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Abstract

The known logarithmic extensions of conformal and Schrödinger-invariance assume
translation-invariance in their spatial and temporal coordinates. Therefore, they can-
not be applied directly to slow far-from-equilibrium relaxations, where time-translation-
invariance no longer holds. Here, the logarithmic extension of ageing-invariance, that is lo-
cal dynamical scaling without the assumption of time-translation-invariance, is presented.
Co-variant two-point functions are derived. Their form is compared to transfer-matrix
renormalisation group data for the two-time autoresponse function of the 1D critical con-
tact process, which is in the directed percolation universality class.
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1 Motivation and background

Dynamical scaling naturally arises in various many-body systems far from equilibrium. A
paradigmatic example are ageing phenomena, which may arise in systems quenched, from some
initial state, either (i) into a coexistence phase with more than one stable equilibrium state or
else (ii) onto a critical point of the stationary state [10, 15, 39]. From a phenomenological point
of view, ageing can be defined through the properties of (i) slow, non-exponential relaxation,
(ii) breaking of time-translation-invariance and (iii) dynamical scaling. Drawing on the analogy
with equilibrium critical phenomena, where scale-invariance can under rather weak conditions
be extended to conformal invariance [66, 8], in recent years it has been attempted to carry out
an analogous extension of simple dynamical scaling, characterised by a dynamical exponent z,
to a new form of local scale-invariance (lsi). One of the most simple predictions of that theory
is the form of the linear two-time autoresponse function [33, 35, 36]

R(t, s) =
δ〈φ(t, r)〉

δh(s, r)

∣∣∣∣
h=0

= s−1−afR

(
t

s

)
, fR(y) = f0y

1+a′−λR/z(y − 1)−1−a′Θ(y − 1) (1.1)

which measures the linear response of the order-parameter φ(t, r) with respect to its canonically
conjugated external field h(s, r). The autoresponse exponent λR and the ageing exponents a, a′

are universal non-equilibrium exponents.1 The causality condition t > s is explicitly included.
The foundations and extensive tests of (1.1) are reviewed in detail in [39].

In the case of a degenerate vacuum state, conformal invariance (of equilibrium phase tran-
sitions) can be generalised to logarithmic conformal invariance [26, 23, 67], with interesting
applications to disordered systems [13], percolation [21, 51] or sand-pile models [65]. For re-
views, see [20, 24]. Here, we shall be interested in possible logarithmic extensions of local
scale-invariance and in the corresponding generalisations of (1.1).

Logarithmic conformal invariance in 2D can be heuristically introduced [26, 67] by replacing,
in the left-handed chiral conformal generators ℓn = −zn+1∂z−(n+1)zn∆, the conformal weight
∆ by a matrix. Non-trivial results are only obtained if that matrix has a Jordan form, so that
one writes, in the most simple case

ℓn = −zn+1∂z − (n+ 1)zn
(

∆ 1
0 ∆

)
(1.2)

Then the quasi-primary scaling operators on which the ℓn act have two components, which we

shall denote as Ψ :=

(
ψ
φ

)
. The generators (1.2) satisfy the commutation relations [ℓn, ℓm] =

(n−m)ℓn+m with n,m ∈ Z. Similarly, the right-handed generators ℓ̄n are obtained by replacing
z 7→ z̄ and ∆ 7→ ∆̄. A simple example of an invariant equation can be written as SΨ = 0, with
the Schrödinger operator

S :=

(
0 ∂z∂z̄
0 0

)
(1.3)

and because of [S, ℓn] = −(n+1)znS−(n+1)nzn+1

(
0 ∆
0 0

)
∂z̄, one has a dynamic symmetry

of SΨ = 0, if the conformal weights ∆ = ∆ = 0 are chosen.

1In magnets, mean-field theory suggests that generically a = a′ for quenches to T < Tc and a 6= a′ for T = Tc

[39].
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Of particular importance are the consequences for the form of the two-point functions of
quasi-primary operators, for which only co-variance under the finite-dimensional sub-algebra
〈ℓ±1,0〉 ∼= sl(2,R) is needed [26, 67] (we suppress the dependence on z̄i, but see [16]). Set

F := 〈φ1(z1)φ2(z2)〉 , G := 〈φ1(z1)ψ2(z2)〉 , H := 〈ψ1(z1)ψ2(z2)〉 (1.4)

Translation-invariance implies that F = F (z), G = G(z) and H = H(z) with z = z1 − z2.
Combination of dilation- and special co-variance applied to F,G leads to ∆ := ∆1 = ∆2 and
F (z) = 0. Finally, consideration of H(z) leads to

G(z) = G(−z) = G0|z|
−2∆ , H(z) = (H0 − 2G0 ln |z|) |z|

−2∆ (1.5)

where G0, H0 are normalisation constants. We emphasise here the symmetric form of the two-
point functions, which does follow from the three co-variance conditions.

