
Switch Simulations Based on Workload Pattern
Generation and Smoothed Periodic Input

Qiang Zheng1, Si-Min He1, Shu-Tao Sun2, Yan-Feng Zheng1, Wen Gao1
1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China

2 Communication University of China, Beijing 100024, China
qzheng@jdl.ac.cn, smhe@ict.ac.cn, stsun@jdl.ac.cn, yfzheng@jdl.ac.cn, wgao@ict.ac.cn

Abstract—Simulation is crucial to performance evaluation of
switches. Currently stochastic simulation is the predominant
approach, which has two drawbacks: few workload patterns and
long simulation times. In this paper, we propose a novel switch
simulation method that is based on two techniques: exhaustive
workload pattern generation and smoothed periodic input
generation. The exhaustive workload pattern generation can
produce a huge number of nonuniform workload patterns, which
far exceeds the traditional few ones; conclusions based on such
truly extensive simulations are much more convincing. The
periodic input or cell arrival pattern outperforms the stochastic
counterpart in terms of easy repetition and fast convergence of
simulation; in particular, among periodic inputs, the smoothed
periodic input is most favorable to switch scheduling, and hence
switches performing poor with it probably performs worse under
others. Combining these two techniques together can
systematically identify lots of stuck states at which some switches
show poor performances such as low throughput. Specifically,
this method discovers that the throughput of iSLIP, FIRM and
DRRM, each with one iteration, may be lower than 60% under
certain nonuniform and smoothed periodic traffic pattern.1

Keywords-Performance evaluation, simulation, switches.

I. INTRODUCTION
Performance evaluation is crucial to the research of switch

architectures and scheduling algorithms. Theoretical analysis
and computational simulation, as two major means of
performance evaluation, have their own strengths and
weaknesses. Conclusions of the theoretical analysis have good
generality. For example, under Bernoulli uniform traffic, an
input-queued switch with FIFO (first-input-first-output) queues
has a throughput limited to just 58.6% [9]; under any
admissible traffic, an input-queued switch with virtual output
queues and maximum weight matching schedulers can achieve
100% throughput asymptotically [17] [5] [14]. All of these
theoretical analyses use stochastic models and obtain
asymptotic conclusions for the average cases, which are not
quite relevant to practices. Furthermore, as switch fabrics and
scheduling algorithms become increasingly complex,
theoretical analysis may become too difficult to draw any
conclusion.

In contrast to theoretical analysis, simulation can be
performed easily and in a wider range. Any switch architecture,

This work was supported in part by the National Natural Science
Foundation of China under Grant 69983008 and the Institute of Computing
Technology, Chinese Academy of Sciences under Grant 20056090.

and/or any switch scheduler, is amenable to simulation, and has
to be evaluated by simulation. The first step is to generate some
traffic patterns, which has two components. One is the
workload pattern generation, i.e., generating a rate matrix with
each element indicating the normalized rate of flow for an
input-output channel. It is uniform if all the elements are equal
and nonuniform otherwise. The other is the input pattern or cell
arrival pattern generation, i.e., generating flows of cells at each
input port with the specified rates. Influenced by the models for
theoretical analysis, the workload patterns are usually
admissible and identically loaded at each input port, and input
patterns can be Bernoulli, exponential, and so on.

While it has been the predominant approach to performance
evaluation, stochastic simulation has two weaknesses. The first
weakness is that stochastic simulation only adopts few
workload patterns. Specifically, let ρ denote the normalized
load at each input port and λi, j as the rate of flow arriving at
input i and destined for output j, there are four nonuniform
patterns used most:

Pattern 1 (Diagonal) [13][6][22][1]: λi, i = 2ρ/3 and λi, i+1 =
ρ/3 for all i from 0 to (N − 1), and λi, j = 0 for all other i and j.
The operation ‘+’ is subject to modulo N. An example is Fig.1
(a).

Pattern 2 (Log-diagonal) [6][22][1]: Arrival rates at the
same input differ exponentially; i.e., λi, i+j = 2λi, i+j+1, where 0 ≤ j
≤ N – 2. An example is Fig. 1 (b).

Pattern 3 (Lin-diagonal) [2][1]: Arrival rates at the same
input differ linearly; i.e., λi, i+j − λi, i+j+1 = 2ρ/N(N+1), where 0 ≤ j
≤ N – 2, or λi, i+j = 2ρ (N – j) / (N2+N) where 0 ≤ j ≤ N – 1. An
example is Fig. 1 (c).

