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Abstract

We show that there is a topological (Berry phase) term in the non-linear σ model
description of the SO(5) spin chain. It distinguishes the linear and projective repre-
sentations of the SO(5) symmetry group, in exact analogy to the well-known θ-term
of the SO(3) spin chain. The presence of the topological term is due to the fact that

π2(
SO(5)

SO(3)×SO(2)) = Z. We discuss the implication of our results on the spectra of

the SO(5) spin chain, and connect it with a recent solvable SO(5) spin model which
exhibits valence bond solid ground state and edge degeneracy.
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1 Introduction

The effects of topological terms on the dynamics of Goldstone modes and the quan-
tum number of solitons and instantons in non-linear σ (NLσ) models have a long
history, and continue to attract strong interests from the physics community[1].
For example, in one spatial dimension (1D), quantum SO(3) spin chains have
fundamentally different low energy properties, depending on whether the site rep-
resentation is linear (spin integer) or projective (spin half-odd integer). For nearest
neighbor isotropic exchange interaction, the former cases always have excitation
gaps while the latter are gapless - the well known Haldane conjecture[2]. Aside
from the usual stiffness terms, the (1+1)D NLσ models for these spin chains con-
tain a topological (Berry phase) term (also known as the θ term)[2]. When the
space-time configuration of the Neel order parameter wraps the target space (S2)
n times, the Berry phase factor is +1 for integer spin chains, while it is (−1)n for
half-odd integer spin chains[2].

Using an algebraic approach, Chen, Gu and Wen[3] recently generalized an idea
of Ref.[4] and argued that, in one spatial dimension, a gapped ground state which
is invariant under translation and the global symmetry operation (we refer to this
type of state as “totally symmetric” in the following) is obtainable when the site
representation of the global symmetry group (which can be discrete) is linear.
When the site representation is projective and nontrivial (i.e., not linear), a to-
tally symmetric ground state must be gapless. In a projective representation D,
the matrix product D(g1)D(g2), where g1,2 are group elements, can differ from
D(g1.g2) by a phase factor eiθ(g1,g2). For the SO(3) group, an integer spin forms
the linear representation while a half-odd integer spin forms the projective repre-
sentation. Hence the spectral difference between the translational invariant integer
and half-odd integer SO(3) spin chains constitutes a special example of the results
of Ref.[3]. Thus there are two ways to view the difference between integer and
half-odd integer SO(3) spin chain: one is geometrical (the Berry’s phase)[2] and
the other is algebraic[3].

SO(5) is a rank-2 classical Lie group. It also has linear and projective representa-
tions. For example, in the vector representation the generators of the Lie algebra
are given by[5]

(Lab)jk = −iδa,jδb,k + iδa,kδb,j, (1)

where a, b,= 1, ..5, and i, j = 1..5. Two consecutive π rotations generated by, e.g.,
L12 give

U12(π)U12(π) = I5×5. (2)
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The spinor representation, on the other hand, is given by[5]

Lab = i[Γa,Γb]/4, (3)

where Γa,b are the 4 × 4 gamma matrices (e.g., Γ1 = −σy ⊗ σx, Γ2 = −σy ⊗ σy,
Γ3 = −σy ⊗ σz , Γ4 = σx ⊗ I2×2, Γ5 = σz ⊗ I2×2). In this case it is simple to check
that two consecutive π rotations generated by L12 yield

U12(π)U12(π) = −I4×4. (4)

Thus the vector representation is linear, while the spinor representation is projec-
tive and non-trivial. According to Ref.[3], a spin chain of the former type can have
a totally symmetric ground state with a gapped spectrum, while a spin chain of
the latter type has to be gapless if it is totally symmetric. In the following we will
seek for the geometric (Berry’ phase) difference between the two cases.

Another motivation for us to study the Berry’s phase of the SO(5) spin chain
is a recent exactly solvable 1D SO(5) spin model (in the vector representation)
proposed by Tu et. al.[6]. The ground state is a translational invariant matrix
product state, i.e., the valence bond solid state[7], and the excitation spectrum
has a gap. Moreover, when the chain is subjected to the open boundary condition,
there are edge states. These properties are reminiscent of the property of integer
SO(3) spin chains[8].

