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I. INTRODUCTION

This book is concerned with numerical integration in general p dimensional spaces. To under-

stand why special methods are needed, let us consider for the moment trapezoidal or center-of-bin

integration on the unit interval in p = 1 dimension. Since these are both second order methods,

to achieve an accuracy of one part in 104 one needs a division of the unit interval into roughly

100 subdivisions, with an evaluation of the integrand function at each. This poses no problem for

numerical evaluation, but suppose instead we wish to integrate a function over a 9 dimensional

region, achieving a similar accuracy of one part in 104. One then needs 100 divisions per axis, and

(100)9 = 1018 function evaluations, which is a daunting task even for the fastest current comput-

ers. So a brute force extension of the trapezoidal rule (or similar higher order methods, such as

Simpson’s rule) is not a viable approach when the dimension of the space p is more than around

four.

In consequence, methods for high dimensional spaces have focused on adaptive algorithms, in

which function evaluations are concentrated in regions where the integrand is large and rapidly

varying. Both Monte Carlo and deterministic algorithms have been proposed and widely used.

Typically, they start from a base region, and then subdivide or refine on one to three or four sides

along which the integrand is most rapidly varying. The process is then iterated, leading to finer

subdivisions and an improved estimate of the integrand. Most authors, however, have considered

it to be computationally prohibitive to proceed at each step by dividing the base region into 2p

subregions, so that the maximal length of each side is reduced by a factor of 2 at each step. Such a

subdivision would allow localization of isolated integrand peaks in p dimensions, giving a method

with the potential of achieving high accuracy for integrations in high dimensional spaces, and high

resolution in applications such as template-based pattern recognition.

The motivation for this book is the observation that computer speed has dramatically increased

in recent years, while the cost of memory has simultaneously dramatically decreased; our current

laptop speeds, and memories, are characterized by “giga” rather than the “mega” of two decades

ago. So it is now timely to address the problem of formulating practical high dimension integration
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routines that proceed by 2p subdivision. We will develop methods for adaptive integration over

both general simplexes, and axis-parallel hypercubes. Our simplex method is based on combining

Moore’s (1992) algorithm for 2p subdivision of a general simplex, with new formulas for parame-

terized higher order integration over a general simplex that we derive using the centroid approach

of Good and Gaskins (1969, 1971), to give a a fully localizable adaptive integration procedure

for general dimension p ≥ 1. In addition to giving a hypercube method based on partition into

simplexes, we also give a simpler, direct method for integration over hypercubes, constructed by

analogy with our methods for simplexes. We focus specifically on a few special base region geome-

tries: the standard simplex (relevant for calculating Feynman parameter integrals in physics), the

Kuhn simplex, which can be used to tile the p dimensional side 1 hypercube by symmetrization

of the integrand, and the half-side 1 hypercube, which for which we give direct algorithms which

are simpler than the simplex-based algorithms. By changes of variable, any multiple integral with

fixed limits of integration in each dimension can be converted to an integration over the side 1 or

half-side 1 hypercube. In the following sections we develop the theory behind our methods, and

then give a suite of Fortran programs, for both serial and MPI parallel computation, implementing

them.

II. ONE DIMENSIONAL ADAPTIVE INTEGRATION

As a simple example, let us sketch how to write an adaptive integration program in one dimen-

sion for the integral

I =

∫ 1

0
dxf(x) . (1)

A first estimate can be obtained by using the trapezoidal rule

Ia ≃ 0.5[f(0) + f(1)] , (2)

and a second estimate obtained by using the center-of-bin rule

Ib ≃ f(0.5) . (3)

These are both first order accurate methods, but since they are applied to the entire interval (0, 1)

there will be a significant error, unless f(x) happens to be a linear function over the interval. If

we want an evaluation of the integral with an estimated error ǫ, we test whether |Ia − Ib| < ǫ. If

this condition is satisfied, we output Ia and Ib as estimates of the integral. If the condition is not
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satisfied, we subdivide the interval (0, 1) into two half-sized intervals (0, 0.5) and (0.5, 1). In each

subinterval we follow the same procedure. For a subinterval with upper limit xU and lower limit

xL, and midpoint xM , we now define

Ia ≃ 0.5[f(xU ) + f(xL)] , (4)

and

Ib ≃ f(xM ) . (5)

For the two subintervals, we evaluate the trapezoidal and center-of-bin approximations to the inte-

gral, keeping Ia(subinterval) and Ib(subinterval) for the subinterval, multiplied by the subinterval

width of 1/2, as contributions to the answer if the “thinning” condition

|Ia(subinterval)− Ib(subinterval)| < ǫ (6)

is met, and subdividing the interval by half again if this condition is not met. When, after a sequence

of subdivisions, the condition is met for all subintervals, we have obtained good approximations to

both a trapezoidal and center-of-bin evaluation of the integral,

Ia ≃
∑

subintervals

L(subinterval)Ia(subinterval) ,

Ib ≃
∑

subintervals

L(subinterval)Ib(subinterval) .

(7)

Here L(subinterval) is the subinterval length, and since the subintervals are a tiling of the interval

(0, 1), we clearly have

∑

subintervals

L(subinterval) = 1 . (8)

From the difference of Ia and Ib we get an estimate of the error, given by

|outdiff| ≡ |Ia − Ib| . (9)

We can also compute the sum of the absolute values of the local subinterval errors,

errsum ≡
∑

subintervals

L(subinterval)|Ia(subinterval)− Ib(subinterval)| ≥ |outdiff| . (10)

When the condition |Ia(subinterval)− Ib(subinterval)| < ǫ is met for all subintervals, then errsum

reduces, using Eq. (8), to

errsum < ǫ , (11)
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and if all local subinterval errors have the same sign, then we have errsum = |outdiff|.
If the process of subdivision has to be stopped before the condition |Ia(subinterval) −

Ib(subinterval)| < ǫ is satisfied for all subintervals, with the remaining subregion contributions

added to Ia and Ib before the program terminates, then errsum will typically be larger than ǫ.

Such premature termination can happen for very irregular or singular functions, or if the parame-

ter ǫ is made too small, or if one subdivides without imposing the thinning condition of Eq. (6).

But for smooth functions f(x) and thinning with attainable ǫ the subdivision process will terminate

quite rapidly. The reason is that both the trapezoidal and center-of-bin methods are accurate to

first order with a second order error, and so the difference Ia(subinterval)− Ib(subinterval) scales

as [L(subinterval)]2 as the subinterval length L(subinterval) approaches zero.

The adaptive integration method just sketched is easily programmed, and works well. One does

not have to keep track of the relative location of the various subintervals, only of their starting and

ending x values. Thus, one maintains a list of active subintervals, stored in any convenient order;

when a subinterval is divided the two resulting halves are added to the list of active subintervals,

while if a subinterval obeys the thinning condition , its contributions to Ia, Ib, and errsum are added

to an accumulation register, and the subinterval is removed from the list of active subintervals.

Even faster termination is obtained if Simpson’s rule or an even higher order integration rule is

used; see for example the Wikipedia article on the McKeeman (1962) adaptive Simpson rule, and

references given there. The idea again is to compute two different evaluations of the integral over

each subinterval, giving an error estimate that is used to determine whether to “harvest” the result

at that level of subdivision, or to subdivide further. In generalizing to higher dimensional integrals,

the same features persist: for each integration subregion, we evaluate a local thinning condition

obtained from the difference of two alternative higher order integration rules. If the condition is

obeyed, that subregion is “harvested” and deleted from the list of active subregions; if the condition

is not obeyed, the subregion is further subdivided and the resulting smaller subregions are added

to the active list.

III. GENERALIZING TO HIGHER DIMENSIONS: SIMPLEXES AND HYPERCUBES.

REVIEW OF PRIOR WORK.

The first question to decide in generalizing to higher dimensions is the choice of base region

geometry. There are two natural higher dimensional analogs of the one dimensional interval (0, 1).

The first is the side 1 hypercube (0, 1)⊗ (0, 1)⊗ ...⊗ (0, 1), and the second is what we will term a
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FIG. 1: From left to right, the unit standard simplex, the side 1 hypercube, and the half-side 1 hypercube,

in 2 dimensions.

standard simplex with vertices (0, 0, ..., 0), (0, 1, 0, 0.....0), (0, 0, 1, 0, 0...., 0), ...., (0, 0, ...., 0, 1). We

will also make use of the half-side 1 hypercube, spanning (−1, 1) ⊗ (−1, 1) ⊗ ... ⊗ (−1, 1). These

three basic regions are illustrated, in two dimensions, in Fig. 1.

Some simple geometric facts are important in setting a strategy. For a p dimensional simplex,

the number of vertices is p + 1 and the number of sides connecting vertices is (p + 1)p/2, both of

which have polynomial growth. Thus, the indexing problem of keeping track of vertices which define

active regions is relatively simple. For a p dimensional hypercube, the number of m-dimensional

hypercubes on the boundary (see, e.g., the Wikipedia article on hypercubes) is 2p−mp !/(m !(p −
m) !), and so the number of vertices (m = 0) is 2p, and the number of sides connecting vertices

(m = 1) is p 2p−1, both of which grow exponentially with p. Thus, if one labels hypercubes in

terms of their vertices or sides, an exponentially growing index is required for large p. However, for

the maximal boundary hypercube, with m = p− 1, the number given by the above formula is just

2p, which again has polynomial, in fact linear, growth. (For example, a square has 2× 2 = 4 lines

as sides, and a cube has 2× 3 = 6 squares as faces.) So our direct method for hypercubes will use

geometric features of the maximal boundary hypercubes for indexing, subdivision, and integration,

closely following the methods that we develop for simplexes.

Before getting into further details, let us first give a very brief survey of adaptive methods

for higher dimensional integration that are currently in the literature. A method that is widely

used by physicists to evaluate Feynman parameter integrals is the VEGAS program of Lepage

(1978), which uses a hypercube as the base geometry. This is a Monte Carlo method, in which



8

random samplings of the integration volume are done with a separable probability density that is

a product of one dimensional densities along each axis. This probability density is then iterated

to give a more detailed sampling along axes on which the projection of the integrand is rapidly

varying. A deterministic method of Genz and Cools (2003) is based on simplexes as the base

regions. The algorithm picks the subregion with the largest estimated error, and subdivides it into

up to four equal volume subregions by cutting edges along which the integrand is most rapidly

varying. This, and related adaptive algorithms, are discussed in the survey of CUBPACK by Cools

and Haegemans (2003). The CUBA set of algorithms described by Hahn (2005) includes both

Monte Carlo methods and deterministic methods; the former include refinements of VEGAS and

the latter proceed by bisection of the subregion with largest error. A survey of many types of high

dimensional integration algorithms, including adaptive algorithms, is contained in the HIntLib

Manual of Schürer (2008).

Most of the algorithms just described do not proceed directly to a 2p subdivision of the base

region (although the possibility of 2p subdivision is sketched in “Algorithm 2” of Cools and Haege-

mans (2003)). An algorithm in the literature which makes use of a 2p subdivision was given by

Kahaner and Wells (1979). Unlike the algorithms which we develop below, which work directly

from the vertex coordinates of a general simplex, the Kahaner Wells algorithm uses changes of

variable for both simplex subdivision and integration. It also rank orders the errors for each sub-

region (as do most of the algorithms described in the preceding paragraph), and at each stage

subdivides the subregion with the largest contribution to the total error. While this global method

may result in efficiencies in reducing the number of subdivisions needed, it makes parallelization

of the algorithm more complicated, since the computations for the different subregions are not

independent of one another. Also, when many subregions have errors of similar size, which is often

the case, the computational effort involved in rank ordering the errors may not be justified. In

the algorithms developed below, as in the one-dimensional example given in Sec. 1, we use a local

thinning condition for the subregions, making it easy to turn serial versions of the algorithm into

parallel ones. We note, however, that the subdivision and integration methods that we use could

also be incorporated into global adaptive algorithms.