Pattern 4 (Unbalanced) [12][19][20][18]: Let w denote the
unbalanced probability, then λi, j = ρ (w + (1 − w)/N) if i = j and
λi, j = ρ (1 − w)/N otherwise. When w = 0, the traffic is uniform.
When w = 1, it is completely unbalanced, i.e., the traffic at
input i is only destined for output i. An example is Fig. 1 (d).

















6.003.0
3.06.00

03.06.0

















4.01.02.0
2.04.01.0
1.02.04.0

















3.01.02.0
2.03.01.0
1.02.03.0

















6.02.02.0
2.06.02.0
2.02.06.0

(a) (b) (c) (d)

Figure 1. Examples of four nonuniform workload patterns.
(a) ρ = 0.9; (b) ρ = 0.7; (c) ρ = 0.6; (d) ρ = 1.0, w = 0.4.

Current experimental evaluation of switch performances
under nonuniform traffic is mainly based on the above four
patterns. However, simulation results from so few workload

patterns are merely proper to explain the performance under
these patterns; they are not convincing enough to predict the
performance under general nonuniform traffic. In particular,
with so few workload patterns, we can hardly obtain any worst-
case performances, such as the worst-case throughput. So far,
there are only sporadic reports of stuck states at which switches
show quite bad performances; e.g., a 3×3 switch with iSLIP
can only achieve a throughput of 66.7% under certain input [3].
To our knowledge, no method for systematically searching the
stuck states has been reported till now. In Section IV, we will
use our simulation method to systematically seek the potential
bad throughput of an input-queued switch operated by iSLIP
and other schedulers.

The second weakness of stochastic simulation is that it
always needs quite a long time before reaching the steady state.
In the stochastic simulation, arriving cells are randomly
generated according to the workload pattern. Generally, this
simulation has to run as many as hundreds of thousands of time
slots before converging to the steady state.

In this paper, we propose a novel switch simulation method,
based on two techniques: exhaustive workload pattern
generation and smoothed periodic input generation, aiming to
remove the two weaknesses of stochastic simulation. The rest
of the paper is organized as follows. In Section II, we will
elaborate on the workload pattern generation methods,
including the exhaustive generation and the random generation.
In Section III, we will explain the concept of smoothness and
how to generate the smoothed periodic input. In Section IV, we
will use some examples to show the application of the
workload pattern generation and the smoothed periodic input.
Finally, in Section V, we will conclude this paper with future
works.

II. WORKLOAD PATTERN GENERATION
A workload pattern for an N by N switch, either uniform or

nonuniform, can be expressed as a matrix Λ = (λi, j)N × N, where
i, j = 0, …, N−1, and λi, j ≥ 0 for all i and j. The commonly used
workload pattern is admissible (i.e., ∑i λi, j ≤ 1 for all j and ∑j λi, j
≤ 1 for all i), and the offered loads at each input and at each
output are all equal to ρ (i.e., ∑j λi, j = ρ for all i and ∑i λi, j = ρ for
all j), where 0 < ρ ≤ 1. Therefore, they can be transformed into
ρ⋅Λ' where Λ' is a doubly stochastic matrix ((i.e., ∑i λ'i, j = 1 for
all j and ∑j λ'i, j = 1 for all i) and is called a distribution matrix in
this paper. For all practical purposes, elements in the matrices
are rational numbers. Therefore, a doubly stochastic matrix, or
a distribution matrix, is equivalent to an integer matrix A = (ai,
j)N×N whose sum of each line (row or column) is equal to a
common integer D and ai, j is a nonnegative integer between 0
and D. Now each element of the workload matrix is expressed
as λi, j = ρ⋅ai, j/D.

In traditional simulations, ρ varies from 0.1 to 1.0, and four
types of nonuniform distribution matrix are used. If more types
of distribution matrix can be generated and tested, we can be
more confident about the conclusions of performance
evaluation. We propose two methods to produce the matrices:
the exhaustive generation and the random generation.

A. Exhaustive generation
The exhaustive generation means that given integer

parameters N and D, generate all N×N integer matrices A such

that ai, j ≥ 0, and the sum of each line, row or column, is equal
to D. Owing to space limitation, the exhaustive generation
algorithm and the proof of its correctness will be published
elsewhere soon [8]. Table I lists some numbers of matrices
produced by exhaustive generation with some small N and D. It
can be anticipated that the number will increase exponentially
with N and D.

