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1 Introduction

The N=4 super-Yang–Mills action

S =
1

g2

∫

d4xtr
(1

2
FµνF

µν − iλ̄α̇A 6Dα̇βλ
βA − iλAα 6Dαβ̇λ̄

Aβ̇
+

1

2
(Dµφ̄AB)(D

µφAB)

−
√
2φ̄AB{λαA, λBα } −

√
2φAB{λ̄α̇A, λ̄α̇B}+

1

8
[φAB , φCD][φ̄AB , φ̄CD]

)

(1)

is an interacting theory between a Yang–Mills field Aµ, 6 scalar fields φAB and 4 Majorana

spinors λA = (λAα, λAα̇ ), where the indices A,B label the R-symmetry. It is invariant under

the Poincaré supersymmetry transformations with 16 supersymmetry transformations, δǫA
µ =

ǭγµλ, δǫφ
AB = ǫAλB and δλ = (ΓµνFµν + iDµΓ

µφ − [φ, φ])ǫ. The N=4 theory is obtained by

dimensionally reducing the N=1 d=10 theory or, equivalently, the N=2 d=8 theory. The 16

supersymmetries as a whole close only up to field equations, as follows,

{δǫ, δǫ̂} ∼ −2iǭγµǫ̂∂µ − 2iδgauge(ǭγµAµǫ̂) (2)

where the symbol ∼ means modulo (spinor) field equations of motion. In a light-cone approach,

one can select eight supersymmetries that close off-shell. However, in this physical approach,

Lorentz invariance is difficult to recover and, moreover, light-cone gauge field propagators are ill-

defined, even in perturbative quantum field theory. In Euclidean space, the Lorentz symmetry is

SO(4) and the R-symmetry of the theory is SO(5, 1) (instead of SO(6) in Minkowski space). It

is in fact possible to reduce the global SO(4)×SO(5, 1) invariance down to a SO′(4)×SL(2, R)
invariance, a so-called twist operation [1][2]. In this way the fermion and scalar representations

becomes reducible, and one can covariantly select nine supersymmetry generators [3] that close

“off-shell”, that is, constitute a reduced super-algebra where no field equations occur in the

closure relations of transformations. Moreover, the gauge transformation in the right-hand side

of the closure relations can be eliminated, provided one introduces new fields called shadow

fields [4]. Eventually, one can do a gauge-fixing of the theory, such that one has Ward identities

that allow one to control both gauge invariance and supersymmetry at the quantum level.

This provides a solid framework for studying the supersymmetric properties of the N=4 theory

within the framework of quantum field theory [4].

The twist [1][2] of the N=4 superPoincaré symmetry is done by taking the diagonal SU ′(2)

of one of the SU(2) ⊂ SO(5, 1) subgroups of the R-symmetry (there are 3 possible choices

[2]) and one of both SU(2) factors of the Lorentz group. What is left is the new Lorentz

group SO′(4) = SU(2)L ⊗ SU ′(2) and a part of the R-symmetry that contains at least a

U(1) symmetry, for instance, a SL(2, R) symmetry in the first twist. Under the new Lorentz

group, the supersymmetry generators become scalars, vectors and (anti)self-dual tensors. The

16 super-charges are decomposed as follows,

(QA
α , Q̄Aα̇) → (Q0, Q̄0, Qµ, Q̄µ, Qµν− , Q̄µν−) (3)
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The nine charges Q0, Q̄0, Qµ and Qµν− turn out to build an off-shell closed algebra, and, more-

over, they can be geometrically constructed from the point of view of topological field theory

[3] as anticipated in [5]. Furthermore, the N = 4 action is uniquely defined by the invariance

under the symmetry with the 6 generators Q0, Q̄0 and Qµ. The 10=16-6 other supersymmetry

generators are overdetermining and appear as accidental, but welcome, symmetries of the N=4

action. For proving the finiteness of 1/2 BPS operators, one only need the 5-generator subal-

gebra made of Q0, Q̄0 and Qµν− [4]. This may challenge us to find direct ways of constructing

these maybe more fundamental smaller symmetries of the N=4 theory. The aim of this paper

is to show that a non-trivial part of the superconformal symmetry can be also directly built

by generalizing the framework of reference [3]. This will provide a much smaller number of

generators than the 32 ones of the twisted superconformal algebra [7]. It determines the N=4

action, while keeping track of a non-trivial part of the superconformal algebra.