Recently, ‘non-relativistic’ versions of logarithmic conformal invariance have been studied
[41]. Besides the consideration of dynamics in statistical physics referred to above, such studies
can also be motivated from the analysis of dynamical symmetries in non-linear hydrodynamical
equations [61, 58, 42, 29, 60], or from studies of non-relativistic versions of the AdS/CFT
correspondence [52, 5, 69, 53, 22, 47, 28]. Two distinct non-semi-simple Lie algebras have been
considered:

1. the Schrödinger algebra sch(d), identified in 1881 by Lie as maximal dynamical symmetry
of the free diffusion equation in d = 1 dimensions. Jacobi had observed already in the
1840s that the elements of sch(d) generate dynamical symmetries of free motion. We
write the generators compactly as follows

Xn = −tn+1∂t −
n+ 1

2
tnr ·∇r −

M

2
(n+ 1)ntn−1

r
2 −

n+ 1

2
xtn

Y (j)
m = −tm+1/2∂j − (m+

1

2
)tm−1/2rj

Mn = −tnM (1.6)

R(jk)
n = −tn(rj∂k − rk∂j)

where M is a dimensionful constant, x a scaling dimension, ∂j = ∂/∂rj and j, k =

1, . . . , d. Then sch(d) = 〈X±1,0, Y
(j)
±1/2,M0, R

(j,k)
0 〉j,k=1,...,d is a dynamical symmetry of the

free Schrödinger equation Sφ = (2M∂t−∇
2
r
)φ = 0, provided x = d/2, see [45, 27, 57, 43],

and also of Euler’s hydrodynamical equations [61]. An infinite-dimensional extension is

〈Xn, Y
(j)
m ,Mn, R

(jk)
n 〉n∈Z,m∈Z+ 1

2
,j,k=1,...,d [31].

2. The Schrödinger algebra is not the non-relativistic limit of the conformal algebra. Rather,
from the corresponding contraction one obtains the conformal Galilei algebra cga(d) [30],
which was re-discovered independently several times afterwards [32, 56, 35, 2, 50]. The
generators may be written as follows [14]

Xn = −tn+1∂t − (n+ 1)tnr ·∇r − n(n + 1)tn−1
γ · r − x(n + 1)tn

Y (j)
n = −tn+1∂j − (n+ 1)tnγj (1.7)

R(jk)
n = −tn(rj∂k − rk∂j)− tn(γj∂γk − γk∂γj )
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where γ = (γ1, . . . , γd) is a vector of dimensionful constants and x is again a scaling

dimension. The algebra cga(d) = 〈X±1,0, Y
(j)
±1,0, R

(jk)
0 〉j,k=1,...,d does arise as a (conditional)

dynamical symmetry in certain non-linear systems, distinct from the equations of non-
relativistic incompressible fluid dynamics [73, 14].2 The infinite-dimensional extension

〈Xn, Y
(j)
n , R

(jk)
n 〉n∈Z,j,k=1,...,d is straightforward.

For both algebras sch(d) and cga(d), the non-vanishing commutators are given by

[Xn, Xn′] = (n−n′)Xn+n′ , [Xn, Y
(j)
m ] =

(n
z
−m

)
Y

(j)
n+m , [R

(jk)
0 , Y (ℓ)

m ] = δj,ℓY (k)
m −δk,ℓY (j)

m (1.8)

where the dynamical exponent z = 2 for the representation (1.6) and z = 1 for the representa-

tion (1.7). For the Schrödinger algebra, one has in addition [Y
(j)
1/2, Y

(k)
−1/2] = δj,kM0.

The algebras sch(d) and cga(d) arise, besides the conformal algebra, as the only possi-
ble finite-dimensional Lie algebras in two classification schemes of non-relativistic space-time
transformations, with a fixed dynamical exponent z, namely: (i) either as generalised conformal
transformations [17] or (ii) as local scale-transformations which are conformal in time [34].

