
A Simple Algorithm for Constant Quality Reconstruction of 
Scalable Video Using a New Analytical R-D Model 

1,3Jun Sun, 2Debin Zhao, 3Qingming Huang, 1,3Wen Gao 
 

1Institute of Computing Technology, Chinese Academy of Sciences 
Beijing 100080, China 

2Department of Computer Science, Harbin Institute of Technology 
Harbin, 150001, China 

3Graduate School of Chinese Academy of Science 
Beijing, 100080, China 

 
Abstract. In this paper, we first introduce the analytical 
R-D model of scalable video in our recent work. The 
R-D model is induced by the R-D analysis of 
Generalized Gaussian Distribution (GGD). Then we 
proposed a simple algorithm for constant quality 
reconstruction of scalable video using the analytical R-D 
model. It needs not any search operation. The 
computation complexity of the proposed algorithm is 
O(N), where N is the smoothed frames. Extensive 
experiments on MPEG-4 FGS video show the efficiency 
and effective of our algorithm. Since our R-D analysis 
and smooth algorithm are general, intuitively they can be 
used in SVC video. 
Index Terms—MPEG-4 FGS, rate distortion function, 
constant quality reconstruction, video coding 
 

1. INTRODUCTION 
The Internet is experiencing explosive growth of 

video streaming. Since the Internet is a shared 
environment, it has been commonly accepted that 
video streaming should react to network congestion 
and match the video rate with the available network 
bandwidth [1]. Therefore, it is desirable to encode 
video with scalable technologies, so that it can be 
encoded once, but transmitted and reconstructed many 
times at different targeting rates. The scalability of 
MPEG-4 FGS [2] is achieved by bit-plane coding of 
DCT coefficients in the enhancement layer. The 
developing Scalable Video Coding (SVC) 
standardization project chooses the scalable extension 
of H.264/AVC as a start point, which realizes the 
scalability through motion compensated temporal 
filtering (MCTF) using a lifting framework [3]. 

To best utilize these scalable video during 
streaming, a rate allocation algorithm is needed to 
transfer the available network bandwidth into the rate 
assigned to each frame. The trivial constant bit-rate 
allocation usually results in significant quality 
fluctuation in the reconstructed video. Hence, some 
complex R-D based allocation algorithms should be 
employed to realize constant quality reconstruction at 
the allowed transmission rate by allocating rate 
according to the complexity of each frame. 

In this paper, we first introduce the analytical 
R-D model of scalable video in our recent work. The 
R-D model is induced by the R-D analysis of 
Generalized Gaussian Distribution (GGD). Then we 
proposed a simple algorithm for constant quality 
reconstruction of scalable video using the analytical 
R-D model. It needs not any search operation. The 
computation complexity of the proposed algorithm is 
O(N), where N is the smoothed frames. Extensive 
experiments on MPEG-4 FGS video show the 
efficiency and effective of our algorithm. Since our 
R-D analysis and smooth algorithm are general, 
intuitively they can also be used in SVC video. 

 
2. RATE DISTORTION ANALYSIS OF 
FGS EL WITH GENERALIZED 
GAUSSIAN DISTRIBUTION 
 

2.1 Generalized Gaussian Distribution 

 
Generalized Gaussian distribution is a nice model 

for the DCT coefficients [4] and wavelet coefficients 
[5].The PDF of zero-mean generalized Gaussian 
distributions can be described as follows: 
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where 0α >  is the shape parameter describing the 
exponential rate of decay, β  is a positive quantity 
representing a scale parameter, and ( )Γ •  is the 
gamma function [11]. The variance of the random 
variable is expressed by 2 2σ β= . For simplicity of 
denotation, zero-mean generalized Gaussian 
distribution is also called generalized Gaussian 
distribution in this paper. 

Generalized Gaussian distributions cover a wide 
range of symmetric distributions. The distribution 
shape is controlled by the shape parameter α . As we 



notice above, when 2α = , the generalized Gaussian 
distribution corresponds to a Gaussian distribution. 
While for 1α = , we have the Laplacian distribution. 
As α →∞ , the distribution approaches the uniform 
distribution in [ 3 ,   3 ]β β− , and when 0α +→  the 
distribution becomes a single point with 0x =  [12]. 
Generally generalized Gaussian distribution would be 
a better statistical model for DCT and wavelet 
coefficients than the Gaussian and Laplacian 
distributions because the extra shape parameter α  
can be tuned to the samples of DCT and wavelet 
coefficient. 
 

