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Abstract—Simulation is crucial to performance evaluation of 
switches. Currently stochastic simulation is the predominant 
approach, which has two drawbacks: few workload patterns and 
long simulation times. In this paper, we propose a novel switch 
simulation method that is based on two techniques: exhaustive 
workload pattern generation and smoothed periodic input 
generation. The exhaustive workload pattern generation can 
produce a huge number of nonuniform workload patterns, which 
far exceeds the traditional few ones; conclusions based on such 
truly extensive simulations are much more convincing. The 
periodic input or cell arrival pattern outperforms the stochastic 
counterpart in terms of easy repetition and fast convergence of 
simulation; in particular, among periodic inputs, the smoothed 
periodic input is most favorable to switch scheduling, and hence 
switches performing poor with it probably performs worse under 
others. Combining these two techniques together can 
systematically identify lots of stuck states at which some switches 
show poor performances such as low throughput. Specifically, 
this method discovers that the throughput of iSLIP, FIRM and 
DRRM, each with one iteration, may be lower than 60% under 
certain nonuniform and smoothed periodic traffic pattern.1 

Keywords-Performance evaluation, simulation, switches. 

 

I. INTRODUCTION 
Performance evaluation is crucial to the research of switch 

architectures and scheduling algorithms. Theoretical analysis 
and computational simulation, as two major means of 
performance evaluation, have their own strengths and 
weaknesses. Conclusions of the theoretical analysis have good 
generality. For example, under Bernoulli uniform traffic, an 
input-queued switch with FIFO (first-input-first-output) queues 
has a throughput limited to just 58.6% [9]; under any 
admissible traffic, an input-queued switch with virtual output 
queues and maximum weight matching schedulers can achieve 
100% throughput asymptotically [17] [5] [14]. All of these 
theoretical analyses use stochastic models and obtain 
asymptotic conclusions for the average cases, which are not 
quite relevant to practices. Furthermore, as switch fabrics and 
scheduling algorithms become increasingly complex, 
theoretical analysis may become too difficult to draw any 
conclusion.  

In contrast to theoretical analysis, simulation can be 
performed easily and in a wider range. Any switch architecture, 
                                                                            

This work was supported in part by the National Natural Science 
Foundation of China under Grant 69983008 and the Institute of Computing 
Technology, Chinese Academy of Sciences under Grant 20056090. 

and/or any switch scheduler, is amenable to simulation, and has 
to be evaluated by simulation. The first step is to generate some 
traffic patterns, which has two components. One is the 
workload pattern generation, i.e., generating a rate matrix with 
each element indicating the normalized rate of flow for an 
input-output channel. It is uniform if all the elements are equal 
and nonuniform otherwise. The other is the input pattern or cell 
arrival pattern generation, i.e., generating flows of cells at each 
input port with the specified rates. Influenced by the models for 
theoretical analysis, the workload patterns are usually 
admissible and identically loaded at each input port, and input 
patterns can be Bernoulli, exponential, and so on.  

While it has been the predominant approach to performance 
evaluation, stochastic simulation has two weaknesses. The first 
weakness is that stochastic simulation only adopts few 
workload patterns. Specifically, let ρ denote the normalized 
load at each input port and λi, j as the rate of flow arriving at 
input i and destined for output j, there are four nonuniform 
patterns used most: 

Pattern 1 (Diagonal) [13][6][22][1]: λi, i = 2ρ/3 and  λi, i+1 = 
ρ/3 for all i from 0 to (N − 1), and λi, j = 0 for all other i and j. 
The operation ‘+’ is subject to modulo N. An example is Fig.1 
(a).  

Pattern 2 (Log-diagonal) [6][22][1]: Arrival rates at the 
same input differ exponentially;  i.e., λi, i+j = 2λi, i+j+1, where 0 ≤ j 
≤ N – 2. An example is Fig. 1 (b).  

Pattern 3 (Lin-diagonal) [2][1]: Arrival rates at the same 
input differ linearly; i.e., λi, i+j − λi, i+j+1 = 2ρ/N(N+1), where 0 ≤ j 
≤ N – 2, or λi, i+j = 2ρ (N – j) / (N2+N) where 0 ≤ j ≤ N – 1. An 
example is Fig. 1 (c).  