Now, using the same heuristic device as for logarithmic conformal invariance and replacing
in the generators Xn in (1.6,1.7) the scaling dimension by a Jordan matrix

x 7→

(
x 1
0 x

)
(1.9)

both logarithmic Schrödinger-invariance and logarithmic conformal galilean invariance can be
defined [41]. Adapting the definition (1.4), one now has F = F (t, r), G = G(t, r) and H =
H(t, r), with t := t1−t2 and r := r1−r2 because of temporal and spatial translation-invariance.
Since the conformal properties involve the time coordinate only, the practical calculation is
analogous to the one of logarithmic conformal invariance outlined above (alternatively, one
may use the formalism of nilpotent variables [54, 41]). In particular, one obtains x := x1 = x2
and F = 0. Generalising the results of Hosseiny and Rouhani [41] to d spatial dimensions,
the non-vanishing two-point functions read as follows: for the case of logarithmic Schrödinger
invariance

G = G0|t|
−x exp

[
−
M

2

r
2

t

]
, H = (H0 −G0 ln |t|) |t|

−x exp

[
−
M

2

r
2

t

]
(1.10)

subject to the constraint [6] M := M1 = −M2.
3 For the case of logarithmic conformal galilean

invariance

G = G0|t|
−2x exp

[
−2

γ · r

t

]
, H = (H0 − 2G0 ln |t|) |t|

−2x exp
[
−2

γ · r

t

]
(1.11)

2The generatorX0 leads to the space-time dilatations t 7→ λzt, r 7→ λr, where the dynamical exponent z takes
the value z = 2 for the representation (1.6) of sch(d) and z = 1 for the representation (1.7) of cga(d). We point
out that there exist representations of cga(d) with z = 2 [35]. From this, one can show that age(1) ⊂ cga(1)
as well.

3In order to keep the physical convention of non-negative masses M ≥ 0, one may introduce a ‘complex
conjugate’ φ∗ to the scaling field φ, with M∗ = −M. In dynamics, co-variant two-point functions are interpreted

as response functions, written as R(t, s) =
〈
φ(t)φ̃(s)

〉
in the context of Janssen-de Dominicis theory, where the

response field φ̃ has a mass M̃ = −M, see e.g. [15, 39] for details.
Furthermore, the physical relevant equations are stochastic Langevin equations, whose noise terms do break any
interesting extended dynamical scale-invariance. However, one may identify a ‘deterministic part’ which may
be Schrödinger-invariant, such that the predictions (1.10) remain valid even in the presence of noise [64]. This
was rediscovered recently under name of ‘time-dependent deformation of Schrödinger geometry’ [55].
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together with the constraint γ := γ1 = γ2. Here, G0, H0 are again normalisation constants.4

From the comparison of the results (1.10,1.11) with the form (1.6) of logarithmic conformal
invariance, we see that logarithmic corrections to scaling are systematically present. As we shall
show, this feature is a consequence of the assumption of time-translation-invariance, since the
time-translation operator X−1 = −∂t is contained in both algebras. On the other hand, from
the point of view of non-equilibrium statistical physics, neither the Schrödinger nor the confor-
mal Galilei algebra is a satisfactory choice for a dynamical symmetry, since time-translation-
invariance can only hold true at a stationary state and hence eqs. (1.6,1.7) can only be valid in
situations such as equilibrium critical dynamics. For non-equilibrium systems, it is more natural
to leave out time-translations from the algebra altogether. An enormous variety of physical sit-
uations with a natural dynamical scaling is known to exist, although the associated stationary
state(s), towards which the system is relaxing to, need not be scale-invariant [39]. We then

arrive at the so-called ageing algebra age(d) := 〈X0,1, Y
(j)
±1/2,M0, R

(jk)
0 〉j,k=1,...,d ⊂ sch(d). We

shall study the consequences of a logarithmic extension of ageing invariance.

In section 2, we shall write down the generators of logarithmic ageing invariance and shall
find the co-variant two-point functions in section 3. In section 4, we discuss some applications.
In particular, we shall show that the scaling of the two-time autoresponse function in 1D critical
directed percolation is well described in terms of logarithmic ageing invariance. We conclude
in section 5.