2.2 Rate Distortion Analysis of GGD 
 
In FGS video streaming, if the number of 

bitplanes in an EL frame is n and the last transmitted 
bitplane is k, then the quantizer can be considered as 
uniform quantization with step size 2n k−Δ = . For a 
standard FGS decoder, the quantization scheme can be 
described as follows: 
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where iT  are called the quantization thresholds, 

iR  are called the reconstruction levels, Δ  is the 
quantization step size, and x  are the value of 
samples. 

Under above quantization scheme, the 
distortion-rate function of GGD [10] can be described 
as 

10( ) ( ) 20log (255 / )PSNR R f Rα β= + , (3) 
where R  is the bit rate of encoding, 

( )PSNR R  is the distortion with criterion PSNR at 
the bit rate R , ( )f Rα  is the function of bit rate R  
with the parameter α . 

For the same shape parameter α  and different 
root variance β , /PSNR Rd d  is not relative to β . Fig. 1 
shows the derivative comparison of the distortion-rate 
functions of the Laplacian distribution (shape 
parameter 1.0), the generalized Gaussian distribution 
with shape parameter 0.5 and the Gaussian 
distribution (shape parameter 2.0). Generally, the 
derivative of GGD distortion-rate function (PSNR 
criterion) decreases first and then increases to the 
traditional number 6.02. The inflexion of the 
derivative becomes larger if the shape parameter α  
is lower. For Laplacian distribution, the derivative 
decreases to about 4.34 at the bit rate 1.5 bits/sample 

and then increases to 6.02 gradually as the bit rate 
increases. 

For actual FGS coding, most DCT coefficients 
have the shape value less than 1.0 in actual video 
frames [6] [10], thus we can assert that the derivative 
of actual distortion-rate function begins to increase at 
a comparatively high bit rate (higher than 1.5 
bits/sample). 

On the other hand, there are more bitplanes at a 
high bit rate, and the bitplanes are not independent 
from each other in fact. But these bitplanes are 
entropy coded independently. Therefore as bit rate 
increases, the efficiency of actual bitplane coding is 
decreased. This also delays and slows down the 
increase of the derivatives of actual distortion-rate 
function (PSNR criterion), and even flattens out the 
increase in some cases. So, for actual FGS coding 
(lower than 3 bits/sample), we can assume that the 
derivatives decrease continuously [6] [10]. 

 
 

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

bits/sample

D
e
r
i
v
a
t
i
v
e

Laplacian GeneGauss_0.5 GeneGauss_2.0

 
 
Fig. 1. Derivative comparison of the distortion-rate 
functions with the GGD shape parameter 0.5, 1.0 
(Laplacian) and 2.0 (Gaussian). 
 

2.3 Analytical R-D Model of MPEG-4 FGS 
Video 

 
With above analysis, we can assume that the 

derivative of distortion-rate function (PSNR criterion) 
decreases continuously as the rate increases. Then we 
can get a heuristic R-D model of FGS video as follow 
[6] [10]: 

( ) * ( ) /(1 * )PSNR R a R A A B b R= + − − +  (4) 
where R is the bit rate per sample, B is the PSNR 

of FGS BL coding, a and A is the asymptote 
parameter, b is the parameter controlling the approach 
of the actual RDF to the asymptote. The parameters a 
and b can also be set as constants for a coarse model. 



3. CONSTANT QUALITY TRUNCATION 
OF MPEG-4 FGS VIDEO 
 

Rate allocation between different video frames 
for constant quality reconstruction is one popular 
application of R-D models. The key problem is how to 
truncate the FGS EL to both match the available 
average bandwidth R  and achieve a certain constant 
quality argt etD  for each frame. Usually, to obtain the 

argt etD , we need to calculate a combined function 
( )C D , which is constrained by R : 
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where ( )iR D  is the rate-distortion function of frame 
i. N is the number of smoothed frames. Through (5), 
we can obtain the target constant quality 

1
arg ( )t etD C R−= . Then the allocated bit rate of frame i 

can be calculated by 1
arg( ) ( ( ))i t et iR D R C R−=  [7] [8].  