Pattern 4 (Unbalanced) [12][19][20][18]: Let w denote the 
unbalanced probability, then λi, j = ρ (w + (1 − w)/N) if i = j and  
λi, j = ρ (1 − w)/N otherwise. When w = 0, the traffic is uniform. 
When w = 1, it is completely unbalanced, i.e., the traffic at 
input i is only destined  for output i. An example is Fig. 1 (d). 
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Figure 1.  Examples of four nonuniform workload patterns.  
(a)   ρ = 0.9; (b) ρ = 0.7; (c) ρ = 0.6; (d) ρ = 1.0, w = 0.4. 

Current experimental evaluation of switch performances 
under nonuniform traffic is mainly based on the above four 
patterns. However, simulation results from so few workload 



patterns are merely proper to explain the performance under 
these patterns; they are not convincing enough to predict the 
performance under general nonuniform traffic. In particular, 
with so few workload patterns, we can hardly obtain any worst-
case performances, such as the worst-case throughput. So far, 
there are only sporadic reports of stuck states at which switches 
show quite bad performances; e.g., a 3×3 switch with iSLIP 
can only achieve a throughput of 66.7% under certain input [3]. 
To our knowledge, no method for systematically searching the 
stuck states has been reported till now. In Section IV, we will 
use our simulation method to systematically seek the potential 
bad throughput of an input-queued switch operated by iSLIP 
and other schedulers.  

The second weakness of stochastic simulation is that it 
always needs quite a long time before reaching the steady state. 
In the stochastic simulation, arriving cells are randomly 
generated according to the workload pattern. Generally, this 
simulation has to run as many as hundreds of thousands of time 
slots before converging to the steady state. 

In this paper, we propose a novel switch simulation method, 
based on two techniques: exhaustive workload pattern 
generation and smoothed periodic input generation, aiming to 
remove the two weaknesses of stochastic simulation. The rest 
of the paper is organized as follows. In Section II, we will 
elaborate on the workload pattern generation methods, 
including the exhaustive generation and the random generation. 
In Section III, we will explain the concept of smoothness and 
how to generate the smoothed periodic input. In Section IV, we 
will use some examples to show the application of the 
workload pattern generation and the smoothed periodic input. 
Finally, in Section V, we will conclude this paper with future 
works.  

 

II. WORKLOAD PATTERN GENERATION 
A workload pattern for an N by N switch, either uniform or 

nonuniform, can be expressed as a matrix Λ = (λi, j)N × N, where 
i, j = 0, …, N−1, and λi, j ≥ 0 for all i and j. The commonly used 
workload pattern is admissible (i.e., ∑i λi, j ≤ 1 for all j and ∑j λi, j 
≤ 1 for all i), and the offered loads at each input and at each 
output are all equal to ρ (i.e., ∑j λi, j = ρ for all i and ∑i λi, j = ρ for 
all j), where 0 < ρ ≤ 1. Therefore, they can be transformed into 
ρ⋅Λ' where Λ' is a doubly stochastic matrix ((i.e., ∑i λ'i, j = 1 for 
all j and ∑j λ'i, j = 1 for all i) and is called a distribution matrix in 
this paper. For all practical purposes, elements in the matrices 
are rational numbers. Therefore, a doubly stochastic matrix, or 
a distribution matrix, is equivalent to an integer matrix A = (ai, 
j)N×N whose sum of each line (row or column) is equal to a 
common integer D and ai, j is a nonnegative integer between 0 
and D. Now each element of the workload matrix is expressed 
as λi, j = ρ⋅ai, j/D. 

In traditional simulations, ρ varies from 0.1 to 1.0, and four 
types of nonuniform distribution matrix are used. If more types 
of distribution matrix can be generated and tested, we can be 
more confident about the conclusions of performance 
evaluation. We propose two methods to produce the matrices: 
the exhaustive generation and the random generation. 

A. Exhaustive generation 
The exhaustive generation means that given integer 

parameters N and D, generate all N×N integer matrices A such 

that ai, j ≥ 0, and the sum of each line, row or column, is equal 
to D. Owing to space limitation, the exhaustive generation 
algorithm and the proof of its correctness will be published 
elsewhere soon [8]. Table I lists some numbers of matrices 
produced by exhaustive generation with some small N and D. It 
can be anticipated that the number will increase exponentially 
with N and D. 

While it has the best coverage, simulation based on 
exhaustive workload pattern generation has poor scalability. 
However, when N and D are small, such exhaustive simulation 
is feasible. Exhaustive simulation at small size with good result 
might not be sufficient to guarantee something for larger size, 
but it is necessary. In other words, exhaustive simulation at 
small size with bad result is sufficient to expel the switch from 
further consideration; at least we can hardly be confident about 
the performance for larger size.  