Moreover, with the advance of cold atom physics, the SO(5) spin chain might not
be a purely academic model. An SO(5) symmetric spin chain can in principle be
realized experimentally when the hyperfine spin-3/2 cold fermions on an 1D optical
lattice form the Mott-insulating state[9]. At quarter filling (one fermion per site),
the effective spin chain is in the spinor representation, while for the half-filling (two
fermions per site) the effective spin chain is in the SO(5) vector representation.
Therefore the idea presented here might one day be tested experimentally.

2 Model formulation

Let us start by considering the following SO(5) invariant Hamiltonian

H =
∑

i





J1





∑

a<b

Li
abL

i+1
ab



+ J2





∑

a<b

Li
abL

i+1
ab





2




 (5)
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where Lab’s are the SO(5) generators and J1,2 > 0. When Lab are given by Eq.(1),
the ground state is translational invariant and the spectrum has a gap in the
parameter range 1/9 < J2/J1 < 1/3[6]. Naively, one would not expect the NLσ
model action of this model to contain a topological term. This is because in contrast
to SO(3) spin chain where the space-time dimension (1+1) matches the dimension
of the target space[?] of the order parameter (S2), for the SO(5) spin chain the
dimension of target space is much larger than the (1 + 1) space-time dimension.

To understand the structure of the target space for the SO(5) spin chain, we need
to know how the presence of SO(5) “magnetic” moment breaks the global SO(5)
symmetry. For that purpose it is sufficient to consider the following mean-field
Hamiltonian of Eq. (5), where non-linear terms in Lab are decoupled into linear
ones with the order parameter 〈Li

ab〉 = (−1)imab

HMF =
(

−2J1 + 2J2∆
2
)

∑

i,a<b

(−1)imabL
i
ab +

∑

i

(

J1∆
2 − 3J2∆

4
)

, (6)

where ∆2 =
∑

a<b m
2
ab. The question at hand is for a fixed total magnitude of

mab (i.e. fixed
∑

a<b m
2
ab) what is the most energetically favorable ratio between

different components ofmab. This can be answered simply by diagonalizing a single-
site Hamiltonian

H1 = −
∑

a<b

mabLab. (7)

and see what ratio gives the lowest ground state energy. (Of course we need to
remember the sign of mab change from site to site.)

In the following we study the two irreducible representations given by Eqs.(1)
and (3). First we consider the vector representation, Eq.(1). It is straightforward
to show the energy spectrum of H1 is E = (−∆1,−∆2, 0,∆2,∆1) where ∆1,2 =
√

A±
√
A2 +B − C and

A=
∑

a<b

m2
ab/2 = ∆2/2,

B=2
∑

a<b<c<d

(macmadmbcmbd −mabmadmbcmcd +mabmacmbdmcd),

C =
∑

a<b

∑

a<c<d

m2
abm

2
cd(1− δbc)(1− δbd). (8)

The single site ground state energy reaches the minimum when B = C, where
the energy spectrum of H1 is E = {−∆, 0, 0, 0,∆}. Under such a condition using
H1 as one of the two Cartan generators[5], and choose the other Cartan gener-
ators H2 to satisfy Tr(H1H2) = 0, the root and weight diagrams are shown in
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Fig. 1. (color on-line) The root (upper row) and weight (lower row) patterns of the vector
(a) and spinor (b) representation of SO(5). The x and y coordinates of each dot corre-
sponds to the eigenvalue of H1 and H2. The red arrows indicate how the rasing/lowering
operators in the SO(5) Lie algebra change the eigenvalues of H1 and H2.The central dots
in the root patterns are doubly degenerate.

Fig. (1a). Here the x and y coordinates of the dots are the eigenvalues of H1 and
H2 respectively. The arrows in the root diagrams indicate how the rasing/lowering
operators[5] in the SO(5) Lie algebra change the eigenvalues of the Cartan gen-
erators. Together with H2 the rasing and lowering operators generate an SO(3)
subgroup which commutes with H1. As the result, the SO(5) symmetry is broken
down to SO(3)×SO(2) with the SO(2) being generated by H1 itself.