2 The superPoincaré twist of the N=4 Yang–Mills theory

To proceed, we need to give more details for the superPoincaré structure. In the first twisted

formalism, the gluino decomposes analogously as the supersymmetry generators1,

(λaα, λaα̇) → (η, η̄, ψµ, ψ̄µ, χµν− , χ̄µν−) ≡ (ηα, ψα, χIα) (4)

where the SL(2, R) indices 1 ≤ α ≤ 2 label the barred and unbarred fields. So, after the

twist, the 16 = 4 × 4 spinorial degrees of freedom of the conventional theory are expressed as

16 = (2 + 2× 4 + 2× 3) SO′(4)-tensor degrees of freedom.

The 6 components of the SO(5, 1)-valued scalar are twisted as follows (the indices i label

the SL(2,R) adjoint representation),

φ → ( φi, hµν−) ≡ (φi, hI) (5)

The symmetry with the nine generators Q0, Q̄0, Qµ, Qµν− closes off-shell, by including among

the fields an auxiliary fields with 7 components, organized as a vector Tµ and a selfdual 2-form

Hµν− . The balanced system of fields, denoted as (9,16,7) multiplet, is

(Aµ, φ
i, hµν− ,Ψµ, Ψ̄µ, χµν− , χ̄µν− , η, η̄, Tµ, Hµν−) (6)

A brute force change of variables of the known on-shell N = 4 transformation can compute

the action on the fields of the nine generators, with on-shell closure. Standard physicist meth-

ods can provide their modifications to get off-shell closure by introducing the auxiliary fields

Tµ,Hµν− . There is in fact a direct, and maybe more profound, construction that we will explain,

1It is convenient to identify antiselfdual 2-forms as SU(2) ⊂ SO′(4) valued scalars, using the three independent

Kahler 2-forms JI
µν−

, (I = 1, 2, 3), according to the invertible identity XI
≡ JI

µν−
Xµν−

, so that hµν− ∼ hI .
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since it suggests to us the way to incorporate superconformal transformations and determine

straightforwardly an interesting off-shell closed sub-sector of the superconformal algebra.

To find the relevant supersymmetries, it is best to start from eight dimensions, using the

TQFT methods, and to compactify the results in four dimensions. Indeed, in eight dimen-

sions, triality indicates immediately the possibility of mapping the 16 supersymmetry spinorial

generators on twisted tensor generators, as follows,

(Qα, Qα̇) → (Q0, QM , QMN−) (7)

where 1 ≤M,N ≤ 8 are SO(8) indices and the self-duality index MN− is defined by using the

Spin(7) ⊂ SO(8)-invariant selfdual tensor tMNPQ. One has t8abc = cabc where the cabc’s are the

octonion structure coefficient. Using this 4-tensor, any given SO(8) 2-form can be decomposed

as 28 = 7⊕ 21, in a Spin(7) ⊂ SO(8)-invariant way. Thus QMN− stands for 7 generators.

The 9=1+8 generators Q0 and QM can be determined explicitly from the methods of

TQFT [5][6]. They satisfy

Q2
0 = QMQN +QNQM = 0, Q0QM +QNQ0 = ∂M (8)

This equation implies off-shell closure, modulo gauge transformations and is obtained thank’s

to the introduction of an auxiliary field that is a self-dual 2-form TMN− . In seven dimensions,

it becomes a 7-vector auxiliary field Ta, 1 ≤ a ≤ 7. The non-closure relations are cornered

in the sector of the selfdual generator QMN− . Getting rid of QMN− , one has 9=1+8 off-shell

closed generators, which is a property that survives after dimensional reduction, e.g., for the

N=4, d=4 theory.

The off-shell closed representation of the N = 2, d = 8 theory is thus given by the balanced

(9,16,7) multiplet

(AM ,Φ, Φ̄,ΨM , χMN− , η, TMN−) (9)

This 8-dimensional formulation exists in curved space, provided the manifold has Spin(7) holon-

omy, that is, one has a constant spinor, which allows one to map all spinors on forms 2. This is

the triality property. In flat space, it can be understood as a mere Spin(7)⊂ Spin(8) invariant

changes of variables, using the invariant tensor tMNPQ. So, the 8-dimensional twist, we are

concerned with, only preserves the Spin(7)⊂ Spin(8) invariance.