Anyway, scalability is the bottleneck to exhaustive 
simulation. One way to alleviate this problem is to reduce 
isomorphism during generation. In the switch simulation, row 
interchanges and column interchanges of a workload pattern 
mean renaming inputs and outputs, and hence are two kinds of 
isomorphism. Another way, which is scalable, is to randomly 
sample among the distribution matrices, as explained next. 

TABLE I.  THE NUMBER OF MATRICES PRODUCED BY EXHAUSTIVE 
GENERATION.  

D 
 
N 

1 2 3 4 5 6 7 8 

3 6 21 55 120 231 406 666 1035 
4 24 282 2008 10147 40176 132724 381424 981541 
5 120 6210 153040 2224955 22069251 164176640 976395820 * 

 

B. Random generation 
In order to solve the scalability problem of the exhaustive 

generation method, we propose a random generation algorithm, 
which is a simple variant of the exhaustive generation 
algorithm [8]. Given a positive integer D, we can randomly 
generate any number of N×N integer matrices with each line 
sum equal to D. 

The random generation is no longer restricted to small N and 
D. Actually, any large N and D can be used. What’s more, any 
number of workload patterns can be generated. Therefore such 
random generation method is both scalable and flexible. In 
practice, besides testing the commonly used types of workload 
patterns, we can additionally test random workload patterns as 
long as resource permits or until we are confident enough about 
the conclusion. Simply speaking, such random simulation is 
between the two extremes of the traditional restricted 
simulation and the newly proposed exhaustive simulation.  

The generated workload pattern can be used in conjunction 
with any input pattern, either the stochastic input or the 
periodic input, including the smoothed periodic input that will 
be introduced in the next section.  

 

III. SMOOTHED PERIODIC INPUT 
While stochastic traffic patterns are predominant in 

simulation, periodic traffic patterns are reported sporadically to 
have special bad effects. For example, a periodic traffic pattern 
may make the throughput of an input-queued switch with FIFO 



queues as small as 1/N [11]; another periodic traffic pattern 
makes a 3×3 input-queued switch with virtual output queues 
and iSLIP scheduler enter a stuck state with a throughput of 
only 2/3 or 66.7% [3]; still another pathological periodic traffic 
can make a basic load-balanced router deliver a throughput of 
only 1/N [10]. All these throughput results are in sharp contrast 
to the corresponding theoretical stochastic analysis results. For 
example, it is proved that a basic load-balanced switch 
guarantees 100% throughput for any stationary and weakly 
mixing arrival patterns with admissible mean rate [3].  

We prefer periodic input patterns to stochastic ones in 
simulation for several reasons. First, periodic patterns are much 
easier to understand than stochastic ones. We wonder if most 
people in the field understand the essence of stochastic models 
such as a weakly mixing stochastic process. Second, periodic 
patterns and the associated simulation results are easy to repeat 
or reproduce since they have no variance incurred by 
randomness. Third and most important, periodic input patterns 
are more likely to cause poor performances of scheduling 
algorithms, such as low throughput, than the stochastic 
counterparts, as mentioned above. We speculate that these 
phenomena are not uncommon; they must be governed by 
hidden laws.  

We know that almost all switches are deterministic since 
generating randomness in high speed is not feasible [15]. 
Therefore a deterministic switch can have only a finite number 
of states such as memory occupancy states and round-robin 
pointer states. If the switch is not designed properly, the 
number of switch states might not be able to beat the larger 
number of input patterns, and the switch is probable to behave 
poorly under certain adversarial input patterns. The invariant 
periodic patterns are easy to make the bad states of the switch 
hold on indefinitely, and hence speed up the emergence of poor 
performances. In contrast, a stochastic input can hardly 
maintain any fixed pattern and hence is difficult to unveil the 
poor performance. In this paper we make some initial attempts.  

There are several methods to generate a periodic input. Here, 
we propose a periodic arrival pattern called the smoothed 
periodic input, which is based on the algorithm sMUX [7]. 
Next, we will introduce the concept of smoothness and the 
algorithm sMUX, and then explain how to generate smoothed 
periodic traffic for the switch simulation. 