Second we consider the spinor representation, Eq.(3). It is straightforward to
show that the energy spectrum of H1 is E = (−∆1,−∆2,∆2,∆1) with ∆1,2 =
√

A±
√
C − B/

√
2. In this case the single site ground state energy reaches the min-

imum when A =
√
C − B where the energy spectrum of H1 is E = {−∆, 0, 0,∆}.

The root and weight patterns are shown in Fig. (1)(b). Again the SO(5) symmetry
is broken down to SO(3)×SO(2).

After fixing the ratio of mab, we assume that the low energy fluctuations corre-
spond to smooth space-time dependent SO(5) rotations of such an order parameter
pattern. The NLσ model precisely describes such smooth fluctuations. The second
homotopy group of SO(5)

SO(3)×SO(2)
is Z (Ref.[10]). Thus the corresponding NLσ model

may contain a topological term, which can lead to a spectral difference between
the vector and spinor representations.
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3 The single-site Berry’s phase

To study the possible topological term, we begin by analyzing the Berry’s phase
of a single SO(5) spin described by the following time-dependent Hamiltonian

H1(t) = −
∑

a<b

mab(t)Lab, (9)

where mab(t) satisfy the constraints: (a)
∑

a<b m
2
ab = 1, and (b) H1(t) possesses

SO(3)×SO(2) symmetry. Both constraints can be satisfied by starting with a ref-
erence Hamiltonian H1,0 satisfying (a) and (b) and perform time-dependent SO(5)
conjugation, i.e.,

H1(t) = U †(t)H1,0U(t). (10)

As usual, the Berry’s phase is given by the loop integral of the Berry connection[1].
We can use Stoke’s theorem to convert this loop integral to an areal integral over
a disk with the loop as the boundary. The advantage of doing so is the Berry
curvature rather than the Berry connection appears in the latter integral. As the
result the integral has a local form and is gauge invariant:

SB =
i

2

∫ 1

0
du

∫

dt ǫµνTrFµν . (11)

In the above Fµν = (∂µAν − ∂νAµ) and Aµ = −i〈Ω|∂µ|Ω〉. Here |Ω(t, u)〉 is the
ground state of

H1(t, u) = U †(t, u)H1,0U(t, u). (12)

In Eq. (12), U(t, u) is the extension of the U(t) in Eq. (10) to the disk. Because
π1(SO(5)/SO(3)×SO(2))=0, we can always construct the extension so that U(u =
1, t) = U(t) and U(u = 0, t) = U0, where U0 is a certain reference SO(5) element.

Using the first order perturbation theory for wave functions, it is simple to show
that

TrFµν = −i
∑

k

〈Ω |∂µH| k〉 〈k |∂νH|Ω〉 − (µ ↔ ν)

(E0 −Ek)
2 . (13)

Here k labels the excited states. Since all Hamiltonians described by Eq. (12) are
unitary conjugate of one another, they have the same eigenspectrum. Under that
condition we have

∂µH =
∑

k

(Ek − E0)(|∂µk〉〈k|+ |k〉〈∂µk|). (14)
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In writing down the above equation we have made a shift of the zero of energy
so that E0 → 0. Substitute Eq. (14) into Eq. (13) and use the fact that 〈Ω|k〉 =
〈k|Ω〉 = 0 we find

TrFµν = −iTr(Q[∂µQ, ∂νQ]), (15)

where Q is the ground state projection operator

Q(t, u) = |Ω〉〈Ω| = U(t, u)PU †(t, u), (16)

where P = |0〉〈0| is the ground state projector operator of H1,0. Substituting
Eq. (15) into Eq. (11) we obtain

SB =
∫ 1

0
du

∫

dtTr(Q[∂uQ, ∂tQ]). (17)

Eq. (17) actually applies for any target space. For example in the case of SO(3)/SO(2)
we have

U(t, u) =







z1 z2

−z̄2 z̄1





 and P =







1 0

0 0





 ,

where z1,2(t, u) satisfy

(z̄1, z̄2) · ~σ ·







z1

z2





 = n̂(t, u).

Substitute the above two expressions into Eq. (16) and Eq. (17) we obtain

SB =
i

2

∫ 1

0
du

∫

dt (n̂ · ∂un̂× ∂tn̂) , (18)

which is the well known expression for the Berry’s phase of a spin-1/2[2]. Eq.(17)
has also been used in Ref.[11] in the study of the SU(N) spin chain.