2 Logarithmic extension of the ageing algebra age(d)

For definiteness, we consider the ageing algebra age(d) ⊂ sch(d) of the Schrödinger algebra.
The generators of the representation (1.6) can in general be taken over, but with the important
exception

Xn = −tn+1∂t −
n+ 1

2
tnr ·∇r −

M

2
(n+ 1)ntn−1

r
2 −

n + 1

2
xtn − (n+ 1)nξtn (2.1)

where now n ≥ 0 and (1.8) remains valid. In contrast to the representation (1.6), we now
have two distinct scaling dimensions x and ξ, with important consequences on the form of the
co-variant two-point functions [64, 36], see also below.5 To simplify the discussion, we shall
concentrate from now on the temporal part 〈Ψ(t1, r)Ψ(t2, r)〉, the form of which is described
by the two generators X0,1, with the commutator [X1, X0] = X1. At the end, the spatial part
is easily added.

We construct the logarithmic extension of age(d), analogously to section 1, by considering
two scaling operators, with both scaling dimensions x and ξ identical, and replacing

x 7→

(
x x′

0 x

)
, ξ 7→

(
ξ ξ′

ξ′′ ξ

)
(2.2)

in eq. (2.1), the other generators (1.6) being kept unchanged. Without restriction of generality,
one can always achieve either a diagonal form (with x′ = 0) or a Jordan form (with x′ = 1) of

4There is a so-called ‘exotic’ central extension of cga(2) [49], but the extension of the known two-point
functions [3, 4, 50] to the logarithmic version has not yet been attempted.

5If one assumes time-translation-invariance, the commutator [X1, X−1] = 2X0 leads to ξ = 0 and one is back
to (1.6).
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the first matrix, but for the moment it is not yet clear if the second matrix in (2.2) will have
any particular structure. Setting r = 0, we have from (2.1) the two generators

X0 = −t∂t −
1

2

(
x x′

0 x

)
, X1 = −t2∂t − t

(
x+ ξ x′ + ξ′

ξ′′ x+ ξ

)
(2.3)

and we find [X1, X0] = X1 +
1
2
t x′ξ′′

(
−1 0
0 1

)
!
= X1. The condition x′ξ′′

!
= 0 follows and we

must distinguish two cases.

1. x′ = 0. The first matrix in (2.2) is diagonal. In this situation, there are two distinct

possibilities: (i) either, the matrix

(
ξ ξ′

ξ′′ ξ

)
→

(
ξ+ 0
0 ξ−

)
is diagonalisable. We then

have a pair of quasi-primary operators, with scaling dimensions (x, ξ+) and (x, ξ−). This
reduces to the standard form of non-logarithmic ageing invariance [36]. Or else, (ii), the

matrix

(
ξ ξ′

ξ′′ ξ

)
→

(
ξ̄ 1
0 ξ̄

)
reduces to a Jordan form. This is a special case of the

situation considered below.

2. ξ′′ = 0. Both matrices in (2.2) reduce simultaneously to a Jordan form. While one can
always normalise such that either x′ = 1 or else x′ = 0, there is no obvious normalisation
for ξ′. This is the main case which we shall study in the remainder of this paper.

In conclusion: without restriction on the generality, we can set ξ′′ = 0 in eqs. (2.2,2.3).

For illustration and completeness, we give an example of a logarithmically invariant Schrödinger
equation. Consider the Schrödinger operator

S :=

(
2M∂t −∇

2
r
+

2M

t

(
x+ ξ −

d

2

))(
0 1
0 0

)
(2.4)

Using (2.3) with the spatial parts restored, we have [S, X0] = −S and [S, X1] = −2tS and
furthermore, S commutes with all other generators of age(d). Therefore, the elements of age(d)

map any solution of S

(
ψ
φ

)
=

(
0
0

)
to another solution of the same equation.

3 Two-point functions

Consider the following two-point functions, built from the components of quasi-primary oper-
ators of logarithmic ageing symmetry

F = F (t1, t2) := 〈φ1(t1)φ2(t2)〉

G12 = G12(t1, t2) := 〈φ1(t1)ψ2(t2)〉

G21 = G21(t1, t2) := 〈ψ1(t1)φ2(t2)〉 (3.1)

H = H(t1, t2) := 〈ψ1(t1)ψ2(t2)〉

Their co-variance under the representation (2.3), with ξ′′ = 0, is expressed by the conditions

X̂0,1F
!
= 0,. . . , where X̂0,1 stands for the extension of (2.3) to two-body operators. This leads
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to the following system of eight equations for a set of four functions in two variables.