A. Smoothness and sMUX 
There are n flows of fixed-size cells sharing a link of 

bandwidth r; each flow fi has a reserved bandwidth ri, where    
ri > 0 and ∑i ri ≤ r. This specifies an instance (r; r1, r2, ..., rn), 
which can be reduced to its normal form (1; w1, w2, …, wn), 
abbr. (w1, w2, …, wn), in which wi = ri / r > 0 and ∑i wi ≤ 1. For 
all practical purposes, bandwidth and weight parameters are 
supposed to be rational numbers. 

Time is slotted, with slot t denoting the real interval [t, t +1), 
and slot interval [t1, t2) denoting the slot set {t1, t1+1, …, t2–1}. 
A schedule or scheduler S for an instance (w1, w2, …, wn) is a 
function S: [t1, t2)→{�, τ1, τ2, …, τn}, mapping slots to cells; 
cell � stands for the type of empty cells and cell τi stands for 
the type of cells of flow fi. 

The smooth multiplexing problem (SMP) is to generate a 
smooth schedule such that occurrences of each cell τi, or 
equivalently, cells of each flow fi, are smoothly or evenly 
distributed in the whole sequence. Intuitively, in an ideally 

smooth schedule for an SMP instance (w1, w2, …, wn) any 
interval of l consecutive slots should cover (l·wi), or in practice, 
either l·wi or l·wi number of cell τi. Such intuitive view of 
covering, along with integral constraint, shall be taken into 
account during formalization. 

Let Cover(S, τi, t, l), abbr. Coveri(t, l), denote the number of 
cell τi that are scheduled by scheduler S inside slot interval [t, t 
+ l). By investigating the whole spectrum of Coveri(t, l) and its 
worst-case deviation from an ideal distribution on slot intervals 
starting from arbitrary slot t with arbitrary length l, we obtain a 
series of measures that gradually become independent of t and l 
and only dependent on the schedule and the cell. 

Given an arbitrary slot interval L = [t1, t2), t1 < t2, which 
could be finite (t2 < +∞) or infinite (t2 = +∞), the minimum and 
the maximum covers of length l within this interval can be 
defined as follows: 

Minimum cover cvr(S, τi, l) 
= mint{Coveri(t, l) | [t, t + l) ⊆ [t1, t2)}, abbr. cvri(l); 

Maximum cover CVR(S, τi, l)  
= maxt{Coveri(t, l) | [t, t + l) ⊆ [t1, t2)}, abbr. CVRi(l). 

We stipulate that cvri(0) = CVRi(0) = 0. We measure the 
covering smoothness of the actual distribution of cell τi within 
interval [t1, t2) by the following two worst-case covering 
deviations from the ideal: 

Covering sparseness deviation cvr-devi  
= maxl{l · wi − cvri(l) | 0 ≤ l ≤ t2 − t1}; 

Covering burstiness deviation CVR-devi  
= maxl{CVRi(l) − l · wi | 0 ≤ l ≤ t2 − t1}. 

Note that cvr-devi ≥ 0 and CVR-devi ≥ 0 under such 
definitions. Within interval [t1, t2), if cvr-devi = CVR-devi = 0, 
or equivalently, if l · wi ≤ Coveri(t, l) ≤ l · wi  for any 
interval [t, t + l) ⊆ [t1, t2), the distribution of cell τi should be 
ideal from the covering point of view.  

Besides the proportion wi, each flow fi is additionally 
associated with an initiation time Ii to mark the earliest time 
slot the scheduler is ready to schedule flow fi. This is to reflect 
the dynamic scheduling of newly admitted flows in practical 
applications. Starting from time Ii, the j-th (j = 1, 2, 3…) cell 
service provided for flow fi is eligible at time ei,j = Ii + (j–1)/wi 
and is expected to finish before deadline di,j = Ii + j/wi. That is, 
the jth cell of flow fi is expected to be allocated in the j-th 
window [Ii + (j–1)/wi, Ii + j/wi). 

Next, we give the algorithm sMUX and two theorems about 
sMUX. Due to space limitation, please refer to [7] for the 
scheduling example of sMUX and the proof of two theorems. 
 
Algorithm sMUX: At each time slot t, among those flows that 
are eligible for scheduling at time t, i.e., their cells to be 
serviced have eligible times no later than t (ei,j ≤ t, equivalently, 
ei,j ≤ t), allocate slot t to the flow with the earliest upper 
rounded deadline di,j; ties are broken arbitrarily. When no 
flow is eligible, slot t is left idle.  
 