While it has the best coverage, simulation based on
exhaustive workload pattern generation has poor scalability.
However, when N and D are small, such exhaustive simulation
is feasible. Exhaustive simulation at small size with good result
might not be sufficient to guarantee something for larger size,
but it is necessary. In other words, exhaustive simulation at
small size with bad result is sufficient to expel the switch from
further consideration; at least we can hardly be confident about
the performance for larger size.

Anyway, scalability is the bottleneck to exhaustive
simulation. One way to alleviate this problem is to reduce
isomorphism during generation. In the switch simulation, row
interchanges and column interchanges of a workload pattern
mean renaming inputs and outputs, and hence are two kinds of
isomorphism. Another way, which is scalable, is to randomly
sample among the distribution matrices, as explained next.

TABLE I. THE NUMBER OF MATRICES PRODUCED BY EXHAUSTIVE
GENERATION.

D

N

1 2 3 4 5 6 7 8

3 6 21 55 120 231 406 666 1035
4 24 282 2008 10147 40176 132724 381424 981541
5 120 6210 153040 2224955 22069251 164176640 976395820 *

B. Random generation
In order to solve the scalability problem of the exhaustive

generation method, we propose a random generation algorithm,
which is a simple variant of the exhaustive generation
algorithm [8]. Given a positive integer D, we can randomly
generate any number of N×N integer matrices with each line
sum equal to D.

The random generation is no longer restricted to small N and
D. Actually, any large N and D can be used. What’s more, any
number of workload patterns can be generated. Therefore such
random generation method is both scalable and flexible. In
practice, besides testing the commonly used types of workload
patterns, we can additionally test random workload patterns as
long as resource permits or until we are confident enough about
the conclusion. Simply speaking, such random simulation is
between the two extremes of the traditional restricted
simulation and the newly proposed exhaustive simulation.

The generated workload pattern can be used in conjunction
with any input pattern, either the stochastic input or the
periodic input, including the smoothed periodic input that will
be introduced in the next section.

III. SMOOTHED PERIODIC INPUT
While stochastic traffic patterns are predominant in

simulation, periodic traffic patterns are reported sporadically to
have special bad effects. For example, a periodic traffic pattern
may make the throughput of an input-queued switch with FIFO

queues as small as 1/N [11]; another periodic traffic pattern
makes a 3×3 input-queued switch with virtual output queues
and iSLIP scheduler enter a stuck state with a throughput of
only 2/3 or 66.7% [3]; still another pathological periodic traffic
can make a basic load-balanced router deliver a throughput of
only 1/N [10]. All these throughput results are in sharp contrast
to the corresponding theoretical stochastic analysis results. For
example, it is proved that a basic load-balanced switch
guarantees 100% throughput for any stationary and weakly
mixing arrival patterns with admissible mean rate [3].

We prefer periodic input patterns to stochastic ones in
simulation for several reasons. First, periodic patterns are much
easier to understand than stochastic ones. We wonder if most
people in the field understand the essence of stochastic models
such as a weakly mixing stochastic process. Second, periodic
patterns and the associated simulation results are easy to repeat
or reproduce since they have no variance incurred by
randomness. Third and most important, periodic input patterns
are more likely to cause poor performances of scheduling
algorithms, such as low throughput, than the stochastic
counterparts, as mentioned above. We speculate that these
phenomena are not uncommon; they must be governed by
hidden laws.

We know that almost all switches are deterministic since
generating randomness in high speed is not feasible [15].
Therefore a deterministic switch can have only a finite number
of states such as memory occupancy states and round-robin
pointer states. If the switch is not designed properly, the
number of switch states might not be able to beat the larger
number of input patterns, and the switch is probable to behave
poorly under certain adversarial input patterns. The invariant
periodic patterns are easy to make the bad states of the switch
hold on indefinitely, and hence speed up the emergence of poor
performances. In contrast, a stochastic input can hardly
maintain any fixed pattern and hence is difficult to unveil the
poor performance. In this paper we make some initial attempts.

There are several methods to generate a periodic input. Here,
we propose a periodic arrival pattern called the smoothed
periodic input, which is based on the algorithm sMUX [7].
Next, we will introduce the concept of smoothness and the
algorithm sMUX, and then explain how to generate smoothed
periodic traffic for the switch simulation.