IV. SIMPLEX PROPERTIES AND APPLICATIONS

Any set of p + 1 points in p dimensional space defines a p-simplex, and we will be concerned

with integrations over the interior region defined this way. Thus, in 1 dimension, 2 points define a
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1-simplex that is the line segment joining them, in 2 dimensions, 3 points define a 2-simplex that

is a triangle, in three dimensions, 4 points define a 3-simplex that is a tetrahedron, and so forth.

We will refer to the p+1 points, that each define a p-vector, as the vertices of the simplex, and our

strategy will be to express all operations, both for the subdivision of simplexes and for calculating

approximations to integrals over simplexes, directly in terms of these vertices. Our convention,

both here in the text and in the programs, is that the p + 1 vertices of a simplex are enumerated

from 0 to p, and the p vector components of each vertex are enumerated from 1 to p. Both will be

denoted by subscripts; it should be clear from context and from the range of the index whether an

index is the label of a simplex vertex, as in x0, ..., xp, or the component index of a general point

x, as in x1, ..., xp. In this notation, the ith component of the jth simplex vertex is denoted by a

double subscript xji.

A. Simplex properties

A simplex forms a convex set. This means that for any integer n ≥ 1 and any set of points

x1, ...., xn lying within (or on the boundary) of a simplex, and any set of non-negative numbers

α1, ...., αn which sum to unity,

αj ≥ 0, j = 1, ..., n ,

n
∑

j=1

αj = 1 ,

(12)

the point

x =

n
∑

j=1

αjxj (13)

also lies within (or on the boundary) of the simplex (see, e.g., Osborne (2001)).

In constructing integration rules for simplexes, we will be particularly interested in linear com-

binations of the form of Eq. (13) in which the points x1, ..., xn are vertices of the simplex. For

such sums, one can state a rule which determines precisely where the point x lies with respect to

the boundaries of the simplex. Let x0, x1, ..., xp be the vertices of a simplex, and let xc denote the

centroid of the simplex,

xc =
1

p+ 1

p
∑

j=0

xj . (14)
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Let us denote by x̃j the coordinates of the vertices with respect to the centroid as origin,

x̃j = xj − xc , (15)

which obey the constraint following from Eq. (14),

p
∑

j=0

x̃j = 0 . (16)

Correspondingly, let x denote a general point, and let x̃ = x− xc denote the general point referred

to the centroid as origin. Since we are assuming that the simplex is non-degenerate, the vectors x̃j

span a linearly independent basis for the p-dimensional space, and so we can always expand x̃ as

a linear combination of the x̃j ,

x̃ =

p
∑

j=0

αj x̃j . (17)

This expansion is not unique, since by Eq. (16) we can add a constant a to all of the coefficients

αj , without changing the sum in Eq. (17). In particular, we can use this freedom to put the

expansion of Eq. (17) in a standard form, which we will assume henceforth, in which the sum of

the coefficients αj is unity,

p
∑

j=0

αj = 1 . (18)

For coefficients (called barycentric coordinates) obeying this unit sum condition, we can use Eqs.

(14) and (15) to also write

x =

p
∑

j=0

αjxj . (19)

In terms of the expansion of Eqs. (17) through (19) we can now state a rule
(

see Pontryagin

(1952) and the Wikipedia article on barycentric coordinates
)

for determining where the point x

lies with respect to the simplex: (1) If all of the αj are strictly positive, the point lies inside the

boundaries of the simplex; (2) If a coefficient αj is zero, the point lies on the boundary plane

opposite to the vertex xj , and if several of the αj vanish, the point lies on the intersection of

the corresponding boundary planes; (3) If any coefficient αj is negative, the point lies outside the

simplex.

To derive this rule, we observe that a point x lies within the simplex only if it lies on the same

side of each boundary plane of the simplex as the simplex vertex opposite that boundary. Let us

focus on one particular vertex of the simplex, which we label xp, so that the other p vertices are
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x0, ..., xp−1. These p vertices span an affine hyperplane, which divides the p-dimensional space into

two disjoint parts, and constitutes the simplex boundary hyperplane opposite the simplex vertex

xp. A general parameterization of this hyperplane takes the form

x = x0 +

p−1
∑

j=1

βj(xj − x0) , (20)

that is, we take x0 as a fiducial point on the hyperplane and add arbitrary multiples of a complete

basis of vectors xj − x0 in the hyperplane. Rewriting Eq. (20) as

x =

p−1
∑

j=0

γjxj , (21)

with γ0 = 1−∑p−1
j=1 βj and γj = βj , j ≥ 1, we see that the p coefficients γj obey the condition

p−1
∑

j=0

γj = 1 . (22)

By virtue of this condition, we can also write the hyperplane parameterization of Eq. (21) in terms

of coordinates with origin at the simplex centroid,

x̃ =

p−1
∑

j=0

γj x̃j . (23)

We now wish to determine whether the general point x̃ lies on the same side of this hyperplane

as the vertex x̃p, or lies on the hyperplane, or lies on the opposite side from x̃p, by using the

expansion of Eqs. (17) and (18), which we rewrite in the form

x̃ =

p−1
∑

j=0

αj x̃j +
αp

p

p−1
∑

j=0

x̃j

−αp

p

p−1
∑

j=0

x̃j + αpx̃p .

(24)

The first line on the right hand side of Eq. (24) has the form of the hyperplane parameterization

of Eq. (23), since by construction the coefficients add up to unity, and so this part of the right

hand side is a point on the boundary hyperplane opposite the vertex x̃p. The second line on the

right hand side of Eq. (24) can be rewritten, by using Eq. (16), as

αp
p+ 1

p
x̃p . (25)
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To appreciate the significance of this, we note that the centroid of the p points defining the boundary

hyperplane is

x̃h; c =
1

p

p−1
∑

j=0

x̃j = −1

p
x̃p , (26)

where we have again used Eq. (16). Therefore the vector from the centroid of the points defining

the hyperplane to the vertex x̃p is

x̃p − x̃h; c =
p+ 1

p
x̃p . (27)

So Eq. (25) tells us that the point x̃ is displaced from the hyperplane by a vector parallel to that

of Eq. (27), with its length rescaled by the factor αp. Therefore, if αp > 0, the point x̃ lies on

the same side of the boundary hyperplane as the opposite vertex x̃p. If αp = 0, the point x̃ lies

on the boundary hyperplane, and if αp < 0, the point x̃ lies on the opposite side of the boundary

hyperplane from the vertex x̃p. Applying this argument to all p+1 vertices in turn gives the rules

stated above.

In constructing integration rules for simplexes, we will use the following elementary corollary

of the result that we have just derived. Consider the sum

X̃ =

N
∑

i=1

λix̃i , (28)

with the coefficients λi obeying

λi > 0, i = 1, ..., N

N
∑

i=1

λi < 1 ,

(29)

with the points x̃i any vertices of a simplex. Some vertices may be omitted, and some used more

than once, in the sum of Eq. (28). Then the point X̃ lies inside the simplex. To see this, we note

that by adding a positive multiple of zero in the form of Eq. (16), the sum of Eq. (28) can be

reduced to the form of Eqs. (17) and (18), with all expansion coefficients αj strictly positive. By

the rule stated above, this implies that the point X̃ lies within the simplex.

B. Simplex applications

Our programs for p-dimensional integration make special use of two kinds of simplexes, the unit

“standard simplex” introduced above, and the unit Kuhn simplex. In this subsection, we discuss
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important applications of these two special types of simplexes.

To recapitulate, the unit standard simplex has vertices given by

x0 =(0, 0, 0, ..., 0) ,

x1 =(1, 0, 0, ..., 0) ,

x2 =(0, 1, 0, ..., 0) ,

x3 =(0, 0, 1, 0, ..., 0) ,

............

xp−1 =(0, 0, 0, ..., 0, 1, 0) ,

xp =(0, 0, 0, ..., 0, 0, 1) .

(30)

It is bounded by axis-parallel hyperplanes xj = 0, j = 1, ..., p and the diagonal hyperplane

1 = x1 + x2 + ...+ xp. Thus, the integral of a function f(x1, ..., xp) over the standard simplex can

be written as a multiple integral in the form

∫

standard simplex
f(x1, ..., xp)dx1...dxp =

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3....

×
∫ 1−x1−x2−...−xp−2

0
dxp−1

∫ 1−x1−x2−...−xp−1

0
dxpf(x1, ..., xp) . (31)

An important physics application of this formula is the Feynman-Schwinger formula for com-

bining perturbation theory denominators,

1

D0D1...Dp
= p !

∫

standard simplex

1

[(1− x1 − x2 − ...− xp)D0 + x1D1 + ...+ xpDp]p+1
, (32)

which can be proved inductively as follows. For p = 1, the Feynman-Schwinger formula reads

1

D0D1
=

∫ 1

0
dx1

1

[(1− x1)D0 + x1D1]2
, (33)

which is easily verified by carrying out the integral. Assume now that this formula holds for

dimension p. For p+ 1, the formula asserts that

1

D0D1...DpDp+1
=(p+ 1) !

∫ 1

0
dx1....

∫ 1−x1−x2−...−xp−1

0
dxp

∫ 1−x1−x2−...−xp−1−xp

0
dxp+1

× 1

[(1− x1 − x2 − ...− xp − xp+1)D0 + x1D1 + ...+ xpDp + xp+1Dp+1]p+2
.

(34)
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Carrying out the integral over xp+1, we get

1

D0D1...DpDp+1
= p !

∫ 1

0
dx1....

∫ 1−x1−x2−...−xp−1

0
dxp

1

Dp+1 −D0

×
[

1

[(1−∑p
i=1 xi)D0 + x1D1 + ...+ xpDp]p+1

− 1

[(1 −∑p
i=1 xi)Dp+1 + x1D1 + ...+ xpDp]p+1

]

.

(35)

But applying the induction hypothesis for p dimensions, the right hand side of this equation reduces

to

1

Dp+1 −D0

[

1

D0D1....Dp
− 1

Dp+1D1....Dp

]

=
1

D0D1...DpDp+1
, (36)

which is the result to be proved. In the literature, numerical evaluation of Eq. (32) is usually

accomplished by first making changes of variable to convert the simplex integral to an integral

over a hypercube, and then using a hypercube-based program such as VEGAS. Using the methods

developed below for direct evaluation of integrals over a standard simplex in arbitrary dimensions,

the formula of Eq. (32) can also be integrated numerically in its original simplex form.

We next turn to the unit Kuhn (1960) simplex, which has the vertices given by

x0 =(0, 0, 0, ..., 0) ,

x1 =(1, 0, 0, ..., 0) ,

x2 =(1, 1, 0, ..., 0) ,

x3 =(1, 1, 1, 0, ..., 0) ,

............

xp−1 =(1, 1, 1, ..., 1, 1, 0) ,

xp =(1, 1, 1, ..., 1, 1, 1) ,

(37)

and which defines a simplex in which 1 ≥ x1 ≥ x2 ≥ x3.... ≥ xp−1 ≥ xp. The unit Kuhn simplex in

two dimensions is illustrated in Fig. 2.

The integral of a function f(x1, ..., xp) over a unit Kuhn simplex can be written as a multiple

integral in the form
∫

unit Kuhn simplex
f(x1, ..., xp)dx1...dxp =

∫ 1

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3....

×
∫ xp−2

0
dxp−1

∫ xp−1

0
dxpf(x1, ..., xp) .