Theorem 1 In a sMUX schedule for an SMP instance (w1, 
w2, …, wn) with initiation times (I1, I2, …, In), the j-th (j = 1, 
2…) cell service of flow fi occurs within the slot interval [ei,j, 
di,j), where ei, j = Ii + (j – 1)/wi and di,j = Ii + j/wi.  



Theorem 2 Given a sMUX schedule for an SMP instance (w1, 
w2, …, wn) with initiation times (I1, I2, …, In). Then for any 
interval length l and step size s, the sMUX schedule has the 
following properties: 
⑴ l ⋅ wi ≤ Cover(S, τi, Ii, l) ≤ (l − 1) ⋅ wi + 1, 
⑵ (l + 1) ⋅ wi − 1 ≤ cvri(l) ≤ CVRi(l) ≤ (l − 1) ⋅ wi + 1, 
⑶ cvr-devi ≤ 1, CVR-devi ≤ 1.  
 

Since certain instances have no solutions with ideal covering 
properties, such as the instance (1/2, 1/3, 1/6), Theorem 2 
implies that algorithm sMUX is almost an optimal scheduler 
for generating smoothed sequences.   

B. Smoothed periodic input generation 
 We can use each row vector of the workload matrix Λ as the 

parameters of sMUX to produce the smoothed periodic input at 
each input port. Fig. 2 is an example, where the input is 
periodic with a period of 6 time slots. 

 

 
Figure 2.  Smoothed periodic input generator. 

In principle, the smoothed stream is most favorable for 
switch scheduling. Thus the smoothed periodic input should be 
the most schedulable stream among periodic inputs. If an 
algorithm performs poorly at the smoothed periodic input, it 
probably performs worse at other periodic inputs. Coupled with 
the workload pattern generation, the smoothed periodic input 
can be used for identifying the potential stuck states of 
scheduling algorithms; we will see some examples of this 
application in Section IV. 

 

IV. SIMULATIONS 
In Section II and Section III, we introduce two components 

of our simulation method. In this section, we present some new 
throughput results about several crossbar schedulers with both 
exhaustive and random workload patterns coupled with 
smoothed periodic inputs. The throughput is defined as the 
average rate among outputs during the steady state under full 
workload (ρ = 1) [9].  

In our simulations, simulation time for each experiment is at 
most 200,000 time slots. After first 40,000 slots pass, we start 
to check the steady state; specifically, every 2,000 slots we 
calculate the average output rate; when the differences in the 
consecutive five results are less than 0.1%, we consider that we 
have already arrived at the steady state and stop the current 
simulation.  

A. Throughput lower than 66.7% for iSLIP 
A stuck state was reported that makes a 3×3 input-queued 

crossbar switch with iSLIP achieve only 66.7% throughput [3]. 
In order to systematically find the stuck states, we use the 
exhaustive workload pattern generation together with the 
smoothed periodic input generation in our simulation.  

The scheduling algorithm is 1-iSLIP, and the offered load of 
each input is set to 1 to measure the throughput. Since the 
switch size is small (N = 3), we set parameter D to 20. The 
exhaustive generation can produce 26,796 workload patterns. 

Our simulation discovers two workload patterns that make 
the 1-iSLIP achieve only 61.7% throughput, as shown in Fig. 3. 
Then we use the Bernoulli stochastic input under these two 
patterns for simulation, and 1-iSLIP achieves 75.8% and 75.4% 
throughput, higher than those of the smoothed periodic input.  

However, the worst throughput of 4-iSLIP found by this 
method is 66.7% when N = 3 and D = 20, just the same as 
before. But by our method, we can find another workload 
pattern shown in Fig. 4 that makes a 4×4 switch with 4-iSLIP 
achieve a throughput of only 65.6%, lower than 66.7%. The 
same workload pattern results in a throughput of 85.6% under 
the Bernoulli stochastic input. 
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Figure 3.  Workload patterns make a 3×3 switch with 1-iSLIP achieve 
61.7% throughput.  
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Figure 4.  A workload pattern makes a 4×4 switch with 4-iSLIP achieve 
65.6% throughput. 

B. New throughput analysis of five schedulers  
For a long time, the throughput comparison of iSLIP, RRM 

[15], FIRM [21] and DRRM [4][12] under nonuniform traffic 
has been based on few workload patterns and the stochastic 
input pattern. Now we investigate the throughputs of these 
algorithms by our new simulation method. 

