on some
preprocessing for texture macroblocks, which include MV derivation, MV correction
and OBMC. Thirdly, optimal texture candidates are determined and stitched together.
Experimental results show that the proposed method achieves better object and visual
performances than that when encoded by skip mode for texture regions. Furthermore,
the proposed method achieves similar visual performance compared with H.264,
while saving bit rate up to 36% at most. Besides, the proposed method is suitable for
both rigid and non-rigid textures, which approves its robustness

(a) H.264 296 bits (b) proposed method 224 bits

(c) H.264 5672 bits (d) proposed method 4528 bits

Fig. 4. Visual comparisons between different methods. (a),(b),(c) and (d) illustrate the results
for H.264 encoded and the proposed for sequences coastguard(QCIF) and flowergarden(CIF)

Table 1. PSNR comparison between the proposed method and the skip mode

Average PSNR gain Video
Sequence

Format
QP=30 QP=32 QP=34 QP=36

CIF 0.2363db 0.2757db 0.1847db 0.1589db flower
QCIF 0.2514db 0.1167db 0.0926db 0.0736db
CIF 0.2186db 0.241db 0.343db 0.2353db coastguard

QCIF 0.1563db 0.1557db 0.1649db 0.085db

Table 2. Bit rate comparison between the proposed method and H.264

Average bits saving Video
Sequence

Format
QP=30 QP=32 QP=34 QP=36

CIF 21.83% 18.06% 20.02% 11.54% flower
QCIF 10.45% 9.3% 3.53% 6.48%
CIF 36.29% 34.97% 29.45% 19.94% coastguard

QCIF 15.55% 21.91% 28.6% 2.1%

coastguard(qcif,30fps)

28.5

29

29.5

30

30.5

31

31.5

0 40 80 120 160 200 240 280
bitrate(kbit/s)

psnr(dB)

skip mode
proposed

flowergarden(cif,30fps)

28

28.5

29
29.5

30

30.5

31
31.5

32

32.5

45 85 125 165 205 245 285
bitrate(kbit/s)

psnr(dB)

skip mode
proposed

Fig. 5 Rate-distortion curves for skip mode and proposed method for texture regions in
sequences coastguard and flowergarden.

References

1. P.Ndjiki-Nya, T. Hinz, A. Smolic, and T. Wiegand.: A Generic Automatic Content-based
Approach for Improved H.264/AVC Video Coding. ICIP 2005, Genoa, Italy, September
2005

2. P.Ndjiki-Nya, T. Wiegand: Video Coding using texture analysis and synthesis. PCS 2003,
Saint-Malo, France, April 2003

3. M.Wollborn Prototype Prediction for Clour Update in Object-Based Analysis-Synthesis
Coding. IEEE Trans. Circuits Syst. Video Technol., vol.4, no.3,pp.236-245, June. 1994

4. S.-Y. Yoon and E.H. Adelson. Subband texture-synthesis for image coding. Proceedings of
SPIE, Human vision and Electronic Imaging III (1998) 489-497

5. V.Kwatra, A.Schödl, I.Essa, G. Turk, A. Bobick: Graphcut Textures: Image and Video
Synthesis using Graph Cuts. ACM Transactions on Graphics, SIGGRAPH 2003

6. T. Kuo, and C.-C. Jay Kuo. Fast Overlapped Block Motion Compensation with
Checkerboard Block Partitioning. IEEE Trans. Circuits Syst. Video Technol, vol.8, no.6, pp
705-712, October, 1998

7. A.M.Tourapis, Feng.Wu, Shipeng Li. direct mode coding for bipredictive slices in the H.264
Standard. IEEE Trans. Circuits Syst. Video Technol, vol.15, no.1, pp 119-126, Jan. 2005

8. H. Sasai, S. Kondo and S.Kadono. frame-rate up-conversion using reliable analysis of
transmitted motion information. Proc. of IEEE Conference on Acoustics, Speech, and Signal
processing, vol.5, pp 257-260, May, 2004

9. J.Zhang, L.Sun, S.Yang.: Position Prediction Motion-compensated interpolation for frame
rate up conversation using temporal modeling. ICIP 2005

10. Jiefu Zhai, Keman Yu, Jiang Li, Shipeng Li.: A Low Complexity Motion Compensated
Frame Interpolation Method. ISCAS 2005, May 2005

11. A.Schödl, R. Szeliski, David H. Salesin, and Irfan Essa. Video Textures. Proceedings of the
27th annual conference on computer graphics and interactive techniques.(2000) 489-498