(38)
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FIG. 2: The unit Kuhn simplex in 2 dimensions.

FIG. 3: Kuhn simplex tiling of a unit hypercube in 2 dimensions.

Consider now the integral of the function f(x1, ..., xp) over the unit hypercube,

∫ 1

0
dx1

∫ 1

0
dx2....

∫ 1

0
dxp−1

∫ 1

0
dxpf(x1, ..., xp) . (39)

This hypercube can be partitioned into p ! regions, each congruent to the unit Kuhn simplex, by

the requirement that in the region corresponding to the permutation P of the coordinate labels

1, ..., p, the coordinates are ordered according to xP (1) ≥ xP (2) ≥ xP (3).... ≥ xP (p−1) ≥ xP (p). This

partitioning or tiling is illustrated for a square in Fig. 3, and for a cube in three dimensions in Fig.

1 of Plaza (2007).

Hence the integral of f over the unit hypercube is equal to the integral of the symmetrized

function computed from f , integrated over the unit Kuhn simplex,

∫ 1

0
dx1

∫ 1

0
dx2....

∫ 1

0
dxp−1

∫ 1

0
dxpf(x1, ..., xp)

=

∫

unit Kuhn simplex

∑

p ! permutations P

f(xP (1), ..., xP (p))dx1...dxp . (40)

We will use this equivalence to construct adaptive programs for integration over a unit hypercube,

based on first reducing it, by symmetrization, to an integral over a unit Kuhn simplex, and then

adaptively subdividing the Kuhn simplex to reduce the integration error as needed.
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V. SIMPLEX SUBDIVISION AND PROPERTIES

A. Simplex subdivision algorithms

Two very simple algorithms for subdividing simplexes have been given in the computer graphics

literature by Moore (1992). Let us denote the vertices of the starting simplex by x0, ..., xp, each of

which is a p-vector, and from these let us form the p-vectors V (k1, k2) defined by

V (k1, k2) =
1

2
(xk1 + xk2) , k1 , k2 = 0, ..., p. (41)

Thus, V (0, 0) = x0, V (0, 1) = (1/2)(x0 + x1) and so forth, so that the vectors V (k1, k2) consist

of the original simplex vertices, together with the midpoints of the original simplex edges. Let

k = 0, ..., 2p − 1 be an index which labels the 2p subsimplexes into which the original simplex is

divided. Moore then gives two algorithms, which he terms recursive subdivision and symmetric

subdivision, for determining the vertices to be assigned to the subsimplex labelled with k. Both

make use of the binary representation of k, and of a function determined by this representation,

the bitcount function b(k), which is the number of 1 bits appearing in the binary representation of

k.

The recursive subdivision algorithm proceeds as follows. As the 0 vertex of the subsimplex

labelled by k, take the vector V (b(k), b(k)), that is, k1 = k2 = b(k). To get the other vertices, scan

along the binary representation of k from right (the units digit) to left. For each 0 encountered,

add 1 to k2, and for each 1 encountered, subtract 1 from k1. The sequence of vectors V (k1, k2)

obtained this way gives the desired p+ 1 vertices of the kth subsimplex.

The symmetric subdivision algorithm proceeds as follows. As the 0 vertex of the subsimplex

labelled by k, take the vector V (0, b(k)), that is, k1 = 0, k2 = b(k). To get the other vertices, scan

along the binary representation of k from right (the units digit) to left. For each 0 encountered,

add 1 to k2, and for each 1 encountered, add 1 to k1. The sequence of vectors V (k1, k2) obtained

this way gives the desired p+ 1 vertices of the kth subsimplex.

The application of these algorithms in the p = 2 case is illustrated in Tables I and II and Figs.

4–7, and in the p = 3 case is illustrated in Tables III and IV, where the notations V (j)(k1, k2)

and x(j) both refer to the jth vertex, j = 0, ..., p, of the subdivided simplex labelled by the k in

each row. After reviewing these tables, it should be easy to follow the Fortran program for the

algorithms given later on. The standard Fortran library does not include a bitcount function, but

it does include a function IBITS(I, POS,LEN), which gives the value of the substring of bits of

length LEN , starting at position POS, of the argument I. Thus, IBITS(k, j, 1) gives the binary
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FIG. 4: Recursive subdivision of a standard simplex.

FIG. 5: Symmetric subdivision of a standard simplex.

digit (0 or 1) at position j in the binary representation of k, which is all the information needed

for the algorithm.

B. Subdivision properties

This subdivision algorithm has a number of properties that will be useful in applying it to p

dimensional integration.

1. As noted by Moore, the subdivided simplexes all have equal volume, equal to the initial

simplex volume divided by 2p. This follows from the fact that the general formula for the

volume of a simplex with vertices x0, x1, ..., xp is

V =
1

p !
|det(x1 − x0, x2 − x0, ..., xp − x0)| . (42)

Applying this to the vertices for the subdivided simplexes in Tables I-IV verifies this state-

ment for p = 2, 3, while a proof in the general case is given in Edelsbrunner and Grayson

(2000).

2. Again as noted by Moore, both the recursive and symmetric algorithms subdivide Kuhn

simplexes into Kuhn simplexes, which however do not all have the same orientation, as il-

lustrated in Fig. 6 and Fig. 7. This follows from the fact that Kuhn simplexes are a tiling
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TABLE I: Recursive subdivision of a triangle (p = 2)

k b(k) V (0)(k1, k2) V (1)(k1, k2) V (2)(k1, k2) x(0) x(1) x(2)

0=00 0 (0,0) (0,1) (0,2) x0
1
2 (x0 + x1)

1
2 (x0 + x2)

1=01 1 (1,1) (0,1) (0,2) x1
1
2 (x0 + x1)

1
2 (x0 + x2)

2=10 1 (1,1) (1,2) (0,2) x1
1
2 (x1 + x2)

1
2 (x0 + x2)

3=11 2 (2,2) (1,2) (0,2) x2
1
2 (x1 + x2)

1
2 (x0 + x2)

TABLE II: Symmetric subdivision of a triangle (p = 2)

k b(k) V (0)(k1, k2) V (1)(k1, k2) V (2)(k1, k2) x(0) x(1) x(2)

0=00 0 (0,0) (0,1) (0,2) x0
1
2 (x0 + x1)

1
2 (x0 + x2)

1=01 1 (0,1) (1,1) (1,2) 1
2 (x0 + x1) x1

1
2 (x1 + x2)

2=10 1 (0,1) (0,2) (1,2) 1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x1 + x2)

3=11 2 (0,2) (1,2) (2,2) 1
2 (x0 + x2)

1
2 (x1 + x2) x2

of hypercubes, which are divided into hypercubes by axis parallel planes that intersect the

midpoints of the hypercube edges. Adding additional diagonal slices intersecting the mid-

points of the hypercube edges gives Kuhn tilings of both the original and the subdivided

hypercubes. However, as also noted by Moore, when the algorithms are applied to general

simplexes, the resultant subdivided simplexes can have different shapes, and are not isomor-

phic. For p = 2, Fig. 4 shows that recursive subdivision applied to the standard simplex

leads to subsimplexes of different shapes, while Fig. 5 shows that symmetric subdivision

applied to the standard simplex leads to subsimplexes that are all standard simplexes with

dimension reduced by half. However, an examination of the vertices in Table IV shows that

already at p = 3, symmetric subdivision of a standard simplex does not lead to subsimplexes

that are all half size standard simplexes. For example, for k = 2 in Table IV, there are

vertices 1
2(x0 + x2) and 1

2 (x1 + x3), the edge joining which has length
√
3/2, whereas the

maximum side length of a half size p = 3 standard simplex is
√
2/2.

FIG. 6: Recursive subdivision of a Kuhn simplex.
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TABLE III: Recursive subdivision of a tetrahedron (p = 3)

k b(k) V (0)(k1, k2) V (1)(k1, k2) V (2)(k1, k2) V (3)(k1, k2) x(0) x(1) x(2) x(3)

0=000 0 (0,0) (0,1) (0,2) (0,3) x0
1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x0 + x3)

1=001 1 (1,1) (0,1) (0,2) (0,3) x1
1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x0 + x3)

2=010 1 (1,1) (1,2) (0,2) (0,3) x1
1
2 (x1 + x2)

1
2 (x0 + x2)

1
2 (x0 + x3)

3=011 2 (2,2) (1,2) (0,2) (0,3) x2
1
2 (x1 + x2)

1
2 (x0 + x2)

1
2 (x0 + x3)

4=100 1 (1,1) (1,2) (1,3) (0,3) x1
1
2 (x1 + x2)

1
2 (x1 + x3)

1
2 (x0 + x3)

5=101 2 (2,2) (1,2) (1,3) (0,3) x2
1
2 (x1 + x2)

1
2 (x1 + x3)

1
2 (x0 + x3)

6=110 2 (2,2) (2,3) (1,3) (0,3) x2
1
2 (x2 + x3)

1
2 (x1 + x3)

1
2 (x0 + x3)

7=111 3 (3,3) (2,3) (1,3) (0,3) x3
1
2 (x2 + x3)

1
2 (x1 + x3)

1
2 (x0 + x3)

TABLE IV: Symmetric subdivision of a tetrahedron (p = 3)

k b(k) V (0)(k1, k2) V (1)(k1, k2) V (2)(k1, k2) V (3)(k1, k2) x(0) x(1) x(2) x(3)

0=000 0 (0,0) (0,1) (0,2) (0,3) x0
1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x0 + x3)

1=001 1 (0,1) (1,1) (1,2) (1,3) 1
2 (x0 + x1) x1

1
2 (x1 + x2)

1
2 (x1 + x3)

2=010 1 (0,1) (0,2) (1,2) (1,3) 1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x1 + x2)

1
2 (x1 + x3)

3=011 2 (0,2) (1,2) (2,2) (2,3) 1
2 (x0 + x2)

1
2 (x1 + x2) x2

1
2 (x2 + x3)

4=100 1 (0,1) (0,2) (0,3) (1,3) 1
2 (x0 + x1)

1
2 (x0 + x2)

1
2 (x0 + x3)

1
2 (x1 + x3)

5=101 2 (0,2) (1,2) (1,3) (2,3) 1
2 (x0 + x2)

1
2 (x1 + x2)

1
2 (x1 + x3)

1
2 (x2 + x3)

6=110 2 (0,2) (0,3) (1,3) (2,3) 1
2 (x0 + x2)

1
2 (x0 + x3)

1
2 (x1 + x3)

1
2 (x2 + x3)

7=111 3 (0,3) (1,3) (2,3) (3,3) 1
2 (x0 + x3)

1
2 (x1 + x3)

1
2 (x2 + x3) x3

3. An important question is whether the maximum side length of the subdivided simplexes

decreases at each stage of subdivision. For Kuhn simplexes, the answer is immediate, since

subdivision results in Kuhn simplexes of half the dimension. Since the longest side of a unit

Kuhn simplex in dimension p has length
√
p, after ℓ subdivisions the maximum side length

FIG. 7: Symmetric subdivision of a Kuhn simplex.
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will be

LKuhn
max =

√
p/2ℓ , (43)

irrespective of whether recursive or symmetric subdivision is used. For standard simplexes,

we can get an upper bound on the maximum side length by noting that a unit standard

simplex on axes y1, ..., yp is obtained from a unit Kuhn simplex on axes x1, ..., xp by the

linear transformation yp = xp, yp−1 = xp−1 − xp, yp−2 = xp−2 − xp−1, ..., y2 = x2 − x3, y1 =

x1 − x2, since this maps the components of the Kuhn simplex vertices given in Eq. (37)

to the corresponding components of the standard simplex vertices given in Eq. (30). By

linearity, this relation also holds between vertices of corresponding subdivided simplexes

obtained from the initial unit standard and Kuhn simplexes by applying the same midpoint

subdivision method (either symmetric or recursive) successively to each. Consequently, the

length Lstandard of an edge with components ES
1,...,p of a subdivided standard simplex can be

expressed in terms of the components EK
1,...,p of the corresponding edge of the related Kuhn

simplex by

Lstandard ≡[

p
∑

j=1

(ES
j )

2] = [

p−1
∑

j=1

(EK
j − EK

j+1)
2 + (EK

p )2]
1

2

≤2[

p
∑

j=1

(EK
j )2]

1

2 = 2LKuhn .