[
t1∂1 + t2∂2 +

1

2
(x1 + x2)

]
F (t1, t2) = 0

[
t21∂1 + t22∂2 + (x1 + ξ1)t1 + (x2 + ξ2)t2

]
F (t1, t2) = 0

[
t1∂1 + t2∂2 +

1

2
(x1 + x2)

]
G12(t1, t2) +

x′2
2
F (t1, t2) = 0

[
t21∂1 + t22∂2 + (x1 + ξ1)t1 + (x2 + ξ2)t2

]
G12(t1, t2) + (x′2 + ξ′2)t2F (t1, t2) = 0

[
t1∂1 + t2∂2 +

1

2
(x1 + x2)

]
G21(t1, t2) +

x′1
2
F (t1, t2) = 0

[
t21∂1 + t22∂2 + (x1 + ξ1)t1 + (x2 + ξ2)t2

]
G21(t1, t2) + (x′1 + ξ′1)t1F (t1, t2) = 0 (3.2)

[
t1∂1 + t2∂2 +

1

2
(x1 + x2)

]
H(t1, t2) +

x′1
2
G12(t1, t2) +

x′2
2
G21(t1, t2) = 0

[
t21∂1 + t22∂2 + (x1 + ξ1)t1 + (x2 + ξ2)t2

]
H(t1, t2)

+(x′1 + ξ′1)t1G12(t1, t2) + (x′2 + ξ′2)t2G21(t1, t2) = 0

where ∂i = ∂/∂ti. We expect an unique solution, up to normalisations. It is convenient to solve
the system (3.2) via the ansatz, with y := t1/t2

F (t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2f(y)

G12(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2

∑

j∈Z

lnj t2 · g12,j(y)

G21(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2

∑

j∈Z

lnj t2 · g21,j(y) (3.3)

H(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2

∑

j∈Z

lnj t2 · hj(y)

1. The function F does not contain any logarithmic contributions and its scaling function
satisfies the equation f ′(y) = 0, hence

f(y) = f0 = cste. (3.4)

This reproduces the well-known form of non-logarithmic local scaling [36].

Comparing this with the usual form (1.1) of standard lsi with z = 2, the ageing exponents
a, a′, λR are related to the scaling dimensions as follows:

a =
1

2
(x1 + x2)− 1 , a′ − a = ξ1 + ξ2 , λR = 2(x1 + ξ1) (3.5)

For example, the exactly solvable 1D kinetic Ising model with Glauber dynamics at zero tem-
perature [25] satisfies (1.1) with the values a = 0, a′−a = −1

2
, λR = 1, z = 2. Further examples

of systems with a′ − a 6= 0 are given by the non-equilibrium critical dynamics of the kinetic
Ising model with Glauber dynamics, both for d = 2 and d = 3 [36, 39].
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2. Next, we turn to the function G12. Co-variance under X0 leads to the condition
(
g12,1(y) +

1

2
x′2f(y)

)
+
∑

j 6=0

(j + 1) lnj t2 · g12,j+1(y) = 0 (3.6)

which must hold true for all times t2. This implies

g12,1(y) = −
1

2
x′2f(y) , g12,j(y) = 0 ; ∀j 6= 0, 1 (3.7)

In order to simplify the notation for later use, we set

g12(y) := g12,0(y) , γ12(y) := g12,1(y) = −
1

2
x′2f(y) (3.8)

and these two give the only non-vanishing contributions in the ansatz (3.2). Furthermore, the
last remaining function g12 is found from the co-variance under X1, which gives

∑

j∈Z

lnj t2

(
y(y − 1)g′12,j(y) + (j + 1)g12,j+1(y)

)
+ (x′2 + ξ′2)f(y) = 0 (3.9)

for all times t2. Combining the resulting two equations for g12 and γ12 with (3.8) leads to

y(y − 1)g′12(y) +

(
x′2
2

+ ξ′2

)
f(y) = 0 (3.10)

3. The function G21 is treated similarly. We find

g21(y) := g21,0(y) , γ21(y) := g21,1(y) = −
1

2
x′1f(y) , g21,j(y) = 0 ; for all j 6= 0, 1 (3.11)

and the differential equation

y(y − 1)g′21(y) + (x′1 + ξ′1) yf(y)−
1

2
x′1f(y) = 0 (3.12)

4. Finally, dilatation-covariance of the function H leads to hj(y) = 0 for all j 6= 0, 1, 2 and

h1(y) = −
1

2
(x′1g12(y) + x′2g21(y))

h2(y) =
1

4
x′1x

′
2f(y) (3.13)