One can then dimensionally reduce all formula in seven dimensions, with AM → (Aa, L),

ΨM → (Ψa, η̄), χMN− → Ψ̄a, TMN− → T̄a, where a = 1, . . . , 7 is a Spin(7) vector index. In

seven dimensions, the balanced 8-dimensional multiplet (9) becomes the following one

(Aa,Φ
i,Ψα

a , η
α, Ta) (10)

2 In fact the existence of such a constant spinor ζ warrantees the existence of the Spin(7)⊂ Spin(8)-invariant

tensor tMNPQ =t ζΓMNPQζ , which allows one to split any given 2-form in a selfdual and antiselfdual 2-form.
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The SL(2, R) indices α = 1, 2 and i = 1, 2, 3 arise naturally in the dimensional reduction,

giving a Spin(7) × SL(2, R) covariance [3]. The 8 generators QM become a 7-vector Qa and

a scalar Q̄0. The 7 generators QMN− become another 7-vector Q̄a, which enforces a global

SL(2, R) covariance of the algebra, by pairing together Qa and Q̄a. The non-closure relations

are now cornered in the anti-commutation relations between the 7-vector generators Q̄a and

Qa, by equations of motion that appear in {Q̄a, Qb}, proportionally to the antisymmetric oc-

tonionic tensor cabc. By introducing a seven-dimensional vector parameter ka, which is shared

by both vector generators Q̄a and Qa, and two independent scalar parameters k0 and k̄0 for

both Q̄0 and Q0, one finds an off-shell closed algebraic structure for the four differential op-

erators k0Q0, k̄
0Q̄0, k

aQa and kaQ̄a,. Their action on the fields expresses an off-shell closed

supersymmetry in seven dimensions, with 9=1+1+7 independent parameters.

One can do a further dimensional reduction in four dimensions. The 7 auxiliary field Ta

decompose into a vector and a self-dual tensor in four dimensions (Tµ,Hµν−), and the 7 gen-

erators Qa decompose into a vector and a self-dual tensor. The nine off-shell closed generators

are Q0, Q̄0, Qµ, Qµν− .

One can in fact do a more subtle selection of generators, to reestablish the SL(2, R) co-

variance in four dimensions. One decomposes the seven generators Q̄a into a vector and a

self-dual tensor in four dimensions, and one retains the SL(2, R) covariant set of 10 generators,

Q0, Q̄0, Qµ and Q̄µ. The 6 generators Q0, Q̄0 and Qµ build an off-shell closed subalgebra, but

the off-shell closure is broken between Qµ and Q̄µ, by equations of motion proportional to the

antisymmetric tensor ǫµνρσ. However, analogously as in seven dimensions, one can introduce a

constant four-dimensional vector parameter kµ and two scalar ones k0 and k̄0 and define the

4 differential operators sα = (k0Q0, k̄
0Q̄0) and δα = (kµQµ, k

µQ̄µ), α = 1, 2, for a total of

6=1+1+4 independent parameters. One can then set k0 = k̄0 = 1 and one finds the following

SL(2, R) and Lorentz covariant graded differential algebra in four dimensions3,

{sα, sβ} = σiαβδgauge(Φi) , {δα, δβ} = σiαβδgauge(|k|2Φi) , {sα, δβ} = ǫαβ(Lk + δgauge(ikA))

(11)

This expresses in a very compact way the off-shell closure of maximal supersymmetry in four

dimensions, with equivariant closure relations.

A possible direct and geometrical construction of these relations in the TQFT language [3]

follows from identities such as

(s+ δ + s̄+ δ̄)(A+ c) + (A+ c)2 =

F + ψ + ψ̄ + g(k)(η + η̄) + g(JIk)(χI + χ̄I) + (1 + |k|2)(Φ̄ + L+Φ) (12)

3The notation δgauge(ikA) stands for a gauge transformation with the field dependent parameter ikA ≡ kµAµ,

and the coefficients σαb

i are for a basis of three 2×2 SL(2, R) matrices. One also defines the graded Lie derivative

Lκ = iκd+ diξ.
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In view of these simplifications, one can consider a reverse construction. On can start from

these anticommutation relations, solve them and determine the transformation laws under sα

and δα for the fields A ≡ Aµdx
µ, Ψα ≡ Ψα

µdx
µ, χI

α, ηα, Φi, h
I , T ≡ Tµdx

µ, HI .