(44)

Thus the length Lstandard is bounded from above by twice the maximum length corresponding

to a subdivided Kuhn simplex, and so

Lstandard
max ≤ √

p/2ℓ−1 . (45)

We have verified this inequality numerically for both the recursive and symmetric subdivision

algorithms. The numerical results suggest that the symmetric subdivision algorithm is in

fact a factor of 2 better than the bound of Eq. (45), so that

Lstandard; symmetric
max ≤ √

p/2ℓ , (46)

but we do not have a proof of this. We already see evidence of this difference between the

symmetric and recursive algorithms in Tables III and IV. As noted above, from Table IV we

saw that symmetric subdivision of a p = 3 standard simplex gives an edge of length
√
3/2,



21

and it is easy to see that this is the longest edge. However, from Table III we see that for

k = 5 there are vertices x2 and 1
2(x1 + x3), the edge joining which, for an initial standard

simplex, has length
√
6/2.

4. The result of Eqs. (45) and(46) suggests the stronger conjecture, that after any number ℓ of

symmetric (recursive) subdivisions of a standard simplex, the resulting subsimplexes each fit

within a hypercube of side 1/2ℓ (1/2ℓ−1). A simple argument shows this to be true for ℓ = 1

in any dimension p. Although we do not have a proof for general ℓ, we will use this conjecture

in certain of the algorithms constructed below. For Kuhn simplexes, an analogous statement

with a hypercube of side 1/2ℓ is true for both symmetric and recursive subdivision, as noted

above in the discussion preceding Eq. (43).

5. Finally, we note that although the symmetric algorithm gives the same simplex subdivision

after permutation of the starting vertices in dimension p = 2, as can be verified from Table

II, it is not permutation symmetric in dimension p = 3, as can be verified from Table IV. For

example, interchanging the labels 0 and 1 in the k = 2 line of Table IV gives a set of vertices

that is not in the table. This means that with symmetric (as well as recursive) subdivision in

dimension p ≥ 3, inequivalent simplex subdivisions can be generated by permuting the labels

of the starting vertices. However, we have not incorporated this feature into our programs.

The properties just listed show that the symmetric and recursive subdivision algorithms are

well suited to adaptive higher dimensional integration. They are easily computable in terms of

the vertex coordinates for a general simplex, and give subsimplexes of equal volume, so that it is

not necessary to calculate a determinant to obtain the volume. Additionally, the bound on the

maximum side length decreases as a constant times 1/2ℓ with increasing order of subdivision ℓ, so

that the application of high order integration formulas gives errors that decrease rapidly with ℓ.

VI. HYPERCUBE SUBDIVISION AND PROPERTIES

We have discussed simplexes first, because as noted in Sec. III, our direct approach to hypercube

integration will be based on following as closely as possible the methods that we develop for simplex

integration. In our direct hypercube programs (i.e., the ones not based on tiling a side 1 hypercube

with Kuhn simplexes), we will start from a half-side 1 hypercube with base region

(−1, 1) ⊗ (−1, 1) ⊗ ...⊗ (−1, 1) . (47)



22

This region has inversion symmetry around the origin, and consequently the only monomials that

have non-vanishing integrals over this region are ones in which each coordinate appears with an even

exponent, considerably simplifying the calculations needed to construct higher order integration

rules.

Since we restrict ourselves to axis-parallel hypercubes, only p + 1 real numbers are needed to

uniquely specify a hypercube: the p coordinates of the centroid xc and the half-side length S. For

example, for the region of Eq. (47), the centroid is xc = (0, 0, ..., 0) and the half-side is 1. Once

we have adopted this labelling, we can give a very simple subdivision algorithm for hypercubes,

constructed in direct analogy with Moore’s simplex subdivision algorithms.

The hypercube subdivision algorithm proceeds as follows. Start from a hypercube with centroid

xc and half-side S, with sides parallel to the p unit axis vectors

û1 =(1, 0, 0, ..., 0)

û2 =(0, 1, 0, ..., 0)

............

ûp−1 =(0, 0, ..., 1, 0)

ûp =(0, 0, ..., 0, 1) .

(48)

To subdivide it into 2p subhypercubes, take the new half-side as S/2. To get the new centroids

xc;k, labelled by k = 0, ..., 2p − 1, scan along the binary representation of k from right (the units

digit) to left. Denoting the p digits in this representation by 1 ≤ j ≤ p, let us label the units

digit as j = 1, the power of 2 digit as j = 2, the power of 4 digit as j = 3, and so forth. For all

1 ≤ j ≤ p, if the j th digit is 0, add 1
2Sûj to xc, and if the j th digit is 1, add −1

2Sûj to xc. For

each given k, this gives the centroid of the kth subhypercube. This algorithm is illustrated for the

case of a cube (p = 3) in Table V.

This algorithm is simpler than the ones for subdividing simplexes, since it only needs the Fortran

IBITS function, but does not require subsequent computation of the bitcount function. It evidently

has properties analogous to those of the simplex subdivision algorithms: each subhypercube has the

same volume, equal to the original hypercube volume divided by 2p, and every linear dimension of

each subhypercube is a factor of 2 smaller than the corresponding linear dimension of the hypercube

that preceded it in the subdivision chain. This latter implies that after ℓ subdivisions, the resulting

subhypercubes all have dimension reduced by a factor 1/2ℓ.
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TABLE V: Subdivision of a cube of half-side S and centroid xc (p = 3)

k xc;k − xc

0=000 (S/2, S/2, S/2)

1=001 (−S/2, S/2, S/2)

2=010 (S/2,−S/2, S/2)

3=011 (−S/2,−S/2, S/2)

4=100 (S/2, S/2,−S/2)

5=101 (−S/2, S/2,−S/2)

6=110 (S/2,−S/2,−S/2)

7=111 (−S/2,−S/2,−S/2)

For a hypercube with centroid xc and half-side S, and for a general point x, let us define the

coordinate relative to the centroid as x̃ = x−xc, as we did in the simplex case in Eq. (15). Consider

now the set of 2p points x̃j , j = 1, ..., 2p defined by

x̃1 =(S, 0, 0, ..., 0)

x̃2 =(0, S, 0, ..., 0)

............

x̃p =(0, 0, ..., S)

x̃p+1 =(−S, 0, 0, ..., 0)

x̃p+2 =(0,−S, 0, ..., 0)

............

x̃2p =(0, 0, ...,−S) .

(49)

These points are the centroids of the maximal boundary hypercubes, and will play a role in the

direct hypercube algorithm analogous to that played by the simplex vertices in the simplex adaptive

algorithm. For future use, we need the following result, analogous to that of Eqs. (28) and (29)

for the simplex case. Consider the sum

X̃ =
N
∑

i=1

λix̃i , (50)
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with the coefficients λi obeying

λi > 0, i = 1, ..., N

N
∑

i=1

λi < 1 ,

(51)

with the points x̃i any of the hypercube boundary points of Eq. (49). Some of these points may

be omitted (in which case the corresponding coefficient λi is 0), and some used more than once,

in the sum of Eq. (50). Then the point X̃ lies inside the hypercube. To see this, we note that the

projection of X̃ along any axis j is of the form X̃j = S(µ+ − µ−), with µ± each a sum of some

subset of the coefficients λi, and hence 0 ≤ µ± < 1. Therefore −S < −Sµ− ≤ X̃j ≤ Sµ+ < S for

each axis component X̃j , and thus X lies within the hypercube. This proof, again, is simpler than

the corresponding result in the simplex case.

VII. PARAMETERIZED HIGHER ORDER INTEGRATION FORMULAS FOR A

GENERAL SIMPLEX

We turn next to deriving higher order integration formulas for a general simplex, which are

expressed directly in terms of the set of simplex vertices, and which involve parameters that can

be changed to sample the function over the simplex in different ways. Two different choices of the

parameters then give two different integration rules of the same order, which can be compared to

give a local error estimate for use in adaptive integration.

Since we want to derive integration rules up to ninth order in accuracy, we start from an

expansion of a general function f(x̃) up to ninth order, with x̃ as before the p dimensional coordinate

referred to the simplex centroid as origin. The expansion reads,

f(x̃) =A+Bi1x̃i1 + Ci1i2 x̃i1x̃i2 +Di1i2i3x̃i1 x̃i2 x̃i3 + Ei1i2i3i4x̃i1 x̃i2 x̃i3 x̃i4 + Fi1...i5x̃i1 ...x̃i5

+Gi1...i6x̃i1 ...x̃i6 +Hi1...i7x̃i1 ...x̃i7 + Ii1...i8x̃i1 ...x̃i8 + Ji1...i9x̃i1 ...x̃i9 + ... .

(52)

We next need expressions for the integral of the monomials appearing in the expansion of Eq. (52)

over a general simplex with vertices x0, ..., xp. A general formula for these integrals has been given

by Good and Gaskins (1969, 1971). They define m(ν) as the generalized moment

m(ν) =

∫

simplex
dx1...dxpx̃

ν1
1 ...x̃

νp
p , (53)
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and show that m(ν) is equal to the coefficient of tν11 ...t
νp
p in the expansion of

V p !ν1 !...νp !

(p+ ν1 + ...+ νp) !
exp[

∞
∑

s=2

1

s
Ws] . (54)

Here Ws is a double sum over ith components of the p+1 simplex vertices labelled by a = 0, ..., p,

given by

Ws =

p
∑

a=0

[

p
∑

i=1

x̃aiti]
s , (55)

and V is the simplex volume. Good and Gaskins derive this formula by first transforming the

original simplex to a standard simplex, followed by lengthy algebraic manipulations to express the

resulting formula symmetrically in terms of standard simplex vertices. We give in Sec. VIII below

a derivation that proceeds directly, and with manifest symmetry, from the vertices of the original

simplex.

To proceed to 9th order we need an expansion of the exponential in Eq. (54) through 9th order.

Since each Ws is of degree s in the coordinates, the terms in this expansion are as follows:

second order :
W2

2

third order :
W3

3

fourth order :
W 2

2

8
+

W4

4

fifth order :
W2W3

6
+

W5

5

sixth order :
W 3

2

48
+

W 2
3

18
+

W2W4

8
+

W6

6

seventh order :
W 2

2W3

24
+

W3W4

12
+

W2W5

10
+

W7

7

eighth order :
W 4

2

384
+

W2W
2
3

36
+

W 2
2W4

32
+

W 2
4

32
+

W3W5

15
+

W2W6

12
+

W8

8

ninth order :
W 3

2W3

144
+

W 3
3

162
+

W2W3W4

24
+

W 2
2W5

40
+

W4W5

20
+

W3W6

18
+

W2W7

14
+

W9

9
.

(56)

We are interested in integrals of monomials of the form x̃i1 ...x̃in , with n ranging from 1 to 9. Good

and Gaskins note that it suffices to consider the case in which all the indices i1, ..., in are distinct

(which is always possible for p ≥ n), since the combinatoric factors are such that this gives a result

that also applies to the case when some of the component indices are equal, as must necessarily be

the case when p < n. So we can take νi = 1 , i = 1, ..., n, and
∑

i νi = n, with n the order of the
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monomial. We now can infer from Eq. (56) the moment integrals

1

V

∫

simplex
dx1...dxpx̃i1 ...x̃in =

p !