The last remaining function h0(y) is found from co-variance under X1 which leads to

y(y − 1)h′0(y) +

(
(x′1 + ξ′1) y −

1

2
x′1

)
g12(y) +

(
1

2
x′2 + ξ′2

)
g21(y) = 0 (3.14)

Using (3.4), the equations (3.10,3.12,3.14) are readily solved and we find

g12(y) = g12,0 +

(
x′2
2

+ ξ′2

)
f0 ln

∣∣∣∣
y

y − 1

∣∣∣∣

g21(y) = g21,0 −

(
x′1
2

+ ξ′1

)
f0 ln |y − 1| −

x′1
2
f0 ln |y|

h0(y) = h0 −

[(
x′1
2

+ ξ′1

)
g21,0 +

(
x′2
2

+ ξ′2

)
g12,0

]
ln |y − 1| −

[
x′1
2
g21,0 −

(
x′2
2

+ ξ′2

)
g12,0

]
ln |y|

+
1

2
f0

[((
x′1
2

+ ξ′1

)
ln |y − 1|+

x′1
2
ln |y|

)2

−

(
x′2
2

+ ξ′2

)2

ln2

∣∣∣∣
y

y − 1

∣∣∣∣

]
(3.15)
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where f0, g12,0, g21,0, h0 are normalisation constants. We summarise our results:

F (t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2f0

G12(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2

(
g12(y) + ln t2 · γ12(y)

)

G21(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2

(
g21(y) + ln t2 · γ21(y)

)

H(t1, t2) = t
−(x1+x2)/2
2 yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2 (3.16)

×
(
h0(y) + ln t2 · h1(y) + ln2 t2 · h2(y)

)

where the scaling functions, depending only on y = t1/t2, are given by eqs. (3.8,3.11,3.13,3.15).

Although the algebra age(d) was written down for a dynamic exponent z = 2, the space-
independent part of the two-point functions is essentially independent of this feature. The
change (x, x′, ξ, ξ′) 7→ ((2/z)x, (2/z)x′, (2/z)ξ, (2/z)ξ′) in eq. (3.16) produces the form valid for
an arbitrary dynamical exponent z.

Since for z = 2, the space-dependent part of the generators is not affected by the passage
to the logarithmic theory via the substitution (2.2), we recover the same space-dependence as
for the non-logarithmic theory with z = 2. For example,

F (t1, t2; r1, r2) = δ(M1 +M2) Θ(t1 − t2) t
−(x1+x2)/2
2 f0

×yξ2+(x2−x1)/2(y − 1)−(x1+x2)/2−ξ1−ξ2 exp

[
−
M1

2

(r1 − r2)
2

t1 − t2

]
(3.17)

where we also included the causality condition t1 > t2, expressed by the Heaviside function Θ,
which can be derived using the methods of [35]. Similar forms hold true for G12, G21, H .

Comparison with the result (1.10) of logarithmic Schrödinger-invariance shows:

1. logarithmic contributions, either as corrections to the scaling behaviour via additional
powers of ln t2, or else in the scaling functions themselves, may be described independently
in terms of the parameter sets (x′1, x

′
2) and (ξ′1, ξ

′
2).

In particular, one may choose to introduce the logarithmic structure only through a single
one of the two generators X0 and X1.

2. If one sets x′1 = x′2 = 0, the scaling functions g12, g21 and h0 contain logarithmic terms,
although there is no predicted logarithmic breaking of scaling, in contrast to what occurs
in logarithmic conformal invariance or logarithmic Schrödinger invariance.

3. The constraint F = 0 of both logarithmic conformal invariance and logarithmic Schrödinger
invariance is no longer required.

4. If time-translation-invariance is assumed, one has ξ1 = ξ2 = ξ′1 = ξ′2 = 0, x1 = x2 and
f0 = 0. The functional form of eqs. (3.16,3.17) then reduces to the Schrödinger-invariant
forms of eq. (1.10).
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4 Applications

4.1 Directed percolation

It is well-understood that critical 2D percolation can be described in terms of conformal in-
variance [46]. Notably, Cardy [12] and Watts [72] used conformal invariance to derive their
celebrate formulæ for the crossing probabilities. More recently, it has been shown that a pre-
cise formulation of the conformal invariance methods required in their derivations actually leads
to a logarithmic conformal field theory [51]. Since directed percolation is in many respects quite
analogous to ordinary percolation, we raise the question:

can one describe dynamical scaling properties of critical directed percolation in terms of
logarithmic ageing invariance ?