For this, one uses power counting and grading conservation, as well as the covariance under

the SL(2, R) × SO′(4) symmetry. By denoting g(k) ≡ gµνk
µdxν and g(JIk) ≡ JI

µνk
µdxν , the

solution of the algebra acting on the fields of the balanced (9,16,7) 4-dimensional multiplet is

sαA = Ψα

sαΨβ = δαβT − σiβ
α
dAΦi

sαΦi =
1

2
σi

αβηβ

sαηβ = −2σijβ
α
[Φi,Φj ]

sαT =
1

2
dAη

α + σi αβ [Φi,Ψβ]

sαhI = χα I

sαχI
β = δαβH

I + σiβ
α
[Φi, h

I ]

sαHI =
1

2
[ηα, hI ] + σi αβ [Φi, χ

I
β]

δαA= g(κ)ηα + g(JIκ)χ
α I

δαΨβ = δαβ
(

iκF − g(JIκ)H
I
)

+ σiβ
α
g(JIκ)[Φi, h

I ]− 2σijβ
α
g(κ)[Φi,Φj ]

δαΦi =−1

2
σi

αβiκΨβ

δαηβ =−δαβ iκT + σiβ
α
iκdAΦi

δαT =
1

2
dAiκΨ

α − g(JIκ)
(

[ηα, hI ] + σi αβ [Φi, χ
I
β]
)

+ g(κ)σi αβ[Φi, ηβ ]− LκΨ
α

δαhI =−iJIκΨ
α

δαχI
β = δαβ

(

iκdAh
I + iJIκT

)

+ σiβ
α
iJIκdAΦi

δαHI =
1

2
[iκΨ

α, hI ] + iJIκdAη
α + σi αβ[Φi, iJIκΨβ]− iκdAχ

α I (13)

One can then show that the N=4 action (1) is uniquely determined in twisted form by the s, s̄,

δ (or δ̄ ) invariances, that is from a symmetry with 6 parameters (k0, k̄0, k
µ). Moreover, it can

be written as a sδ-exact term [3],

IN=4 =

∫

1

|k|sδ
[

g(k)(AdA +
2

3
A3) + g(JIk)∗ǫIJKh

JdhK + s̄δ̄(
1

2
hIhI −

2

3
ΦiΦ

i)

]

(14)

This action is independent on choice of the constant vector κ. An even more symmetrical

expression of the action is

SN=4 = −1

2

∫

M

Tr F∧F + sαδαG (15)

where

G =

∫

M

Tr
(

−1

2
g(κ)∧

(

AF − 1

3
A3

)

− 1

2
⋆ εIJKh

I iJJκdAh
K + ⋆ sαδα

( 1

2
hIh

I − 2

3
ΦiΦi

))

(16)
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3 Third twist and supersymmetric observables

The passage by twist from the superPoincaré representation to the first twisted representation is

a linear mapping between fields, using Pauli matrices, giving equations that are invariant under

a subgroup SO′(4)×SL(2, R) ⊂ SO(4)×SO(5, 1) [2]. The third twisted representation can be

in fact obtained from the first one by the following invertible κ-dependent field redefinitions

Vµ ≡ κν(hµν− + gµνL) Ψ̃µ ≡ κν(χ̄µν− + gµν η̄) Ψ̄µ ≡ κν(χµν+ + gµν η̃) (17)

The vector parameter κ, which is necessary for doing all changes of variables, disappears, modulo

a boundary term, when one changes variables from the first twisted Lagrangian to the third

twisted one. The third twisted variables are the most most appropriate to show the existence

of supersymmetric variables, such as the supersymmetric Wilson-loop, which have interesting

finiteness properties [8][10][9]. The third twist formulation has analogy with a complexified

expression of the twisted N=2,d=4 TQFT, with A→ A+ iV , as sketched below. It is useful to

give details on this in view of the forthcoming analysis of the conformal supersymmetry. The

set of fields in the third twist is

(Aµ, Φi, h
I Ψα

µ, η
α, χIα, Tµ, G

I) → (Aµ, Vµ, Φ, Φ̄ Ψµ, Ψ̃µ, χµν± , η, η̃ ,Hµν± , H)(18)

It has only an internal U(1)×SO(4) covariance. One has a Q-symmetry that can be recognized

as a combination of two of the symmetries s and δ, governed by two parameters u and v. It

can be shown to satisfy the complex equation [13]

(Q+ d)(A+ iV + c) + (A+ iV + c) = FA+iV + (u− iv)(Ψ + iΨ̃) + (u2 + v2)Φ (19)