A. Smoothness and sMUX
There are n flows of fixed-size cells sharing a link of

bandwidth r; each flow fi has a reserved bandwidth ri, where
ri > 0 and ∑i ri ≤ r. This specifies an instance (r; r1, r2, ..., rn),
which can be reduced to its normal form (1; w1, w2, …, wn),
abbr. (w1, w2, …, wn), in which wi = ri / r > 0 and ∑i wi ≤ 1. For
all practical purposes, bandwidth and weight parameters are
supposed to be rational numbers.

Time is slotted, with slot t denoting the real interval [t, t +1),
and slot interval [t1, t2) denoting the slot set {t1, t1+1, …, t2–1}.
A schedule or scheduler S for an instance (w1, w2, …, wn) is a
function S: [t1, t2)→{�, τ1, τ2, …, τn}, mapping slots to cells;
cell � stands for the type of empty cells and cell τi stands for
the type of cells of flow fi.

The smooth multiplexing problem (SMP) is to generate a
smooth schedule such that occurrences of each cell τi, or
equivalently, cells of each flow fi, are smoothly or evenly
distributed in the whole sequence. Intuitively, in an ideally

smooth schedule for an SMP instance (w1, w2, …, wn) any
interval of l consecutive slots should cover (l·wi), or in practice,
either l·wi or l·wi number of cell τi. Such intuitive view of
covering, along with integral constraint, shall be taken into
account during formalization.

Let Cover(S, τi, t, l), abbr. Coveri(t, l), denote the number of
cell τi that are scheduled by scheduler S inside slot interval [t, t
+ l). By investigating the whole spectrum of Coveri(t, l) and its
worst-case deviation from an ideal distribution on slot intervals
starting from arbitrary slot t with arbitrary length l, we obtain a
series of measures that gradually become independent of t and l
and only dependent on the schedule and the cell.

Given an arbitrary slot interval L = [t1, t2), t1 < t2, which
could be finite (t2 < +∞) or infinite (t2 = +∞), the minimum and
the maximum covers of length l within this interval can be
defined as follows:

Minimum cover cvr(S, τi, l)
= mint{Coveri(t, l) | [t, t + l) ⊆ [t1, t2)}, abbr. cvri(l);

Maximum cover CVR(S, τi, l)
= maxt{Coveri(t, l) | [t, t + l) ⊆ [t1, t2)}, abbr. CVRi(l).

We stipulate that cvri(0) = CVRi(0) = 0. We measure the
covering smoothness of the actual distribution of cell τi within
interval [t1, t2) by the following two worst-case covering
deviations from the ideal:

Covering sparseness deviation cvr-devi
= maxl{l · wi − cvri(l) | 0 ≤ l ≤ t2 − t1};

Covering burstiness deviation CVR-devi
= maxl{CVRi(l) − l · wi | 0 ≤ l ≤ t2 − t1}.

Note that cvr-devi ≥ 0 and CVR-devi ≥ 0 under such
definitions. Within interval [t1, t2), if cvr-devi = CVR-devi = 0,
or equivalently, if l · wi ≤ Coveri(t, l) ≤ l · wi for any
interval [t, t + l) ⊆ [t1, t2), the distribution of cell τi should be
ideal from the covering point of view.

Besides the proportion wi, each flow fi is additionally
associated with an initiation time Ii to mark the earliest time
slot the scheduler is ready to schedule flow fi. This is to reflect
the dynamic scheduling of newly admitted flows in practical
applications. Starting from time Ii, the j-th (j = 1, 2, 3…) cell
service provided for flow fi is eligible at time ei,j = Ii + (j–1)/wi
and is expected to finish before deadline di,j = Ii + j/wi. That is,
the jth cell of flow fi is expected to be allocated in the j-th
window [Ii + (j–1)/wi, Ii + j/wi).

Next, we give the algorithm sMUX and two theorems about
sMUX. Due to space limitation, please refer to [7] for the
scheduling example of sMUX and the proof of two theorems.

Algorithm sMUX: At each time slot t, among those flows that
are eligible for scheduling at time t, i.e., their cells to be
serviced have eligible times no later than t (ei,j ≤ t, equivalently,
ei,j ≤ t), allocate slot t to the flow with the earliest upper
rounded deadline di,j; ties are broken arbitrarily. When no
flow is eligible, slot t is left idle. 