The directed percolation universality class can be realised in many different ways, with
often-used examples being either the contact process or else Reggeon field theory, and very
precise estimates of the location of the critical point and the critical exponents are known, see
[40, 59, 38] and references therein, and in agreement with extensive recent experiments [70].
In the contact process, a response function can be defined by considering the response of the
time-dependent particule concentration with respect to a time-dependent particule-production
rate. The relaxation from an initial state is in many respects quite analogous to what is seen
in systems with an equilibrium stationary state [18, 68, 7]. In figure 1, we show data of the
autoresponse function R(t, s) = s−1−afR(t/s) of 1D critical directed percolation, realised here
by the contact process. The initial state contains uncorrelated particles at a finite density. The
data are obtained from the transfer matrix renormalisation group (tmrg) which are consid-
erably more precise than data obtained from a Monte Carlo simulation, subject to stochastic
uncertainties [18, 19]. Aspects of local scaling can be emphasised by plotting the function

hR(y) := fR(y)y
λR/z(1− y−1)1+a (4.1)

over against y = t/s, with the exponents taken from [38]. We observe an excellent collapse
of the data when y is large enough, but we also see that finite-time corrections to dynamical
scaling arise when y → 1, the precise form of which depends on the waiting time s.

Starting from large values of y, and proceeding towards y → 1, a description of the data in
terms of local scale-invariance increasingly needs to take finer points into account. First, in its
most simple form, one would näıvely assume a = a′, when (1.1) predicts a horizontal line in
this plot. Indeed, this describes the data down to y = t/s ≈ 3 − 4, but fails when y becomes
smaller. We had tried earlier [36] to take these deviations into account by admitting that a and

a′ can be different. This is equivalent to the assumption that ξ + ξ̃ 6= 0 and describes the data
well down to t/s ≈ 1.1. However, further systematic deviations exist when t/s is yet closer to
unity. For the values of s used in figure 1, it is clear that one is still in the dynamical scaling
regime and an explanation in terms of a more general form of the scaling function should be
sought.

We now try to explain the tmrg data in figure 1 in terms of logarithmic ageing invariance
(extended to an arbitrary dynamical exponent z as outlined above). We make the working

hypothesis R(t, s) = 〈ψ(t)ψ̃(s)〉, where the two scaling operators ψ and ψ̃ are described by the
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Figure 1: Scaling of the autoresponse R(t, s) = s−1−afR(t/s) of the 1D critical contact process,
as a function of y = t/s, for several values of the waiting time s, and indicated by the dash-
dotted lines. The dashed line labelled ‘lsi’ gives the prediction for the scaling function hR(y) =
fR(y)y

λR/z(1− 1/y)1+a as obtained from standard, non logarithmic local scale-invariance (1.1),
with a′ − a = 0.26. The full curve labelled ‘lsi loga’ is the prediction (4.3) of logarithmic local
scale-invariance with ξ′ = 0, as described in the text.

logarithmically extended scaling dimensions

(
x x′

0 x

)
,

(
ξ ξ′

0 ξ

)
and

(
x̃ x̃′

0 x̃

)
,

(
ξ̃ ξ̃′

0 ξ̃

)
(4.2)

In principle, one might have logarithmic corrections to scaling, according to eq. (3.16). Because
of the excellent scaling behaviour seen in figure 1, we conclude that logarithmic corrections are
absent in the data. Hence the two functions h1,2(y) must vanish. Because of eq. (3.13), this
means that x′ = x̃′ = 0. Then logarithmic ageing invariance (3.15) predicts

hR(y) =

(
1−

1

y

)a−a′ (
h0 − g12,0ξ̃

′ ln(1− 1/y)−
1

2
f0ξ̃

′2 ln2(1− 1/y)

− g21,0ξ
′ ln(y − 1) +

1

2
f0ξ

′2 ln2(y − 1)

)
(4.3)

Since for y sufficiently large, the numerically observed scaling function hR(y) becomes essen-
tially constant, we conclude that there are no leading logarithmic contributions in the y → ∞
asymptotic behaviour, hence ξ′ = 0 and the second line in (4.3) vanishes. Hence we arrive at the
following phenomenological form hR(y) = h0(1−1/y)a−a′

(
1− A ln(1− 1/y)− B ln2(1− 1/y)