By defining

Qχ± = H± − [c, χ±] (20)

one finds that the N = 4 action can be recomputed as a Q-exact term

I =

∫

d4x
1

u2 + v2
QRe[ χ− + iχ−)(u+ iv)(FA+iV +H− + iH+) + . . . ] (21)

The action is independent on u and v. On can restrict to a particular Q-symmetry, by setting

u = iv [10]. For this restriction of the parameters, the Q-transformations for A and V are given

by

Q(A+ iV ) = −DA+iV c = δgauge(c)(A + iV ) (22)

Therefore the Wilson loop with argument A+ iV is automatically Q-invariant

Qexp

∫

dxµ(Aµ + iVµ) = 0 (23)
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as well as any given gauge-invariant functional of A + iV . This defines Q-supersymmetric

observables for u = iv, which have been extensively studied in [10]. These supersymmetric

Wilson loops can be expressed in the first twist formulation, since the latter is related to the

third twist by a mere κ-dependent change of variables, which leaves invariant the action. It

follows that the mean value

< exp

∫

Γ
dxµ(Aµ + iκν(JJ

µνh
I + gµνL)) > (24)

is independent on all possible local deformations, in particular on those of the contour Γ.

4 Stochastic quantization and relation to Chern Simons action

This section is devoted to a possible interpretation of the scalar generators of the N=4 theory

as the scalar supersymmetry of the stochastic quantization of a three-dimensional theory. The

expression of the sδ-antecedent of the N=4 action (15) strongly suggests the influence of a

three-dimensional Chern simons action for the four dimensional theory. In fact, the general

ideas of stochastic quantization [11] formally indicate that, if the contour is three-dimensional,

one can either use the three-dimensional action
∫

d3x(AdA+ 2/3A3 +∗ ǫIJKh
IDJhK +∗ LDIh

I) (25)

or the complex one
∫

d3x((A+ iV )d(A+ iV ) + 2/3(A + iV )3) (26)

to compute certain 3-dimensional observables for the N=4 theory. The action (25) has only real

gauge invariance while the action (26) has complex gauge invariance [12], that is a double gauge

symmetry. In fact, the former action differs from the later one by a covariant gauge-fixing of

the vector Vµ. We will formally show that stochastic quantization of both actions leads one to

supersymmetric theories, whose actions are identical either to the first or to the third twisted

N=4 actions, modulo Q-exact terms. The latter terms are irrelevant for the computation of

Q-invariant observables, such as the above mentioned Wilson loops

In flat or curved Euclidian three-dimensional space one can define quantization by intro-

ducing a fourth (stochastic) time. The time evolution is then governed by a Langevin equation.

Its drift force is the sum of a force along gauge-invariant directions, which is the equation of

motion of the gauge-invariant action, and of a force along gauge orbits, which is equal to a gauge

transformation where the parameter (real or complex) can be any given arbitrary function, pos-

sibly field dependent. The later parameter can be promoted to an independent field over which

one can functionally integrate. The reasoning is that the expectation values of gauge-invariant

three-dimensional observables donnot depend on the choice of the parameters of the drift forces

7



along gauge orbits, so that one can consider a summation over these fields, since it yields no

modification of the value of gauge-invariant observables. This is how gauge covariance can be

enforced in the fourth dimension. The additional fields become the fourth component A0 of the

gauge field for the action (25), or the fourth components A0 and V0 of both fields Ai and Vi

for the action (26). The actions (25) and (26) are thus expected to generate the N=4 action

in their first and third twist formulations, with a segregation of the fourth component x0 as

a somehow irrelevant variable. However one must consider observables at equal time x0, and

takes the limit x0 → ∞. Let us see how this can happen.

Taking the action (26), the covariant Langevin equations that govern its quantization are

F0,i − ǫijkF
jk − [V0, Vi] + ǫijk[Vj , VK ] = bi D[0Vi] = b̄i (27)

One can express the Langevin process as path integral with a Gaussian dependance in the

noises b and b̄, doing a change of variable between b, b̄ and A and V . This necessitates the

insertion of Jacobians. The latter can be expressed as a path integral over fermions, which will

be interpreted as the fermions of the twisted theory. Since one has zero modes in the gauge

covariant Langevin equations, their gauge-fixing introduces fermionic auxiliary fields, with the

occurrence a super-Jacobian, which yields a functional representation with the commuting scalar

fields Φ and Φ̄. It goes as follows. One uses 4-dimensional notations, so that the Langevin

equations can be rewritten as

Fµν+ − V[µVν]+ = bµν+ D[µVν]+ = b̄µν+ (28)