Theorem 1 In a sMUX schedule for an SMP instance (w1,
w2, …, wn) with initiation times (I1, I2, …, In), the j-th (j = 1,
2…) cell service of flow fi occurs within the slot interval [ei,j,
di,j), where ei, j = Ii + (j – 1)/wi and di,j = Ii + j/wi. 

Theorem 2 Given a sMUX schedule for an SMP instance (w1,
w2, …, wn) with initiation times (I1, I2, …, In). Then for any
interval length l and step size s, the sMUX schedule has the
following properties:
⑴ l ⋅ wi ≤ Cover(S, τi, Ii, l) ≤ (l − 1) ⋅ wi + 1,
⑵ (l + 1) ⋅ wi − 1 ≤ cvri(l) ≤ CVRi(l) ≤ (l − 1) ⋅ wi + 1,
⑶ cvr-devi ≤ 1, CVR-devi ≤ 1. 

Since certain instances have no solutions with ideal covering
properties, such as the instance (1/2, 1/3, 1/6), Theorem 2
implies that algorithm sMUX is almost an optimal scheduler
for generating smoothed sequences.

B. Smoothed periodic input generation
 We can use each row vector of the workload matrix Λ as the

parameters of sMUX to produce the smoothed periodic input at
each input port. Fig. 2 is an example, where the input is
periodic with a period of 6 time slots.

Figure 2. Smoothed periodic input generator.

In principle, the smoothed stream is most favorable for
switch scheduling. Thus the smoothed periodic input should be
the most schedulable stream among periodic inputs. If an
algorithm performs poorly at the smoothed periodic input, it
probably performs worse at other periodic inputs. Coupled with
the workload pattern generation, the smoothed periodic input
can be used for identifying the potential stuck states of
scheduling algorithms; we will see some examples of this
application in Section IV.

IV. SIMULATIONS
In Section II and Section III, we introduce two components

of our simulation method. In this section, we present some new
throughput results about several crossbar schedulers with both
exhaustive and random workload patterns coupled with
smoothed periodic inputs. The throughput is defined as the
average rate among outputs during the steady state under full
workload (ρ = 1) [9].

In our simulations, simulation time for each experiment is at
most 200,000 time slots. After first 40,000 slots pass, we start
to check the steady state; specifically, every 2,000 slots we
calculate the average output rate; when the differences in the
consecutive five results are less than 0.1%, we consider that we
have already arrived at the steady state and stop the current
simulation.

A. Throughput lower than 66.7% for iSLIP
A stuck state was reported that makes a 3×3 input-queued

crossbar switch with iSLIP achieve only 66.7% throughput [3].
In order to systematically find the stuck states, we use the
exhaustive workload pattern generation together with the
smoothed periodic input generation in our simulation.

The scheduling algorithm is 1-iSLIP, and the offered load of
each input is set to 1 to measure the throughput. Since the
switch size is small (N = 3), we set parameter D to 20. The
exhaustive generation can produce 26,796 workload patterns.

Our simulation discovers two workload patterns that make
the 1-iSLIP achieve only 61.7% throughput, as shown in Fig. 3.
Then we use the Bernoulli stochastic input under these two
patterns for simulation, and 1-iSLIP achieves 75.8% and 75.4%
throughput, higher than those of the smoothed periodic input.

However, the worst throughput of 4-iSLIP found by this
method is 66.7% when N = 3 and D = 20, just the same as
before. But by our method, we can find another workload
pattern shown in Fig. 4 that makes a 4×4 switch with 4-iSLIP
achieve a throughput of only 65.6%, lower than 66.7%. The
same workload pattern results in a throughput of 85.6% under
the Bernoulli stochastic input.

















965
1136

1019

















1082
0713

1055

Figure 3. Workload patterns make a 3×3 switch with 1-iSLIP achieve
61.7% throughput.



















0152
2411
5021
1304

Figure 4. A workload pattern makes a 4×4 switch with 4-iSLIP achieve
65.6% throughput.

B. New throughput analysis of five schedulers
For a long time, the throughput comparison of iSLIP, RRM

[15], FIRM [21] and DRRM [4][12] under nonuniform traffic
has been based on few workload patterns and the stochastic
input pattern. Now we investigate the throughputs of these
algorithms by our new simulation method.