However it’s difficult to get a closed-form 
solution of 1C−  for the known R-D models and a 
search algorithm for argt etD  is a burden for streaming 
server since the R  changes continually in the actual 
streaming [9]. Using the R-D model of the second 
experiment in Section IV-B, where b  is fixed as 1.5, 
we introduce a new simple algorithm for constant 
quality reconstruction (SACQR) as follows: 

1) Calculate the average distortion D  with 
uniform bit rate allocation R : 
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where ai, Ai and Bi are the corresponding values 
of (4) in frame i. 

2) Calculate the initial bit rate allocation in frame i: 
_ ( )i iinit rate R D= ,                 (7) 

where ( )iR D  is the inverse function of (4) in 
frame i. 

3) The average tune bit rate can be obtained by 
1
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4) Calculate the tune weight of each frame i: 
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where ' ( _ )i iD init rate  is the derivative of 
distortion-rate function of frame i at the bitrate 
init_ratei . ' 1 '[ ( _ )] ( )i i iD init rate R D− =  

approximates the bitrate requirement of one unit 
distortion change at the distortion point D  of 
frame i. 

5) Then the transmitting bit rate can be calculated 
by 

_ _
                  _ * _

i itrans rate init rate
tune rate Tune Weight
=
−

. (10) 

There may be some difference between the target 
R  and the average transmitting bit rate 

1

0

1 _
N

i
i

trans rate
N

−

=
∑ . Usually the difference can be 

ignored. However if needed, it can also be decreased 
by recursively calculating (8-10). The computation 
complexity of the proposed SACQR is O(N). 

 

4. EXPERIMENTS 
 

To validate the effectiveness of the methods that 
we have described, we have done some experiments 
in four sequences: 10fps Foreman, Tempete_ext (two 
concatenated 260_frame Tempete sequences), Stefan 
and Paris sequences. The base layer bitrate target is 
128 kbps with TM5. The target EL bit rate R  is 0.5 
bits/sample (about 760kbits/s) and 1.0 bits/sample 
(about 1520 kbits/s). The smoothed frame is from 0 to 
297. We apply two different algorithms in 
experiments. The first is the proposed SACQR. The 
uniform bit rate allocation is also applied for 
comparison. 

Figs. 2-5 compare the proposed SACQR with 
uniform bitrate allocation algorithm in the four 
sequences respectively. It can be seen that the 
near-constant quality can be obtained with the 
proposed approach except for some special frames 
such as frame 278 in Fig. 2(a), where the base layer 
quality is larger than target constant quality, while the 
uniform bitrate allocation method contains significant 
variation. 

 

5. CONCLUSION  
In this paper, we proposed a simple algorithm for 

constant quality reconstruction of scalable video using 
an analytical R-D model. It needs not any search 
operation. The computation complexity of the 
proposed algorithm is O(N). Extensive experiments 
on MPEG-4 FGS video show the efficiency and 
effective of our algorithm. 
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Fig. 2. Comparison of quality variation between our SACQR algorithm and the uniform bit rate algorithm in the 
Foreman sequence. (a) Quality variation with bit rate 0.5 bits/sample, (b) Quality variation with bit rate 1.0 bits/sample.
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Fig. 3. Comparison of quality variation between our SACQR algorithm and the uniform bit rate algorithm in the
Tempete sequence. (a) Quality variation with bit rate 0.5 bits/sample, (b) Quality variation with bit rate 1.0 bits/sample.

Stefan_10fps_EL_0.5bits/sample_rate_schedule
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Fig. 4. Comparison of quality variation between our SACQR algorithm and the uniform bit rate algorithm in the Stefan 
sequence. (a) Quality variation with bit rate 0.5 bits/sample, (b) Quality variation with bit rate 1.0 bits/sample. 
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Paris_10fps_EL_1.0bits/sample_rate_schedule
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Fig. 5. Comparison of quality variation between our SACQR algorithm and the uniform bit rate algorithm in the Paris
sequence. (a) Quality variation with bit rate 0.5 bits/sample, (b) Quality variation with bit rate 1.0 bits/sample. 
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