Because the dimension of our target space is eight, there are more than one disks
having the loop in question as the boundary. Therefore we need to ask whether
Eq. (17) yields the same answer for the Berry phase when different extensions of
U(t) → U(t, u) are used. The difference in the Berry phase using two different
disks as extension can be calculated by integrating the Berry curvature over a
closed two dimensional surface formed by joining the two disks at their common
boundary. The resulting closed surface has the topology of a 2-sphere. Because
the second homotopy group of our target space is Z, all 2-spheres in the target
space are topologically the multiple of a basic sphere. Hence all we need to check
is whether the Berry curvature integral is integer multiple of 2π when t and u in

7



Eq. (17) parameterize the basic 2-sphere[12]. In the following we perform such a
calculation.

For the vector representation, we choose H1,0 = L12, and pick U(t, u) so that

U †(t, u)H1,0U(t, u) = ŵ(t, u) · ~L, (19)

where ~L = (L13, L23, L12),

ŵi(t, u) = (sin(πu) cos
2πt

β
, sin(πu) sin

2πt

β
, cos(πu)),

and β is the period of the imaginary time. For the spinor representation, we take
H1,0 = (L12 − L34)/

√
2, and ~L = (L13 + L24, L14 − L23, L12 − L34) /

√
2.

Using Eq. (17), or equivalently Eqs.(11) and (13), we find that

S vector
B,basic sphere = 4π, S spinor

B,basic sphere = 2π. (20)

Thus the condition for the uniqueness of the Berry phase is satisfied. As we shall
see, the difference between the vector and spinor Berry phase in Eq. (20) serves to
distinguish the vector and spinor SO(5) chains.

4 The lattice Berry’s phase, gapful versus gapless, and the edge states

We now extend the above single-site Berry phase analysis to the one dimensional
lattice. If the order parameter is perfectly “anti-ferromagnetically” correlated at all
time, the ground state of H1(t) are |Ω〉(t) on the even sublattice and its conjugate
|Ω̄(t)〉 = R|Ω(t)〉∗ on the odd sublattice, where R is the operator that satisfies
RL∗

abR
−1 = −Lab. For the vector representation, R is given by R15 = −R24 =

R33 = −R42 = R51 = −1 andRij = 0 otherwise. For the spinor representation, R =
−iI2×2⊗σy . Using the above result, it is straightforward to show that 〈Ω|Lab|Ω〉 =
−〈Ω̄|Lab|Ω̄〉, and RU∗R−1 = U for all U ∈ SO(5). This, plus the invariance of
the trace under matrix transposition, allows one to show that ǫµνTrQ̄∂µQ̄∂νQ̄ =
−ǫµνTrQ∂µQ∂νQ. As the result, the Berry’s phases associated with neighboring
sites tend to cancel each other. Let r label the center of mass position of site i and
i+ 1 for i = odd, the total lattice Berry’s phase is equal to

Stot
B =

∑

r

∑

ǫ=±1

(−1)ǫ−1
∫ 1

0
du

∫

dtTr(Qr+ǫ/2[∂uQr+ǫ/2, ∂tQr+ǫ/2]), (21)
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where Q is a smooth function of spacial coordinates. Under such a condition,
Eq. (21) has a continuum limit

Stot
B =

1

2

∫

dx
∫

dtTrQ[∂tQ, ∂xQ], (22)

the factor of 1/2 arises from the density of odd lattice sites. A similar expression
for the SU(N) spin chains has been presented in Ref.[11]. Under open boundary
condition, Eq. (22) becomes

Stot
B =

1

2

∫

dxdtTrQ[∂t, Q∂xQ]

+
1

2

∫ 1

0
du

∫

dt {Tr[Q[∂u, Q∂tQ]]R − Tr[Q[∂uQ, ∂tQ]]L} , (23)

where the subscript “R” and “L” labels the right and the left ends. This topological
term together with the stiffness term from the energetics, constitute the NLσ model
for the SO(5) spin chain.