We use a 4×4 crossbar switch and set the parameter D to 7
and 8, which can produce 381,424 and 981,541 matrices
respectively. The offered load is 1, and algorithms iterate one
and four times. All pointers are initialized to be 0. The
throughput results are shown in Tables II to V. We also use the
random generation of workload patterns to test larger instances;
specifically, N = 16, D = 100, and 10,000 instances are sampled
in each simulation, with results shown in Tables VI and VII.

Note: DRRM1 and DRRM2 in the following tables denote
respectively the DRRM algorithm in [4] and [12]. The former
is the 2-step counterpart of iSLIP, and the latter is the 2-step
counterpart of FIRM. In our expectation, a 3-step scheduler and
its 2-step counterpart should behave the same under exhaustive
workload patterns.

TABLE II. THROUGHPUT RESULTS WITH ONE ITERATION, D = 7.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.571 0.813 0.066 0.052
FIRM 0.625 0.814 0.062 0.048
RRM 0.250 0.742 0.102 0.075

DRRM1 0.536 0.788 0.068 0.052
DRRM2 0.571 0.797 0.062 0.049

TABLE III. THROUGHPUT RESULTS WITH FOUR ITERATIONS, D = 7.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.714 0.878 0.053 0.043
FIRM 0.714 0.887 0.050 0.039
RRM 0.714 0.879 0.053 0.042

DRRM1 0.536 0.788 0.068 0.052
DRRM2 0.571 0.797 0.062 0.049

TABLE IV. THROUGHPUT RESULTS WITH ONE ITERATION, D = 8.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.562 0.802 0.061 0.048
FIRM 0.594 0.805 0.057 0.044
RRM 0.250 0.731 0.094 0.070

DRRM1 0.563 0.780 0.060 0.046
DRRM2 0.594 0.786 0.056 0.043

TABLE V. THROUGHPUT RESULTS WITH FOUR ITERATIONS, D = 8.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.656 0.872 0.049 0.038
FIRM 0.687 0.884 0.045 0.036
RRM 0.656 0.863 0.045 0.036

DRRM1 0.563 0.780 0.060 0.046
DRRM2 0.594 0.786 0.056 0.043

TABLE VI. THROUGHPUT RESULTS WITH ONE ITERATION.
 RANDOM GENERATION 10,000 TIMES. N= 16, D = 100.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.663 0.726 0.015 0.011
FIRM 0.664 0.725 0.015 0.012
RRM 0.650 0.686 0.014 0.011

DRRM1 0.610 0.683 0.018 0.014
DRRM2 0.605 0.682 0.018 0.014

TABLE VII. THROUGHPUT RESULTS WITH FOUR ITERATIONS.
 RANDOM GENERATION 10,000 TIMES. N= 16, D = 100.

Algorithm Worst Average Standard
Deviation

Mean Absolute
Deviation

iSLIP 0.814 0.860 0.010 0.008
FIRM 0.834 0.869 0.009 0.007
RRM 0.820 0.865 0.010 0.008

DRRM1 0.610 0.683 0.018 0.014
DRRM2 0.605 0.682 0.018 0.014

We make the following observations from the tables:
(1) The worst throughputs of these algorithms are lower

than 72% even with four iterations, which is not
reported before. In particular, iSLIP has a worst
throughput of 65.6% even with four iterations, which
is worse than the 66.7% result [3], as already
mentioned.

(2) The standard deviation and the mean absolute
deviation are based on simulation results of all the
generated matrices. They are small for iSLIP, FIRM
and DRRM with either one or four iterations; for RRM,
the two deviations are large with one iteration, but
become small with four iterations. Anyway, such small
deviations indicate that the throughputs of these
algorithms under nonuniform traffic are quite stable.

(3) Comparing both the worst and the average throughputs
under both one and four iterations, FIRM is slightly
better than the other four algorithms.

(4) In 1,362,965×5×2 simulations for Tables II-V, the
longest simulation time needs less than 20,000 slots
after the initial 40,000 slots, much shorter than the
stochastic simulation.

(5) The throughput of either DRRM1 or DRRM2 is not
improved after the number of iteration is increased.
This is due to their pointer updating policies [12]. In
general, the 2-step algorithms while symmetric to the
3-step algorithms (DRRM1 vs. iSLIP, DRRM2 vs.
FIRM), seem inferior to the latter in terms of
throughput, which is beyond our expectation and needs
further investigation.