(p+ n) !
Sn , (57)

with the quantities Sn (with tensor indices suppressed) given in terms of tensors Si1...in defined by

sums over the vertices,

Si1...in =

p
∑

j=0

x̃ji1 ...x̃jin , (58)

as follows:

S2 =Si1i2

S3 =2Si1i2i3

S4 =Si1i2Si3i4 + Si1i3Si2i4 + Si1i4Si2i3 + 6Si1i2i3i4 = Si1i2Si3i4 + 2 terms + 6Si1i2i3i4

S5 =2(Si1i2Si3i4i5 + 9 terms) + 24Si1i2i3i4i5

S6 =Si1i2Si3i4Si5i6 + 14 terms + 4(Si1i2i3Si4i5i6 + 9 terms) + 6(Si1i2Si3i4i5i6 + 14 terms)

+120Si1i2i3i4i5i6

S7 =2(Si1i2Si3i4Si5i6i7 + 104 terms) + 12(Si1i2i3Si4i5i6i7 + 34 terms)

+24(Si1i2Si3i4i5i6i7 + 20 terms) + 720Si1i2i3i4i5i6i7

S8 =Si1i2Si3i4Si5i6Si7i8 + 104 terms + 4(Si1i2Si3i4i5Si6i7i8 + 279 terms)

+6(Si1i2Si3i4Si5i6i7i8 + 209 terms)

+36(Si1i2i3i4Si5i6i7i8 + 34 terms) + 48(Si1i2i3Si4i5i6i7i8 + 55 terms)

+120(Si1i2Si3i4i5i6i7i8 + 27 terms) + 5040Si1i2i3i4i5i6i7i8

S9 =2(Si1i2Si3i4Si5i6Si7i8i9 + 1259 terms) + 8(Si1i2i3Si4i5i6Si7i8i9 + 279 terms)

+12(Si1i2Si3i4i5Si6i7i8i9 + 1259 terms) + 24(Si1i2Si3i4Si5i6i7i8i9 + 377 terms)

+144(Si1i2i3i4Si5i6i7i8i9 + 125 terms) + 240(Si1i2i3Si4i5i6i7i8i9 + 83 terms)

+720(Si1i2Si3i4i5i6i7i8i9 + 35 terms) + 40320Si1i2i3i4i5i6i7i8i9 .

(59)

The rule for forming terms in Eq. (59) from those in Eq. (56) is this: for each Ws in Eq. (56)

there is a tensor factor S with s indices, and the product of such factors appears repeated in all

nontrivial index permutations, giving the “terms” not shown explicitly in Eq. (59). The numerical

coefficient is constructed from the denominator appearing in Eq. (56), multiplied by a numerator
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consisting of a factor s ! for each Ws, and for each Wm
s an additional factor m ! (that is, for Wm

s

there is altogether a factor (s !)mm !). For example, a W 3
2 in Eq. (56) gives rise to a numerator

factor of (2 !)33 ! = 48 in Eq. (59), and a W2W3W4 in Eq. (56) gives rise to a numerator factor of

2 !3 !4 ! = 288 in Eq. (59). In each case, the product of this numerator factor, times the number

of terms in the symmetrized expansion, is equal to n !. For example, 48 × 15 = 720 = 6 !, and

288 × 1260 = 362880 = 9!.

Our next step is to combine Eqs. (52), (57), and (59) to get a formula for the integral of the

function f over a general simplex, expressed in terms of its expansion coefficients. Since we will

always be dealing with symmetrized tensors, it is useful at this point to condense the notation,

by labelling the contractions of the expansion coefficients with the tensors S by the partition of n

which appears. Thus, we will write

Ci1i2Si1i2 = C2

Fi1i2i3i4i5(Si1i2Si3i4i5 + 9 terms) = F3+2

Hi1i2i3i4i5i6i7(Si1i2Si3i4Si5i6i7 + 104 terms) = H3+2+2 ,

(60)

and so forth. Since the partitions of n that are relevant only involve n ≥ 2, a complete list of

partitions that appear through ninth order is as follows:

C 2

D 3

E 4, 2 + 2

F 5, 3 + 2

G 6, 4 + 2, 2 + 2 + 2, 3 + 3

H 7, 5 + 2, 3 + 2 + 2, 4 + 3

I 8, 6 + 2, 4 + 2 + 2, 2 + 2 + 2 + 2, 5 + 3, 3 + 3 + 2, 4 + 4

J 9, 7 + 2, 5 + 2 + 2, 3 + 2 + 2 + 2, 4 + 3 + 2, 6 + 3, 5 + 4, 3 + 3 + 3 .

(61)

Employing this condensed notation, we now get the following master formula for the integral of f
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over a general simplex,

1

V

∫

simplex
dx1...dxpf(x̃) = A+

p !

(p + 2) !
C2 +

p !

(p+ 3) !
2D3

+
p !

(p + 4) !
(6E4 + E2+2) +

p !

(p + 5) !
(24F5 + 2F3+2)

+
p !

(p + 6) !
(120G6 + 6G4+2 + 4G3+3 +G2+2+2)

+
p !

(p + 7) !
(720H7 + 24H5+2 + 12H4+3 + 2H3+2+2)

+
p !

(p + 8) !
(5040I8 + 120I6+2 + 48I5+3 + 36I4+4 + 6I4+2+2 + 4I3+3+2 + I2+2+2+2)

+
p !

(p + 9) !
(40320J9 + 720J7+2 + 240J6+3 + 144J5+4 + 24J5+2+2 + 12J4+3+2

+8J3+3+3 + 2J3+2+2+2)

+... .

(62)

Our procedure is now to match this expansion to discrete sums over the function f evaluated at

points on the boundary or interior of the simplex. We will construct these sums using parameter

multiples of the vertices of the simplex (in which the summation limits for a, b, c, d are 0 to p for

simplexes, and will be 1 to 2p later on when we apply these formulas to hypercubes),

Σ1(λ) =
∑

a

f(λx̃a) , 0 ≤ λ ≤ 1

Σ2(λ, σ) =
∑

a,b

f(λx̃a + σx̃b) , 0 ≤ λ, σ , λ+ σ ≤ 1

Σ3(λ, σ, µ) =
∑

a,b,c

f(λx̃a + σx̃b + µx̃c) , 0 ≤ λ, σ, µ , λ+ σ + µ ≤ 1

Σ4(λ, σ, µ, κ) =
∑

a,b,c,d

f(λx̃a + σx̃b + µx̃c + κx̃d) , 0 ≤ λ, σ, µ, κ , λ+ σ + µ+ κ ≤ 1 ,

(63)

where the conditions on the parameters λ, σ, µ, κ guarantee, by our discussion of simplex properties,

that the points summed over do not lie outside the simplex. Clearly, once we have a formula for

Σ4, we can get a formula for Σ3 by setting κ = 0 and dividing by p + 1 (which becomes 2p in the

hypercube case); we can then get Σ2 by further setting µ = 0 and dividing out another factor of

p+ 1, and so forth. Hence we only exhibit here the expansion of Σ4 in terms of f(0̃) = A and the
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contractions C2, ..., J3+2+2+2 appearing in Eq. (62). Abbreviating ξ = p+ 1, we have

Σ4 = ξ4A+ ξ3(λ2 + σ2 + µ2 + κ2)C2 + ξ3(λ3 + σ3 + µ3 + κ3)D3 + ξ3(λ4 + σ4 + µ4 + κ4)E4

+2ξ2(λ2σ2 + λ2µ2 + λ2κ2 + σ2µ2 + σ2κ2 + µ2κ2)E2+2 + ξ3(λ5 + σ5 + µ5 + κ5)F5

+ξ2(λ2σ3 + σ2λ3 + λ2µ3 + µ2λ3 + λ2κ3 + κ2λ3 + σ2µ3 + µ2σ3 + σ2κ3 + κ2σ3 + µ2κ3 + κ2µ3)F3+2

+ξ3(λ6 + σ6 + µ6 + κ6)G6 + ξ2(λ4σ2 + λ2σ4 + λ4µ2 + λ2µ4 + λ4κ2 + λ2κ4 + σ4µ2 + σ2µ4

+σ4κ2 + σ2κ4 + µ4κ2 + µ2κ4)G4+2 + 6ξ(λ2σ2µ2 + λ2σ2κ2 + λ2µ2κ2 + σ2µ2κ2)G2+2+2

+2ξ2(λ3σ3 + λ3µ3 + λ3κ3 + σ3µ3 + σ3κ3 + µ3κ3)G3+3 + ξ3(λ7 + σ7 + µ7 + κ7)H7

+ξ2(λ5σ2 + λ2σ5 + λ5µ2 + λ2µ5 + λ5κ2 + λ2κ5 + σ5µ2 + σ2µ5 + σ5κ2 + σ2κ5 + µ5κ2 + µ2κ5)H5+2

+2ξ(λ3σ2µ2 + λ3σ2κ2 + λ3µ2κ2 + σ3λ2µ2 + σ3λ2κ2 + σ3µ2κ2 + µ3λ2σ2 + µ3λ2κ2 + µ3σ2κ2

+κ3λ2σ2 + κ3λ2µ2 + κ3σ2µ2)H3+2+2 + ξ2(λ4σ3 + λ3σ4 + λ4µ3 + λ3µ4 + λ4κ3 + λ3κ4 + σ4µ3 + σ3µ4

+σ4κ3 + σ3κ4 + µ4κ3 + µ3κ4)H4+3 + ξ3(λ8 + σ8 + µ8 + κ8)I8 + ξ2(λ6σ2 + λ2σ6 + λ6µ2 + λ2µ6

+λ6κ2 + λ2κ6 + σ6µ2 + σ2µ6 + σ6κ2 + σ2κ6 + µ6κ2 + µ2κ6)I6+2 + 2ξ(λ4σ2µ2 + λ4σ2κ2 + λ4µ2κ2

+σ4λ2µ2 + σ4λ2κ2 + σ4µ2κ2 + µ4λ2σ2 + µ4λ2κ2 + µ4σ2κ2 + κ4λ2σ2 + κ4λ2µ2 + κ4σ2µ2)I4+2+2

+24λ2σ2µ2κ2I2+2+2+2 + ξ2(λ5σ3 + λ3σ5 + λ5µ3 + λ3µ5 + λ5κ3 + λ3κ5 + σ5µ3 + σ3µ5 + σ5κ3

+σ3κ5 + µ5κ3 + µ3κ5)I5+3 + 2ξ(λ2σ3µ3 + λ2σ3κ3 + λ2µ3κ3 + σ2λ3µ3 + σ2λ3κ3 + σ2µ3κ3

+µ2λ3σ3 + µ2λ3κ3 + µ2σ3κ3 + κ2λ3σ3 + κ2λ3µ3 + κ2σ3µ3)I3+2+2 + 2ξ2(λ4σ4 + λ4µ4 + λ4κ4 + σ4µ4

+σ4κ4 + µ4κ4)I4+4 + ξ3(λ9 + σ9 + µ9 + κ9)J9 + ξ2(λ7σ2 + λ2σ7 + λ7µ2 + λ2µ7 + λ7κ2 + λ2κ7

+σ7µ2 + σ2µ7 + σ7κ2 + σ2κ7 + µ7κ2 + µ2κ7)J7+2 + 2ξ(λ5σ2µ2 + λ5σ2κ2 + λ5µ2κ2 + σ5λ2µ2

+σ5λ2κ2 + σ5µ2κ2 + µ5λ2σ2 + µ5λ2κ2 + µ5σ2κ2 + κ5λ2σ2 + κ5λ2µ2 + κ5σ2µ2)J5+2+2

+6(λ3σ2µ2κ2 + λ2σ3µ2κ2 + λ2σ2µ3κ2 + λ2σ2µ2κ3)J3+2+2+2 + ξ(λ4σ3µ2 + λ4σ2µ3 + λ4σ3κ2

+λ4σ2κ3 + λ4µ3κ2 + λ4κ2µ3 + σ4λ3µ2 + σ4λ2µ3 + σ4λ3κ2 + σ4λ2κ3 + σ4µ3κ2 + σ4µ2κ3

+µ4λ3σ2 + µ4λ2σ3 + µ4λ3κ2 + µ4λ2κ3 + µ4σ3κ2 + µ4σ2κ3 + κ4λ3σ2 + κ4λ2σ3 + κ4λ3µ2

+κ4λ2µ3 + κ4σ3µ2 + κ4σ2µ3)J4+3+2 + ξ2(λ6σ3 + λ3σ6 + λ6µ3 + λ3µ6 + λ6κ3 + λ3κ6 + σ6µ3 + σ3µ6

+σ6κ3 + σ3κ6 + µ6κ3 + µ3κ6)J6+3 + ξ2(λ5σ4 + λ4σ5 + λ5µ4 + λ4µ5 + λ5κ4 + λ4κ5 + σ5µ4 + σ4µ5

+σ5κ4 + σ4κ5 + µ5κ4 + µ4κ5)J5+4 + 6ξ(λ3σ3µ3 + λ3σ3κ3 + λ3κ3µ3 + σ3µ3κ3)J3+3+3 .