We use a 4×4 crossbar switch and set the parameter D to 7 
and 8, which can produce 381,424 and 981,541 matrices 
respectively. The offered load is 1, and algorithms iterate one 
and four times. All pointers are initialized to be 0. The 
throughput results are shown in Tables II to V. We also use the 
random generation of workload patterns to test larger instances; 
specifically, N = 16, D = 100, and 10,000 instances are sampled 
in each simulation, with results shown in Tables VI and VII.  

Note: DRRM1 and DRRM2 in the following tables denote 
respectively the DRRM algorithm in [4] and [12]. The former 
is the 2-step counterpart of iSLIP, and the latter is the 2-step 
counterpart of FIRM. In our expectation, a 3-step scheduler and 
its 2-step counterpart should behave the same under exhaustive 
workload patterns. 



TABLE II.  THROUGHPUT RESULTS WITH ONE ITERATION, D = 7.  

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.571 0.813 0.066 0.052 
FIRM 0.625 0.814 0.062 0.048 
RRM 0.250 0.742 0.102 0.075 

DRRM1 0.536 0.788 0.068 0.052 
DRRM2 0.571 0.797 0.062 0.049 

TABLE III.  THROUGHPUT RESULTS WITH FOUR ITERATIONS, D = 7. 

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.714 0.878 0.053 0.043 
FIRM 0.714 0.887 0.050 0.039 
RRM 0.714 0.879 0.053 0.042 

DRRM1 0.536 0.788 0.068 0.052 
DRRM2 0.571 0.797 0.062 0.049 

TABLE IV.  THROUGHPUT RESULTS WITH ONE ITERATION, D = 8.  

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.562 0.802 0.061 0.048 
FIRM 0.594 0.805 0.057 0.044 
RRM 0.250 0.731 0.094 0.070 

DRRM1 0.563 0.780 0.060 0.046 
DRRM2 0.594 0.786 0.056 0.043 

TABLE V.  THROUGHPUT RESULTS WITH FOUR ITERATIONS, D = 8. 

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.656 0.872 0.049 0.038 
FIRM 0.687 0.884 0.045 0.036 
RRM 0.656 0.863 0.045 0.036 

DRRM1 0.563 0.780 0.060 0.046 
DRRM2 0.594 0.786 0.056 0.043 

TABLE VI.  THROUGHPUT RESULTS WITH ONE ITERATION. 
 RANDOM  GENERATION 10,000 TIMES. N= 16, D = 100. 

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.663 0.726 0.015 0.011 
FIRM 0.664 0.725 0.015 0.012 
RRM 0.650 0.686 0.014 0.011 

DRRM1 0.610 0.683 0.018 0.014 
DRRM2 0.605 0.682 0.018 0.014 

TABLE VII.  THROUGHPUT RESULTS WITH FOUR ITERATIONS. 
 RANDOM  GENERATION 10,000 TIMES. N= 16, D = 100. 

Algorithm Worst Average Standard 
Deviation 

Mean Absolute 
Deviation 

iSLIP 0.814 0.860 0.010 0.008 
FIRM 0.834 0.869 0.009 0.007 
RRM 0.820 0.865 0.010 0.008 

DRRM1 0.610 0.683 0.018 0.014 
DRRM2 0.605 0.682 0.018 0.014 

 
We make the following observations from the tables: 
(1) The worst throughputs of these algorithms are lower 

than 72% even with four iterations, which is not 
reported before. In particular, iSLIP has a worst 
throughput of 65.6% even with four iterations, which 
is worse than the 66.7% result [3], as already 
mentioned. 

(2) The standard deviation and the mean absolute 
deviation are based on simulation results of all the 
generated matrices. They are small for iSLIP, FIRM 
and DRRM with either one or four iterations; for RRM, 
the two deviations are large with one iteration, but 
become small with four iterations. Anyway, such small 
deviations indicate that the throughputs of these 
algorithms under nonuniform traffic are quite stable. 

(3) Comparing both the worst and the average throughputs 
under both one and four iterations, FIRM is slightly 
better than the other four algorithms.  

(4) In 1,362,965×5×2 simulations for Tables II-V, the 
longest simulation time needs less than 20,000 slots 
after the initial 40,000 slots, much shorter than the 
stochastic simulation.  