(6) There is an interesting phenomenon: the worst
throughput of 4-DRRM1 or 4-DRRM2 when D = 7 is
smaller than that of D = 8. We use Μ7 and M8 to
express the set of matrices produced when D is 7 and
8. Since 8 is not a multiple of 7, the set M7 is not a
subset of M8, though smaller than M8.

(7) With random sampling for relatively large-scale
instances, the results are similar to those of the
exhaustive generation for small-scale instances; e.g.,
throughputs are stable, FIRM is best, 2-step schedulers
are relatively poor.

V. CONCLUSIONS AND FUTURE WORK
Simulation is indispensable to performance evaluation of

switches since theoretical analysis is quite difficult. However,
simulation models are greatly influenced and hence constrained
in some aspect by the stochastic models used in theoretical
analysis (e.g., the stochastic input patterns), and sometimes are
quite ad hoc in some other aspect (e.g., the few workload
patterns). Since switch design, and perhaps most equipment
designs, are oriented towards the worst-case guarantee or
catastrophe prevention, current stochastic simulation is
inadequate.

Our first contribution is the use of workload pattern
generation to make the simulation results more convincing for
non-uniform traffic. Specifically, two scenarios for the use of
the idea are proposed: the exhaustive generating of workload
patterns is suitable for small-scale simulations (e.g., small N),
with an aim to identify potential flaws (e.g., extremely low
throughput) in the switch design; the random sampling of the
workload patterns is a tradeoff between scalability and
accuracy.

Our second contribution is use of the smoothed periodic
input pattern to quickly find the potential flaws in the switch
design. We notice that the sporadic reports of quite bad
throughputs of certain switches are all based upon periodic

input patterns, and we propose a systematic method for the
same task, which uses the exhaustive workload patterns and the
smoothed periodic input patterns. Smoothed admissible traffic
patterns seem to be most favorable to switches, but they still
can find poor throughput that is lower than previous reports.

What we intend to do is to develop a new performance
evaluation method that is deterministic, worst-case oriented,
and non-asymptotic, hence more relevant to practices. Still
much more work to be done, and let’s name a few.

First, more periodic patterns should be tested. Given a
workload pattern for an input, say (1/2, 1/3, 1/6), besides the
smoothed periodic pattern (0 1 0 1 0 2), there can be the
clustered periodic pattern (0 0 0 1 1 2), and the smoothed
bursty patterns with different burst length, say (0 0 1 1 0 0 1 1 0
0 2 2) with a burst length of 2. What are their different effects
on the simulation? Preliminary experiments indicate that the
clustered pattern can deliver quite bad throughput, while the
smoothed pattern can converge quickly.

Second, the steady state of the simulation could be
determined in an accurate way. Under the stochastic model, it
is difficult to judge whether the simulation has entered the
steady state. When the input is periodic, since the switch has
only a finite number of states, each output will converge to a
deterministic sequence. Therefore, we can accurately determine
the steady state, i.e. compute the period of the sequence.

Third, after we compute the steady state, we can accurately
measure the performances. Besides throughput, rate guarantee
can also be measured. With smoothed input, any smoothness
deviation in the output sequence is due to the switch; hence
fairness and jitter performances of the switch (including the
scheduler) can be measured accurately.

Fourth, with a complete method available in hand, more
switches can be tested under more realistic models. For
example, two assumptions are used for theoretical analysis of
stability: the admissible traffic is Bernoulli i.i.d. or satisfies a
strong law of large numbers; the latter is more realistic. A
periodic input is not a Bernoulli i.i.d. input, but satisfies the
strong law of large numbers. Hence, any switch that is stable
under Bernoulli traffic should be tested by periodic inputs. If
the switch is stable in simulations with extensive periodic input
patterns, this may be evidence of stability under admissible
traffic satisfying the strong law of large numbers. If not, in
particular, the switch is surely unstable under admissible traffic
satisfying a strong law of large numbers, and hence may be not
suitable for practical use.

REFERENCE
[1] A. Baranowska, G. Danilewicz, W. Kabacinski, J. Kleban, D.

Parniewicz, and P. Dabrowski, “Performance evaluation of the multiple
output queueing switch under different traffic patterns,” Proc. IEEE
GLOBECOM '05, Nov./Dec. 2005, pp. 609-613.