(64)

Evidently, for simplexes Eq. (63) requires (p+1)4 function evaluations to compute Σ4, (p+1)3

function evaluations to compute Σ3, etc. For hypercubes, with the simplex vertices replaced by the
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2p points of Eq. (49), and ξ = 2p, Eq. (63) requires (2p)4 function evaluations to compute Σ4, (2p)
3

function evaluations to compute Σ3, etc. Since it is known that the minimal number of function

evaluations for a simplex integration method of order 2t+1 involves p t/t !+O(p t−1) function calls

(Stroud (1971), Grundmann and Möller (1978)), and for a hypercube integration method of order

2t+1 involves (2p) t/t ! +O(p t−1) function calls (Lyness, 1965), we will take the leading Σs in our

integration formulas to have equal arguments, e.g. Σ4(λ, λ, λ, λ), Σ3(λ, λ, λ, λ), etc. This allows

the parameterized integration formulas constructed below to have an optimal leading order power

dependence on the space dimension p (but reflecting the parameter freedom, the non-leading power

terms will not in general be minimal). In the computer program, the following formulas are useful

in evaluating the sums using a minimum number of function calls,

Σ4(λ, λ, λ, λ) =24
∑

a<b<c<d

f(λ(x̃a + x̃b + x̃c + x̃d)) + 12
∑

a

∑

b6=a, c 6=a, b<c

f(2λx̃a + λ(x̃b + x̃c))

+6
∑

a

∑

b<a

f(2λ(x̃a + x̃b)) + 4
∑

a

∑

b6=a

f(3λx̃a + λx̃b) +
∑

a

f(4λx̃a) ,

Σ3(λ, λ, λ) =6
∑

a<b<c

f(λ(x̃a + x̃b + x̃c)) + 3
∑

a

∑

b6=a

f(2λx̃a + λx̃b) +
∑

a

f(3λx̃a) ,

Σ2(λ, λ) =2
∑

a

∑

b<a

f(λ(x̃a + x̃b)) +
∑

a

f(2λx̃a) ,

Σ3(2λ, λ, λ) =2
∑

a

∑

b6=a, c 6=a, b<c

f(2λx̃a + λ(x̃b + x̃c)) + 2
∑

a

∑

b6=a

f(3λx̃a + λx̃b)

+2
∑

a

∑

b<a

f(2λ(x̃a + x̃b)) +
∑

a

f(4λx̃a) ,

Σ2(3λ, λ) =
∑

a

∑

b6=a

f(3λx̃a + λx̃b) +
∑

a

f(4λx̃a) ,

Σ2(2λ, λ) =
∑

a

∑

b6=a

f(2λx̃a + λx̃b) +
∑

a

f(3λx̃a) .

(65)

With these preliminaries in hand, we are now ready to set up integration formulas of first

through fourth, fifth, seventh, and ninth order, for integrals over general simplexes.

A. First through third order formulas

We begin here with integration formulas of first through third order, which may be more useful

than high order formulas for integrating functions that are highly irregular, or as explained later

on, for integrations in low dimensional spaces. Two different first order accurate estimates of the
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integral of Eq. (62) are clearly

Ia =Σ1(λ)/ξ = A+ second order ,

Ib =f(0̃) = A ,

(66)

with x̃ = 0̃ the simplex centroid. Evidently Ib is the dimension p analog of the dimension one

center-of-bin rule, and when λ = 1, Ia is the dimension p analog of the dimension one trapezoidal

rule.

To get a second order accurate formula, we have to match the terms

A+
p !

(p+ 2)!
C2 (67)

in Eq. (62). Solving Σ1(λ) = ξA+ λ2C2 + ... for C2, we get

C2 ≃ [Σ1(λ)− ξA]/λ2 , (68)

which when substituted into Eq. (67) gives the second order accurate formula

I =

(

1− p!

(p+ 2)!

ξ

λ2

)

f(0̃) +
p !

(p+ 2)!

1

λ2
Σ1(λ) . (69)

Using two different parameter values λa,b gives two different second order accurate estimates Ia,b

of the integral.

We give two different methods of getting a third order accurate formula, both of which will play

a role in the methods for getting higher odd order formulas. We first note that for λ = 2/(p + 3),

we have

Σ1(λ) = ξA+ λ2[C2 + 2D3/(p + 3)] , (70)

and so the coefficients of C2 and D3 are in the same ratio as appears in Eq. (62). Hence defining

an overall multiplicative factor κ1 to make both terms match in magnitude, and adding a multiple

κ0 of A to make this term match, we get a third order accurate formula

Ia =κ1Σ1(λ) + κ0f(0̃) ,

κ1 =
p !

(p + 2)!
λ−2 =

(p+ 3)2

4(p + 2)(p + 1)
,

κ0 =1− ξκ1 .

(71)



32

An alternative method of getting a third order accurate formula is to look for a match by writing

Ib =κ̄0f(0̃) +

2
∑

i=1

κi1Σ1(λ
i
1)

=κ̄0A+

2
∑

i=1

κi1[ξA+ (λi
1)

2C2 + (λi
1)

3D3]

=A+
p !

(p+ 2)!
C2 +

2p !

(p+ 3)!
D3 + ... .

(72)

Equating coefficients of A we get

κ̄0 = 1− ξ

2
∑

i=1

κi1 , (73)

while equating coefficients of C2 and D3, we obtain a system of two simultaneous equations for

κi1 , i = 1, 2 ,

q1 =w1 + w2 ,

q2 =λ1
1w1 + λ2

1w2 ,

(74)

where we have abbreviated

q1 =
p !

(p+ 2)!
, q2 =

2p !

(p+ 3)!
,

wi =κi1(λ
i
1)

2 , i = 1, 2 .

(75)

This set of equations can be immediately solved to give

w1 =
λ2
1q1 − q2
λ2
1 − λ1

1

,

w2 =
λ1
1q1 − q2
λ1
1 − λ2

1

,

(76)

giving a second third order accurate formula for any nondegenerate λ1
1 and λ2

1 lying in the interval

(0,1). We will see later on, in discussing higher odd order integration formulas, that this is our

first encounter with a Vandermonde system of equations.
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B. Fourth order formula

Although we will subsequently focus on odd-order formulas, we next derive a fourth order

formula, which follows a different pattern. Referring to Eq. (62), we see that to get a fourth order

formula we have to use the sums of Eq. (63) to match the coefficients of A, C2, D3, E4, and E2+2.

Since only the final one of these, E2+2, involves two partitions of 4, we can use Σ2(λ, λ) to extract

this, with any positive value of λ ≤ 1
2 . Since the simplex subdivision algorithm uses the midpoints

1
2(xa + xb) as the vertices of the subdivided simplex, an efficient way to proceed in this case is

to take λ = 1
2 in Σ2(λ, λ), so that what is needed is the function value at the midpoints, and to

compute these function values as part of the subdivision algorithm. This also yields the function

values at the vertices of the subdivided simplex. We can get A from f(x̃c), and we can fit C2,

D3, and E4 by evaluating Σ1(λ) with three distinct values of λ. One of these values can be taken

as λ = 1, corresponding to the function values at the simplex vertices. The other two are free

parameters, and by making two different choices for one of these, we get two different fourth order

evaluations of the integral.

We worked out the fourth order program before proceeding systematically to the odd order

cases, and so used a different notation from that of Eq. (63). Let us write fc, fv, and fs for the

sums of function values at the centroid, the vertices, and the side midpoints,

fc =f(x̃c) ,

fv =
1

p+ 1

∑

a

f(x̃a) ,

fs =
1

(p+ 1)p

∑

a6=b

f(
1

2
(x̃a + x̃b)) .

(77)

Let us also introduce, for n > m, the definition

pnm ≡ (p+m)(p +m+ 1)...(p + n) . (78)

A simple calculation then shows that through fourth order terms, we have

1

V

∫

simplex
dx1...dxpf(x̃)−

8p

p42
(fs +

1

p
fv)

=k0A+ k2C2 + k3D3 + k4E4 ,

(79)
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with coefficients given by

k0 =1− 8(p + 1)

p42
,

k2 =
1

p21
− 4

p42
,

k3 =
2

p31
− 2

p42
,

k4 =
6

p41
− 1

p42
.

(80)

Defining now

fλ =
1

p+ 1

∑

a

f(λx̃a) , (81)

so that f1 = fv, we find that through fourth order,

E4 =
1

λ1 − λ2
(t1 − t2),

tj =
p+ 1

1− λj
[fv − fc −

1

λ2
j

(fλj
− fc)] , j = 1, 2 ,

D3 =
1

2

2
∑

j=1

[tj − (λj + 1)E4] ,

C2 =(p+ 1)(fv − fc)−D3 − E4 .

(82)

When substituted into Eq. (79), this gives a fourth order formula for the integral, with a second

evaluation of the integral obtained by replacing λ2 by a third, distinct value λ3.

C. Fifth order formula

We turn next to deriving a fifth order formula. Referring to Eq. (62), we see that to get a fifth

order formula we have to use the sums of Eq. (63) to match the coefficients of A, C2, D3, E4,

E2+2, F5, and F3+2. Since at most two partitions appear, we can still get the leading two-partition

terms from Σ2(λ, λ), but we must now impose a condition on λ to guarantee that E2+2 and F3+2

appear with coefficients in the correct ratio. From Eq. (62) we see that the ratio of the coefficient

of F3+2 to that of E2+2 must be 2/(p+5), and from Eqs. (63) and (64) with λ = σ and µ = κ = 0,

we see that this is obtained with

λ =
2

p+ 5
, (83)
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which for any p ≥ 1 obeys the condition 2λ < 1. The overall coefficient of Σ2 needed to fit E2+2

and F3+2 is easily seen to be

κ2 =
p !

2 !(p + 4) !
λ−4 =

(p+ 5)4

32p 41
, (84)

where we have used the abbreviated notation of Eq. (78). Thus we have, again from Eq. (64),

κ2Σ2(λ, λ) =
p !

(p+ 4) !
E2+2+2

p !