Eqs. (20) and (22) have important implications. The fact that the mapping from
the space-time to the target space is classified by integer homotopy classes implies
that the space-time order parameter configurations can be grouped into topological
classes distinguished by an integer topological invariant. This is similar to the
SO(3) NLσ model where the topological invariant, the Pontryagin index[13], is the
number of times which the order parameter configurations cover the target space
S2. In our case there is an analogous integer topological index, which we will refer
to as the Pontryagin index as well. Eq. (20) implies that for the vector SO(5) spin
chain the Berry phase associated with the order parameter configuration having
different Pontryagin indices are all the same because exp(i4π/2 × integer) = +1.
Given the facts that (i) the topological term has no effect (hence the NLσ model
has only the stiffness terms), and (ii) the target space dimension is high, it is easy
to believe that the vector SO(5) spin chain should have a quantum disordered,
i.e., translational invariant gapped, phase. For the spinor SO(5) chain, however,
the order parameter configurations with even Pontryagin index have the Berry
phase exp(i2π/2 × even integer) = +1, while those with odd Pontryagin index
have Berry phase exp(i2π/2× odd integer) = −1. This result is exactly analogous
to the Berry’s phase in the spin-1/2 representation of the SO(3) antiferromagnetic
Heisenberg chain. In view of the result of Ref.[3], we conclude that the above
non-trivial Berry’s phase also implies the lack of an energy gap as long as the
translation symmetry is unbroken.

Now we comment on the edge state of the SO(5) “valence bond solid state” in
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Ref.[6]. By tuning the ratio of J1 and J2 in Eq.(5), Tu et al were able to show
that a short-range entangled, translational invariant matrix product state is the
exact ground state. In addition, under the open boundary condition the ground
state wavefunction becomes 4× 4 = 16 fold denervate. According to Eq. (23), the
boundary of a vector spin chain should exhibit the following Berry phase

1

2

∫ 1

0
du

∫

dtTrQ[∂u, Q∂tQ]. (24)

When Q(t, u) is a unit Pontryagin index order parameter configuration, the value
of Eq.(24) is 1

2
4π = 2π. This is consistent with the spinor Berry phase in Eq. (20).

Therefore the edge state of the vector SO(5) spin chain carries the spinor repre-
sentation. Because the latter is 4-dimensional, each end of the chain independently
yields a 4-fold degeneracy of the ground state, resulting in a total 4× 4 = 16 fold
degenerate ground state for the open chain.

Before closing a technical remark is in order. The readers might wonder what if
the ratio between different components ofmab fluctuates away from the the optimal
value. When that happens the single site spectrum will become {−∆1,−∆2, 0,∆2,∆1}
and {−∆1,−∆2,∆2,∆1} for the vector and spinor representation respectively.In
this case the SO(5) symmetry is broken down to SO(2)×SO(2). The second homo-

topy group of SO(5)
SO(2)×SO(2)

is Z ⊕Z rather than Z. In other words, the image of the
space-time in the target space is topologically the multiple of two basic spheres.
As ∆2 → 0, one of these spheres shrinks to a point. We have checked that so
long as ∆2 is small, i.e., when the ratio between mab does not deviate from the
optimal value too drastically, the Berry phase is only sensitive to the Pontryagin
index of the dominant (large) sphere. Hence all the results discussed earlier remain
unchanged.

5 Conclusion

We have studied the Berry’s phase of the antiferromagnetic SO(5) spin chain, and
shown the existence of a topological term in the non-linear σ model description
of the system. The quantum phase factor associated with this topological term
differentiates the vector (linear) and spinor (projective) representations. We argue
that this leads to the spectral difference as long as the translation symmetry is
unbroken. More specifically, the vector spin chain can have a totally symmetric
ground state while having an energy gap. The spinor chain, on the other hand, must
be gapless if there is no symmetry breaking. Under the open boundary condition,
we find the boundary Berry’s phase of the vector spin chain is consistent with the
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derived edge degeneracy of an exactly solvable model. The present result can be
straightforwardly generalized to other irreducible representations, leading to two
classes of SO(5) spin chain: in one class the site representation is linear, and in
the other the site representation is projective. While the first class can have a
totally symmetric ground state while maintaining a gapped spectrum, the second
class must have gapless spectrum if there is no symmetry breaking. This result
generalizes Haldane’s seminal works[2] to a higher rank Lie group.
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