[2] A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “A framework for
differential frame-based matching algorithms in input-queued switches,”
Proc. IEEE INFOCOM '04, Mar. 2004, PP. 1147-1157.

[3] C.S. Chang, D.S. Lee, and C.M. Lien, “Load balanced Birkhoff-von
Neumann switches, Part I: One-stage buffering,” Computer
Communications, vol. 25, no. 6, Apr. 2002, pp. 611-622.

[4] H.J. Chao, “Saturn: A terabit packet switch using dual round-robin,”
IEEE Comm. Magazine, vol. 38, no. 12, Dec. 2000, pp. 78-84.

[5] J.G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” Proc. IEEE INFOCOM '00, Mar. 2000, pp. 556-64.

[6] P. Giaccone, Devavrat Shah, and Balaji Prabhakar, “An implementable
parallel scheduler for input-queued switches,” Proc. IEEE Hot
Interconnects '01, Aug. 2001, pp. 9-14.

[7] Simin He, Shutao Sun, Wei Zhao, Wen Gao, and Yanfeng Zheng,
“Smooth Switching Problem in Buffered Crossbar Switches,” Proc.
ACM Sigmetrics ’05, Jun. 2005, pp. 386-387.

[8] Si-Min He and Shu-Tao Sun, “Generating doubly stochastic matrices,”
tech. rep., 2005.

[9] M. J. Karol, M. G. Hluchyj, and S.P. Morgan, “Input Versus Output
Queueing on a Space-Division Packet Switch,” IEEE Trans. Comm., vol.
35, no.12, Dec. 1987, pp. 1347-1356.

[10] Isaac Keslassy, “The Load-Balanced Router,” Ph.D. dissertation, Univ.
Stanford, 2004.

[11] S.-Y.R. Li, “Theory of periodic contention and its application to packet
switching,” Proc. IEEE INFOCOM '88, Mar. 1988, pp. 320-325.

[12] Y. Li, S. Panwar, and H.J. Chao, “On the performance of a dual round-
robin switch,” Proc. IEEE INFOCOM '01, Apr. 2001, pp. 1688-1697.

[13] M. Ajmone Marsan, A. Bianco, E. Filippi, P. Giaccone, E. Leonardi, and
F. Neri, “On the Behavior of Input Queuing Switch Architectures,”
European Trans. Telecommunications, vol. 10, no. 2, Mar./Apr. 1999,
pp. 111-124.

[14] M. Ajmone Marsan, P. Giaccone, E. Leonardi, and F. Neri, “Local
Scheduling Policies in Networks of Packet Switches with Input Queues,”
Proc. IEEE INFOCOM '03, Mar./Apr. 2003, pp. 1395-1405

[15] N. McKeown, “Scheduling Cells in an Input-Queued Switches,” Ph.D.
dissertation, Univ. California at Berkeley, 1995.

[16] N.W. McKeown and T.E. Anderson, “A Quantitative Comparison of
Scheduling Algorithms for Input-Queued Switches,” Computer
Networks and ISDN Systems, vol. 30, no. 24, Dec. 1998, pp. 2309-2326.

[17] N.W. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
Throughput in an Input-Queued Switch,” IEEE Trans. Comm., vol. 47,
no. 8, August 1999, pp. 1260-1267.

[18] L. Mhamdi, and M. Hamdi, “Practical scheduling algorithms for high-
performance packet switches,” Proc. IEEE ICC '03, May 2003, pp.
1659-1663.

[19] R. Rojas-Cessa, E. Oki, Zhigang Jing, and H.J. Chao, “CIXB-1:
combined input-one-cell-crosspoint buffered switch,” Proc. IEEE HPSR
'01, May 2001, pp. 324-329.

[20] R. Rojas-Cessa, E. Oki, and H.J. Chao, “CIXOB-k: combined input-
crosspoint-output buffered packet switch,” Proc. IEEE GLOBECOM
'01, Nov. 2001, pp. 2654-2660.

[21] D.N. Serpanos and P.I. Antoniadis, “FIRM: A class of distributed
scheduling algorithms for high-speed ATM switches with multiple input
queues,” Proc. IEEE INFOCOM ’00, Mar. 2000, pp. 548-555.

[22] Devavrat Shah, P. Giaccone, and Balaji Prabhakar, “An efficient
randomized algorithm for input-queued switch scheduling,” Proc. IEEE
Hot Interconnects '01, Aug. 2001, pp. 3-8.