(p+ 5) !
F3+2+κ2[ξ

2A+ξ(2λ2C2+2λ3D3+2λ4E4+2λ5F5)] , (85)

with ξ = p + 1. Since there are four single partition terms, we look for an integration formula of

the form

κ2Σ2(λ, λ) +

4
∑

i=1

κi1Σ1(λ
i
1) + κ0A , (86)

which is to be equated to the sum of terms through fifth order in Eq. (62).

The equation for matching the coefficient of A can immediately be solved in terms of the

coefficients κi1, giving

κ0 = 1−R0 , R0 = ξ2κ2 + ξ

4
∑

i=1

κi1 . (87)

The four equations for matching the coefficients of C2, D3, E4, and F5 give a N = 4 Vandermonde

system that determines the four coefficients κi1. Writing an order N Vandermonde system in the

standard form

N
∑

i=1

xk−1
i wi = qk , k = 1, ..., N , (88)

the equations determining the κi1 take this form with

xi =λi
1 , wi = κi1(λ

i
1)

2 ,

q1 =
1

p21
− 2ξκ2λ

2 ,

q2 =
2

p31
− 2ξκ2λ

3 ,

q3 =
6

p41
− 2ξκ2λ

4 ,

q4 =
24

p51
− 2ξκ2λ

5 .

(89)

Solving this system of linear equations, for any nondegenerate values of the parameters 0 < λi
1 < 1,

gives the coefficients κi1 and completes specification of the integration formula.
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D. Vandermonde solvers

Since we will repeatedly encounter Vandermonde equations in setting up parameterized higher

order integration formulas, both for simplexes and for hypercubes, we digress at this point to

discuss methods of solving a Vandermonde system. The explicit inversion of the Vandermonde

system is well known (see, e.g. Neagoe (1996), Heinen and Niederjohn (1997)), and takes the form

w1 =
qN − S1(x2, ..., xN )qN−1 + S2(x2, ..., xN )qN−2 − ...+ (−1)N−1x2....xNq1

(x1 − x2)(x1 − x3)....(x1 − xN )
, (90)

with Sj(x2, ..., xN ) the sum of j-fold products of x2, ..., xN ,

S1(x2, ..., xN ) =x2 + ...+ xN ,

S2(x2, ..., xN ) =x2x3 + ...+ x2xN + x3x4 + ...+ x3xN + ...+ xN−1xN ,

(91)

and so forth. The remaining unknowns w2 through wN are obtained from this formula by cyclic

permutation of the indices i = 1, ..., N on the wi and the xi, with the qk held fixed. For N

not too large it is straightforward to program this solution, and we include subroutines for the

N = 2, 3, 4, 6, 8 cases in the programs. This suffices to solve the Vandermonde equations appearing

in the fifth through ninth order simplex formulas, and in the fifth through ninth order hypercube

formulas derived below.

For large N , programming the explicit solution becomes inefficient and a better procedure is to

use a compact algorithm for solving the Vandermonde equations for general N , based on polynomial

operations, which has running time proportional to N 2. A good method of this type, that we have

tested, is the algorithm vander.for given in the book Numerical Recipes in Fortran by Press et al.

(1992). A similar algorithm for inverting the Vandermonde matrix (that we have not tested) can

be found in an on-line paper of Dejnakarintra and Banjerdpongchai, searchable under the title “An

Algorithm for Computing the Analytical Inverse of the Vandermonde Matrix”.

E. Seventh order formula

To get a seventh order formula, we use the sums of Eq. (63) to match the coefficients appearing

in Eq. (62) through the term H3+2+2. Since at most three partitions appear, we can get the leading

three-partition terms G2+2+2 and H3+2+2 from Σ3(λ, λ, λ) by imposing the condition

λ =
2

p+ 7
, (92)
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which guarantees that their coefficients are in the correct ratio, and which for any p ≥ 1 obeys the

condition 3λ < 1. The overall coefficient of Σ3 needed to fit G2+2+2 and H3+2+2 is

κ3 =
p !

3 !(p + 6) !
λ−6 =

(p+ 7)6

384p 61
. (93)

We now look for an integration formula of the form

κ3Σ3(λ, λ, λ) + κ′2Σ2(2λ, λ) +
U
∑

i=1

κi2Σ2(λ
i
2, λ

i
2) +

6
∑

i=1

κi1Σ1(λ
i
1) + κ0A , (94)

with U ≤ 6 since there are 6 two-partition terms to be matched. Equating coefficients of the two-

partition terms, we find that the equations for G4+2−G3+3 andH5+2−H4+3 are both automatically

satisfied by taking

κ′2 = 3κ3 . (95)

This leaves only the two-partition terms E2+2, F3+2, G4+2, and H5+2 to be matched, so we can

take the upper limit in the Σ2 summation as U = 4. The four coefficients κi2 are then determined

by solving an N = 4 Vandermonde system with inhomogeneous terms q2i , i = 1, ..., 4,

xi =λi
2 , wi = 2κi2(λ

i
2)

4 ,

q21 =
1

p41
− (6ξ + 24)κ3λ

4 ,

q22 =
2

p51
− (6ξ + 36)κ3λ

5 ,

q23 =
6

p61
− (6ξ + 60)κ3λ

6 ,

q24 =
24

p71
− (6ξ + 108)κ3λ

7 .

(96)

We next have to match the 6 single partition terms, using Σ1 sums. To save function calls, we

take four of the parameters λi
1 to be equal to 2λi

2, with the other two λi
1 taken as new, independent

parameters. Equating the coefficients of the single partition terms C2 through H7 then gives a

N = 6 Vandermonde system determining the coefficients κi1, with inhomogeneous terms q1i , i =
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1, ..., 6,

xi =λi
1 , wi = κi1(λ

i
1)

2 ,

q11 =
1

p21
− 2ξ

4
∑

i=1

κi2(λ
i
2)

2 − (3ξ2 + 15ξ)λ2κ3 ,

q12 =
2

p31
− 2ξ

4
∑

i=1

κi2(λ
i
2)

3 − (3ξ2 + 27ξ)λ3κ3 ,

q13 =
6

p41
− ξq21 − (3ξ2 + 51ξ)λ4κ3 ,

q14 =
24

p51
− ξq22 − (3ξ2 + 99ξ)λ5κ3 ,

q15 =
120

p61
− ξq23 − (3ξ2 + 195ξ)λ6κ3 ,

q16 =
720

p71
− ξq24 − (3ξ2 + 387ξ)λ7κ3 .

(97)

Note that in q13, ..., q16, the sums 2
∑4

i=1 κ
i
2(λ

i
2)

j , j = 4, ..., 7 have been eliminated in terms of

q21, ..., q24 by using the Vandermonde system of Eq. (96). Finally, matching the coefficient of A

we get, using Eq. (95)

κ0 = 1−R0 , R0 = (ξ3 + 3ξ2)κ3 + ξ2
4
∑

i=1

κi2 + ξ

6
∑

i=1

κi1 . (98)

F. Ninth order formula

To get a ninth order formula, we use the sums of Eq. (63) to match the coefficients appearing

in Eq. (62) through the final exhibited term J3+2+2+2. Since at most four partitions appear, we

can get the leading four-partition terms J3+2+2+2 and I2+2+2+2 from Σ4(λ, λ, λ, λ) by imposing the

condition

λ =
2

p+ 9
, (99)

which guarantees that their coefficients are in the correct ratio, and which for any p ≥ 1 obeys the

condition 4λ < 1. The overall coefficient of Σ4 needed to fit J3+2+2+2 and I2+2+2+2 is

κ4 =
p !

4 !(p + 8) !
λ−8 =

(p+ 9)8

6144p 81
. (100)



39

We now look (with benefit of hindsight) for an integration formula of the form

κ4Σ4(λ, λ, λ, λ) + κ′3Σ3(2λ, λ, λ) + κ′′2Σ2(3λ, λ) +

4
∑

i=1

κi3Σ3(λ
i
3, λ

i
3, λ

i
3) +

4
∑

i=1

κi2Σ2(2λ
i
3, λ

i
3)

+

6
∑

i=1

κ̄i2Σ2(λ
i
2, λ

i
2) +

4
∑

i=1

κi1Σ1(3λ
i
3) +

4
∑

i=1

κ̄i1Σ1(2λ
i
3) + κ0A ,

(101)

with four of the λi
2 taken equal to the four λi

3, and the other two λi
2 additional parameters. (Again,

we reuse parameters wherever similar structures are involved in Eq. (65), so as to save function

calls.)

We proceed to sketch the remaining calculation, without writing down the detailed form of

the resulting Vandermonde equations (which can be read off from the programs, and is fairly

complicated). We begin with the three-partition terms. The equations for J5+2+2 − J4+3+2,

J4+3+2 − J3+3+3, and I4+2+2 − I3+3+2 are all automatically satisfied by taking

κ′3 = 6κ4 . (102)

This leaves four independent matching conditions for G2+2+2, H3+2+2, I4+2+2, and J5+2+2, which

lead to a N = 4 Vandermonde system determining the coefficients κi3. We turn next to the two-

partition terms. We find that the equations for I6+2−4.5I5+3+3.5I4+4 and J7+2−3.5J6+3+2.5J5+4

are automatically satisfied by taking

κ′′2 = 8κ4 . (103)

The four equations for G4+2 − G3+3, H5+2 − H4+3, I6+2 − I4+4, and J7+2 + J6+3 − 2J5+4 then

give a N = 4 Vandermonde system determining the coefficients κi2. The remaining independent

equations matching two-partition terms, for E2+2, F3+2, G4+2, H5+2, I6+2, and J7+2, then give a

N = 6 Vandermonde system determining the coefficients κ̄i2.

Turning to the single partition terms, the eight equations obtained by matching coefficients for

C2, D3, E4, F5, G6, H7, I8, and J9 give a N = 8 Vandermonde system determining simultaneously

the four coefficients κi1 and the four coefficients κ̄i1. Finally, equating coefficients of A gives

κ0 = 1−R , R = (ξ4 + 6ξ3 + 8ξ2)κ4 + ξ3
4
∑

i=1

κi3 + ξ2(

4
∑

i=1

κi2 +

6
∑

i=1

κ̄i2) + ξ

4
∑

i=1

(κi1 + κ̄i1) . (104)
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G. Leading term in higher order

We have not systematically pursued constructing integration formulas of orders higher than

ninth, but this should be possible by the same method. One can, however, see what the pattern

will be for the leading term in such formulas. An integration formula of order 2t + 1 will have

a leading term Σt(λ, ..., λ), with t arguments λ. The only partition t terms appearing in the

continuation of Eq. (62) will be 2 + 2 + ....+ 2, containing t terms 2, and 3 + 2 + ...+ 2, with one

3 and t− 1 terms 2. Requiring these to have coefficients in the correct ratio restricts λ to be

λ =
2

p+ 2t+ 1
, (105)

and the leading term in the integration formula will be κtΣt(λ, ..., λ), with κt given by

κt =
p !

t !(p+ 2t) !λ2t
. (106)

Where nonleading terms give multiple equations of the same order, corresponding to inequiv-

alent partitions of 2t + 1, 2t, ..., one has to include terms proportional to Σt−1(2λ, λ, ..., λ),

Σt−2(3λ, λ, ..., λ), and other such structures with asymmetric arguments summing to tλ, for the

differences of these multiple equations to have consistent solutions. Once such multiplicities have

been taken care of, the remaining independent equations will form a number of sets of Vandermonde

equations.

VIII. DERIVATION OF THE SIMPLEX GENERATING FUNCTION

We give here a simple proof of the simplex generating function formulas of Eqs. (54) and (55),

using the standard simplex integral

∫

standard simplex
dx1...dxp (1− x1 − x2 − ...− xp)

ν0xν11 ...x
νp
p =

∏p
a=0 νa !