One defines a new covariant equation for the stochastic evolution of V0 as

DµVµ = b̄ (29)

By doing standard steps of inserting delta functions and determinants in a Gaussian path

integral representation as in [11], one ends up with the following action for describing the

Langevin process

IGF =

∫

dtdxTrstop(χµν+(Fµν+ − V[µVν]+ +D[µVν]+ − 1

2
b̄µν+)

+χ̄µν+(Fµν+ − V[µVν]+ −D[µVν]+ − 1

2
bµν+) + χ(DµVµ − 1

2
b̄) + Φ̄DµΨµ + c̄(∂µAµ − 1

2
b))

(30)

where

stopAµ =Ψµ +Dµc stopc = Φ− cc

stopΨµ =DµΦ− [c,Ψµ] stopΦ = −[c,Φ]

8



stopχµν± = bµν+ stopbµν± = 0

stopΦ̄ = η stopη = 0

stopc̄= b stopb = 0 (31)

One can identify Q and stop and the action (30) is identical to the N=4 theory in the third

twist, modulo Q-exact terms. The latter terms contain the quartic scalar field interactions.

Their omission does not change the expectation values for Q-invariant observables. One obtains

a similar result for the first twist, starting from the three-dimensional action (25) for the fields

Ai, L, Vi, which yields the action of the N=4 theory in the first twist, modulo Q-exact terms.

There is no obstruction to do this formal construction in curved three-dimensional space.

Moreover, one can introduce non-flat metrics components goi, which could maybe ease certain

practical computations. We leave open the problem of directly computing Q-invariant Wilson

loops of the four-dimensional theory with three-dimensional contours, directly in the Chern–

Simons three-dimensional theory.

We see that the N=4 theory relies on building blocks that are much more elementary

than expected. In what follows, we will see that one can extend these idea, and incorporate

elements of special supersymmetry from the beginning. It is indeed interesting to introduce the

superconformal algebra in a constructive way, with no redundancy.

5 Inclusion of part of the conformal symmetry in the Q sym-

metry

The conformal Yang–Mills supersymmetry is governed by 32 generators, with spinor parameters

ǫ and η,

δAµ = λΓµ(ǫ+ xµγµη)

δ~ϕ= (ǫ+ xµγµη)~τλ

δλ= (ΓµνFµν + iDµΓ
µϕ− [ϕ,ϕ])(ǫ + xµγµη) + 2iϕη

In [7], this superconformal symmetry has been twisted by reducing the product of its R-

symmetry and conformal symmetry SO(5, 1) × SO(5, 1), in a way that generalises the mixing

between the Lorentz symmetry and the R-symmetry for the superPoincaré case.

We will follow a different root. We generalize the algebra (11) for the four scalar generators,

by replacing the constant vector kµ into a local one that is proportional to the coordinate xµ. We

retain the same field representations as in the first twist. Some compensating transformations

must be done for absorbing non-homogeneous terms in xµ, using the existing global symmetries.

After some thoughts, one concludes that one must consider the following distorted algebra

{sα, sβ} = 2σi αβδgauge(Φi) {δαx , δβx} = 2σi αβδgauge(|x|2Φi) (32)
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{sα, δβx} = εαβ
(

Lx + δgauge(ixA) + w
)

+∆αβ

SL(2,R) (33)

∆SL(2,R) is a SL(2, R) transformation and w is a U(1) symmetry, which counts the conformal

weight of fields. The requirement of SO(4)×SL(2, R) covariance and the respect of the various

gradings determine the structure of this algebra. One must look for possible representations,

in terms of fields, and one is led to check whether some constants A,Z,W,W ′ exist, such that

the following transformation laws fulfill the above anti-commutation relations.

sαA = Ψα

sαΨβ = δαβT − σiβ
α
dAΦi

sαΦi =
1

2
σi

αβηβ

sαηβ = −2σijβ
α
[Φi,Φj ]

sαT =
1

2
dAη

α + σi αβ [Φi,Ψβ]

sαhI = χα I

sαχI
β = δαβH

I + σiβ
α
[Φi, h

I ]

sαHI =
1

2
[ηα, hI ] + σi αβ [Φi, χ

I
β]

(34)