(5) The throughput of either DRRM1 or DRRM2 is not 
improved after the number of iteration is increased. 
This is due to their pointer updating policies [12]. In 
general, the 2-step algorithms while symmetric to the 
3-step algorithms (DRRM1 vs. iSLIP, DRRM2 vs. 
FIRM), seem inferior to the latter in terms of 
throughput, which is beyond our expectation and needs 
further investigation.  

(6) There is an interesting phenomenon: the worst 
throughput of 4-DRRM1 or 4-DRRM2 when D = 7 is 
smaller than that of D = 8. We use Μ7 and M8 to 
express the set of matrices produced when D is 7 and 
8. Since 8 is not a multiple of 7, the set M7 is not a 
subset of M8, though smaller than M8.  

(7) With random sampling for relatively large-scale 
instances, the results are similar to those of the 
exhaustive generation for small-scale instances; e.g., 
throughputs are stable, FIRM is best, 2-step schedulers 
are relatively poor.  

 

V. CONCLUSIONS AND FUTURE WORK 
Simulation is indispensable to performance evaluation of 

switches since theoretical analysis is quite difficult. However, 
simulation models are greatly influenced and hence constrained 
in some aspect by the stochastic models used in theoretical 
analysis (e.g., the stochastic input patterns), and sometimes are 
quite ad hoc in some other aspect (e.g., the few workload 
patterns). Since switch design, and perhaps most equipment 
designs, are oriented towards the worst-case guarantee or 
catastrophe prevention, current stochastic simulation is 
inadequate.  

Our first contribution is the use of workload pattern 
generation to make the simulation results more convincing for 
non-uniform traffic. Specifically, two scenarios for the use of 
the idea are proposed: the exhaustive generating of workload 
patterns is suitable for small-scale simulations (e.g., small N), 
with an aim to identify potential flaws (e.g., extremely low 
throughput) in the switch design; the random sampling of the 
workload patterns is a tradeoff between scalability and 
accuracy.  

Our second contribution is use of the smoothed periodic 
input pattern to quickly find the potential flaws in the switch 
design. We notice that the sporadic reports of quite bad 
throughputs of certain switches are all based upon periodic 



input patterns, and we propose a systematic method for the 
same task, which uses the exhaustive workload patterns and the 
smoothed periodic input patterns. Smoothed admissible traffic 
patterns seem to be most favorable to switches, but they still 
can find poor throughput that is lower than previous reports.  

What we intend to do is to develop a new performance 
evaluation method that is deterministic, worst-case oriented, 
and non-asymptotic, hence more relevant to practices. Still 
much more work to be done, and let’s name a few.  

First, more periodic patterns should be tested. Given a 
workload pattern for an input, say (1/2, 1/3, 1/6), besides the 
smoothed periodic pattern (0 1 0 1 0 2), there can be the 
clustered periodic pattern (0 0 0 1 1 2), and the smoothed 
bursty patterns with different burst length, say (0 0 1 1 0 0 1 1 0 
0 2 2) with a burst length of 2. What are their different effects 
on the simulation? Preliminary experiments indicate that the 
clustered pattern can deliver quite bad throughput, while the 
smoothed pattern can converge quickly.  

Second, the steady state of the simulation could be 
determined in an accurate way. Under the stochastic model, it 
is difficult to judge whether the simulation has entered the 
steady state. When the input is periodic, since the switch has 
only a finite number of states, each output will converge to a 
deterministic sequence. Therefore, we can accurately determine 
the steady state, i.e. compute the period of the sequence.  

Third, after we compute the steady state, we can accurately 
measure the performances. Besides throughput, rate guarantee 
can also be measured. With smoothed input, any smoothness 
deviation in the output sequence is due to the switch; hence 
fairness and jitter performances of the switch (including the 
scheduler) can be measured accurately. 

Fourth, with a complete method available in hand, more 
switches can be tested under more realistic models. For 
example, two assumptions are used for theoretical analysis of 
stability: the admissible traffic is Bernoulli i.i.d. or satisfies a 
strong law of large numbers; the latter is more realistic. A 
periodic input is not a Bernoulli i.i.d. input, but satisfies the 
strong law of large numbers. Hence, any switch that is stable 
under Bernoulli traffic should be tested by periodic inputs. If 
the switch is stable in simulations with extensive periodic input 
patterns, this may be evidence of stability under admissible 
traffic satisfying the strong law of large numbers. If not, in 
particular, the switch is surely unstable under admissible traffic 
satisfying a strong law of large numbers, and hence may be not 
suitable for practical use.  
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