)
,
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with the normalisation constant h0 and where the universal parameters A,B and the exponent
a− a′ must be determined from the data. The full curve in figure 1 shows to what extent this
describes the available data, with the chosen values

a′ − a ≃ 0.174 , A ≃ 0.13 , B ≃ 0.0168 , h0 ≃ 0.0888 (4.4)

Indeed, the chosen form gives a full account of the tmrg data, down to t/s − 1 ≈ 2 · 10−3,
about two orders of magnitude smaller than for non-logarithmic local scale-invariance. This is
about the size of the region where dynamical scaling has been confirmed through the collapse
of data with different values of s. However, we also point out that the functional form of hR(y)
may depend quite sensitively on the values of the several parameters such that error bars in
a′ − a, A,B are of the order of at least 25%.

In particular, the tmrg data suggest that the logarithmic nature of the scaling operator
should merely enter via the response field, and only through the consideration of the ‘special’
transformation X1, since x

′ = x̃ = ξ = 0 and ξ̃′ 6= 0 is the only quantity which describes the
departure from the standard non-logarithmic scaling. We observe that the present estimate
a′ − a = 0.17(5) is considerably more small than our earlier estimate a′ − a ≈ 0.27. This is
the first time that a theory could be formulated which describes the autoresponse in the entire
range of the scaling variable, 2 · 10−3 . y− 1 ≤ ∞. We point out that existing field-theoretical
methods based on the ε-expansion [7] obtain reliable results only in the opposite case y ≫ 1,
notably on non-equilibrium exponents and universal amplitudes.

4.2 Logarithmic scaling forms

In the ageing of several magnetic systems, such as the 2D XY model quenched from a fully
disordered initial state to a temperature T < TKT below the Kosterlitz-Thouless transition
temperature [11, 9, 1] or fully frustrated spin systems quenched onto their critical point [71, 44],
the following phenomenological scaling behaviour

R(t, s) = s−1−afR

(
t

ln t

ln s

s

)
(4.5)

has been found to describe the simulational data well. Could this scaling form be explained
within the context of logarithmic ageing invariance ? Hélas, this question has to be answered
in the negative. If one fixes y = t/s and expands the quotient ln s/ ln t = ln s/(ln y + ln s) for
s→ ∞, eq. (4.5) leads to the following generic scaling behaviour

R(t, s) = s−1−a
∑

k,ℓ

fk,ℓ y
k

(
ln y

ln s

)ℓ

(4.6)

Comparsion with the explicit scaling forms derived in section 3 shows that there arise only
combinations of the form lnn y · lnm s or lnn(y − 1) · lnm s, where the integers n,m must satisfy
0 ≤ n+m ≤ 2. This is incompatible with (4.6).

In conclusion, the logarithmic scaling form (4.5) cannot be understood in terms of logarith-
mic ageing invariance, as presently formulated.
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5 Conclusions

We have discussed the extension of dynamical scaling towards local scale-invariance in the case
when the physical scaling operator acquires a partner with the same scaling dimension. Since in
far-from-equilibrium relaxation, time-translation-invariance does not hold, one cannot appeal
directly to the known cases of logarithmic conformal and Schrödinger-invariance. Indeed, anal-
ogously to the non-logarithmic case, the doubletts of scaling oprators are described by pairs of
Jordan matrices of scaling dimensions. When computing the co-variant two-point functions, the
absence of time-translation-invariance allows, independently, to include logarithmic corrections
to scaling and also non-trivial modification of the scaling functions, see eq. (3.15,3.16). This
generalises the forms found from logarithmic conformal or Schrödinger-invariance [41].

Motivated by the fact that imporant properties of ordinary 2D critical percolation can be
understood in terms of logarithmic conformal invariance [51], we have re-analysed the autore-
sponse R(t, s) of critical 1D directed percolation in terms of our logarithmic extension of local
scale-invariance. The available data suggest that at least this observable behaves as if directed
percolation were described by logarithmic local scale-invariance (with an obvious generalisation
to z 6= 2). Of course, further independent tests of this possibility are required.

Since logarithmic conformal invariance also arises in disordered systems at equilibrium, it
would be of interest to see whether logarithmic local scale-invariance could help in improving
the understanding of the relaxation processes of disordered systems far from equilibrium, see
e.g. [63, 37, 48, 62].

Acknowledgement: I thank T. Enss for the tmrg data, M. Pleimling for useful correspon-
dence and the Departamento de F́ısica da Universidade de Aveiro for warm hospitality.
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