δαxA= g(x)ηα + g(JIx)χ
α I

δαxΨβ = δαβ
(

ixF − g(JIx)H
I
)

+ σiβ
α
g(JIx)[Φi, h

I ]− 2σijβ
α
g(x)[Φi,Φj ]

δαxΦi =−1

2
σi

αβixΨβ

δαxηβ =−δαβ ixT + σiβ
α
ixdAΦi +Aσi

αβΦi

δαxT =
1

2
dAixΨ

α − g(JIx)
(

[ηα, hI ] + σi αβ[Φi, χ
I
β]
)

+ g(x)σi αβ [Φi, ηβ ]− LxΨ
α+ZδαβΨ

β

δαxh
I =−iJIxΨ

α

δαxχ
I
β = δαβ

(

ixdAh
I+WhI + iJIxT

)

+ σiβ
α
iJIxdAΦi

δαxH
I =

1

2
[ixΨ

α, hI ] + iJIxdAη
α + σi αβ[Φi, iJIxΨβ]− ixdAχ

α I+W ′χIα (35)

One gets after a lengthy computation that there is indeed a unique solution, given by

Z = −1, A = 2,W = 1,W ′ = 2.

One thus obtains the intriguing result that, “special”, i.e., x-dependent δx transformations,

exist that are very simply related to the twisted vector super Poincaré supersymmetry trans-

formation, as follows

δx = xµ(δµ + gµν
xν

x2
C) (36)

Here the operator δµ is identical to that of the vector supersymmetry of the superPoincaré

algebra, and the operator C is the further modification brought by the special supersymmetry,

as it is implied by the graded commutation relations. The action of C is only non-zero for ηα,

χIα, T and HI and can be read from Eqs. (35).
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One can verify that the above 4 symmetries can be identified as combinations of the twisted

ones that are obtained by computing the first-twist of the 32 generators of the superconformal

transformation [7]. Here, they have arised in a somehow very elementary geometrical con-

struction, and they capture an interesting part of the maximal conformal supersymmetry with

its 32 generators. Indeed, one can verify that the N=4 action, in first twisted form is com-

pletely determined by its invariance under both graded Poincaré operators s, s̄ and both special

supersymmetry operators δx, δ̄x.

Does it help to discuss special supersymmetric observables as in [9], and determine some of

them? One can generalize the trick that we used by combining the scalar and vector symmetries

for the ordinary supersymmetric observables, and define

Q = us+ vδx (37)

where the scalar parameters u, v are commuting ones. One then finds that Q satisfies an

equation as in Eq. (19), by a simple comparison between the δ- and δx- transformations.

It follows that the following 1-form :

A+
1

x2
(

iJJxh
I + L

)

= dxµ
(

Aµ +
xν

x2
(

JJ
µνh

I + gµνL
))

(38)

transforms under s+ δ̄ simply by a gauge transformation when uα = −ivα, provided that

x2 = 1 (39)

The verification is as in section 3, except that the constant κµ has been replaced by xµ. There-

fore the following special Wilson loop is s+ δ̄ invariant :

(

s+ δ̄
)

exp i

∫

Γ
x2=1

(

A+
1

x2
(

iJJxh
I + L

))

= 0 (40)

Notice that because x2 = 1, the term dxµgµνx
νL disappears on the contour. The Wilson loop

invariance equation reduces therefore to the following one

(

s+ δ̄
)

exp i

∫

Γ
x2=1

dxµ
(

Aµ +
1

x2
hµν−x

ν
)

= 0 (41)

So, the special supersymmetric Wilson loop must be defined on a circle, and only depends on 3

of the scalar fields. Its origin is analogous to that of the ordinary Wilson loop exp i
∫

Γ

(

A+ iV
)

in the third twist. The reason is because the special supersymmetry has a lot in common with

the twisted vector symmetry and because the manipulations of using the third twist mapping

are similar. One may question about the finiteness of observables, the topological properties,

etc.. of such special observables that are invariant under s + δ̄ and computed by mean of the

N = 4 action, which we have shown is s and δ̄ invariant, and thus s + δ̄-invariant. However,

11



the use of Ward identities is complicated by the lack of translational invariance, due to the

dependance on x of the transformations, so the topological properties are presumably lost, and

the observables probably depend on the detail of the metrics. Interestingly, specific examples

have shown that such observables are not automatically topological [9]. Perhaps, computing

these special Wilson loops within a 3-dimensional framework will be useful, as suggested by the

results of stochastic quantization.
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