(p +
∑p

a=0 νa) !
, (107)

(

which we obtain later on as a specialization of the multinomial beta function integral of Eq.

(168)
)

, the simplex volume formula of Eq. (42), and the expansion formulas of Eqs. (17) through

(19). We start from

∫

simplex
dx1...dxp

∞
∑

ν1...νp=0

∏p
i=1(x̃iti)

νi
∏p

i=1 νi !
=

∫

simplex
dx1...dxpe

∑p
i=1

x̃iti , (108)

and substitute the expansion of Eq. (17) on the right hand side, giving

∫

simplex
dx1...dxpe

∑p
a=0

αa

∑p
i=1

x̃aiti . (109)
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We now express the integral over the general simplex in terms of an integral over its barycentric

coordinates αa. Since
∑p

a=0 αa = 1, we can rewrite Eq. (19), by subtraction of x0 from both sides,

as

x− x0 =

p
∑

a=0

(xa − x0)αa =

p
∑

a=1

(xa − x0)αa . (110)

From this we immediately find for the Jacobian
∣

∣

∣

∣

det

(

∂x1...∂xp
∂α1...∂αp

)
∣

∣

∣

∣

= |det(xa − x0)i| = V p ! , (111)

with V the volume of the simplex. Since the αa , a = 1, ..., p span a standard simplex, we have

transformed the integral of Eq. (109) to the form

V p !

∫

standard simplex
dα1...dαpe

∑p
a=0

αa

∑p
i=1

x̃aiti . (112)

Expanding the exponential on the right in a power series, we have

V p !

∫

standard simplex
dα1...dαp

∞
∑

ν1...νp=0

∏p
a=0(αa)

νa(
∑p

i=1 x̃aiti)
νa

∏p
a=0 νa !

, (113)

and then recalling that α0 = 1 −∑p
a=1 αa, and using Eq. (107) to evaluate the integral over the

standard simplex, we get

V p !

∞
∑

ν1...νp=0

∏p
a=0(

∑p
i=1 x̃aiti)

νa

(p +
∑p

a=0 νa) !
. (114)

Let us now define Pn as the projector on terms with a total of n powers of the parameters ti,

since this is the projector that extracts the nth order moments. Applying Pn to Eq. (114), the

denominator is converted to (p + n) !, which can then be pulled outside the sum over the νi,

permitting these sums to be evaluated as geometric series,

PnV p !

∞
∑

ν1...νp=0

∏p
a=0(

∑p
i=1 x̃aiti)

νa

(p+
∑p

a=0 νa) !

=
V p !

(p+ n) !
Pn

∞
∑

ν1...νp=0

p
∏

a=0

(

p
∑

i=1

x̃aiti)
νa

=
V p !

(p+ n) !
Pn

p
∏

a=0

[1−
p
∑

i=1

x̃aiti)]
−1 .

(115)

Finally, applying to each factor in the product over a the rearrangement

(1− y)−1 = exp[− log(1− y)] = exp[
∞
∑

s=1

ys

s
] , (116)
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we get

V p !

(p+ n) !
Pn exp[

∞
∑

s=2

∑p
a=0[

∑p
i=1 x̃aiti]

s

s
] , (117)

where we have used the fact that the s = 1 term in the sum vanishes because
∑

a x̃ai = 0.

Comparing Eq. (117) with the starting equation Eq. (108), we get Eqs. (54) and (55).

IX. PARAMETERIZED HIGHER ORDER INTEGRATION FORMULAS FOR

AXIS-PARALLEL HYPERCUBES

We turn in this section to the problem of deriving higher order integration formulas for axis-

parallel hypercubes, in analogy with our treatment of the simplex case. Our formulas can be

viewed as a generalization of those obtained by Lyness (1965) and McNamee and Stenger (1967).

We consider an axis-parallel hypercube of half-side S, and denote by x̃ coordinates referred to the

centroid of the hypercube. Through ninth order, the expansion of a general function f(x̃) is given

as before by Eq. (52). Consider now the moment integrals

m(ν) =

∫

hypercube
dx1...dxpx̃

ν1
1 ...x̃

νp
p . (118)

Since the limits of integration for each axis are −S, S, the moment integral factorizes and can be

immediately evaluated as

m(ν) =

p
∏

ℓ=1

Sνℓ+1

νℓ + 1
[1 + (−1)νℓ ]

=0 any νℓ odd ,

=

p
∏

ℓ=1

2S Sνℓ

νℓ + 1
all νℓ even

=V

p
∏

ℓ=1

Sνℓ

νℓ + 1
all νℓ even ,

(119)

with V = (2S)p in the final line the hypercube volume.

We now reexpress this moment integral in terms of sums over the set of 2p hypercube points

x̃j given in Eq. (49), which will play a role in hypercube integration analogous to that played by

simplex vertices in our treatment of simplex integration. In analogy with Eq. (58), we define the

sum

Si1...in =

2p
∑

j=1

x̃ji1 ...x̃jin . (120)
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Since x̃ji = Sδji for 1 ≤ j ≤ p and x̃ji = −Sδji for p + 1 ≤ j ≤ 2p, this sum vanishes unless n is

even and all of the indices i1,...,in are equal, in which case it is equal to 2Sn. The tensors of Eq.

(120) and their direct products form a complete basis on which we can expand moment integrals

over the hypercube. We have carried out this calculation two different ways. First, by matching

the non-vanishing moment integrals through eighth order, we find

1

V

∫

hypercube
dx1...dxpx̃i1 x̃i2 =

1

6
Si1i2 ,

1

V

∫

hypercube
dx1...dxpx̃i1 x̃i2x̃i3 x̃i4 =

1

36
(Si1i2Si3i4 + Si1i3Si2i4 + Si1i4Si2i3)−

1

15
Si1i2i3i4

=
1

36
(Si1i2Si3i4 + 2 terms)− 1

15
Si1i2i3i4 ,

1

V

∫

hypercube
dx1...dxpx̃i1 x̃i2 x̃i3 x̃i4x̃i5 x̃i6 =

1

216
(Si1i2Si3i4Si5i6 + 14 terms)

− 1

90
(Si1i2Si1i2i3i4 + 14 terms) +

8

63
Si1i2i3i4i5i6 ,

1

V

∫

hypercube
dx1...dxpx̃i1 x̃i2x̃i3 x̃i4 x̃i5 x̃i6x̃i7 x̃i8 =

1

1296
(Si1i2Si3i4Si5i6Si7i8 + 104 terms)

+
1

225
(Si1i2i3i4Si5i6i7i8 + 34 terms)

− 1

540
(Si1i2Si3i4Si5i6i7i8 + 209 terms)

+
4

189
(Si1i2Si3i4i5i6i7i8 + 27 terms)

− 8

15
Si1i2i3i4i5i6i7i8 .

(121)

Combining these formulas with Eq. (52), and using a similar condensed notation to that used in

the simplex case (but with the contractions referring now referring to the sums over the hypercube

of Eq. (120)), we have for the integral of a general function over the hypercube, through ninth

order,

1

V

∫

hypercube
dx1...dxpf(x̃) =A+

1

6
C2 +

1

36
E2+2 −

1

15
E4

+
1

216
G2+2+2 −

1

90
G4+2 +

8

63
G6

+
1

1296
I2+2+2+2 +

1

225
I4+4 −

1

540
I4+2+2 +

4

189
I6+2 −

8

15
I8

+... .

(122)

A second, and more general way, to obtain these results is to construct a generating function,
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analogous to that of Good and Gaskins used in the simplex case. We start from the formula

V −1

∫ S

−S
dx1...

∫ S

−S
dxp e

t1x1+...+tpxp =

p
∏

ℓ=1

sinhStℓ
Stℓ

, (123)

and recall the power series expansion for the logarithm of sinhx
x ,

log
(sinhx

x

)

=
1

6
x2 − 1

180
x4 +

1

2835
x6 − 1

37800
x8 + ...

=
∞
∑

n=1

(−1)n+122n−1B2n−1

n(2n) !
x2n ,

(124)

with B2n−1 the Bernoulli numbers B1 = 1
6 , B3 = 1

30 , B5 = 1
42 , B7 = 1

30 , B9 = 5
66 , ... .

Defining, in analogy with the simplex case (with x̃ai now the components of the 2p vectors x̃a of

Eq. (49)),

Wu =

2p
∑

a=1

(

p
∑

i=1

x̃aiti

)u

=0 , u odd ,

=2Su
p
∑

i=1

tui , u even ,

(125)

we rewrite Eq. (123), using Eq. (124), as

V −1

∫ S

−S
dx1...

∫ S

−S
dxp e

t1x1+...+tpxp = e
∑

∞

n=1
KnW2n , (126)

with

Kn =
(−1)n+122n−2B2n−1

n(2n) !
. (127)

Through eighth order, the right hand side of Eq. (126) is

eW2/12−W4/360+W6/5670−W8/75600+... =1

+
W2

12

−W4

360
+

W 2
2

288

+
W6

5670
− W2W4

4320
+

W 3
2

10368

− W8

75600
+

W 2
4

259200
+

W2W6

68040
− W 2

2W4

103680
+

W 4
2

497664
+ ... .

(128)
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Applying the same rule as in the simplex case, of multiplying the coefficient of each term by a com-

binatoric factor (s !)tt ! for each factor W t
s , we recover the numerical coefficients in the expansions

of Eqs. (121) and (122). This method can be readily extended to the higher order terms of these

expansions.

We now follow the procedure used before in the simplex case. We match the expansion of Eq.

(122) to sums over the function f evaluated at points within the hypercube, this time constructing

these sums using parameter multiples of the 2p points of Eq. (49), which are the centroids of the

maximal boundary hypercubes. The formulas of Eqs. (63), (64), and (65) still apply, with sums

that extended from 0 to p in the simplex case extending now from 1 to 2p, and with ξ = p+ 1 in

Eq. (64) replaced by ξ = 2p.

We proceed to set up integration formulas of first, third, fifth, seventh, and ninth order, for

integrals over an axis-parallel hypercube. Since all odd order terms in the expansion of Eq. (52)

integrate to zero by symmetry, to achieve this accuracy it suffices to perform a matching of the

non-vanishing terms through zeroth, second, fourth, sixth, and eighth order, respectively. We will

see that as a result of the absence of odd order terms, the higher order hypercube formulas are

considerably simpler than their general simplex analogs.

A. First and third order formulas

We begin our derivation of odd order hypercube integration formulas with examples of first and

third order accuracy, obtained by matching the first two terms in the expansion of Eq. (122),

I = A+
1

6
C2 + ... . (129)

Proceeding in direct analogy with the first order formulas of Eq. (66) in the simplex case, we get

Ia =Σ1(λ)/ξ ,

Ib =f(0̃) ,

(130)

with x̃ = 0̃ the centroid of the hypercube, and ξ = 2p. These are again analogs of the trapezoidal

and center-of-bin methods for the one dimensional case.

Similarly, in analogy with the second order accurate formula of Eq. (69) for the simplex, we get

the third order accurate hypercube formula

I =

(

1− ξ

6λ2

)

f(0̃) +
1

6λ2
Σ1(λ) . (131)
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For any two nondegenerate values λa,b in the interval (0,1) this gives two different third order

accurate estimates Ia,b of the hypercube integral.

B. Fifth order formula

To get a fifth order formula, we have to use the sums of Eq. (63) to match the coefficients of

A, C2, E2+2, and E4 appearing on the first line of Eq. (122). Since there is now only a single

two-partition term, E2+2, we can extract it from Σ2(λ, λ) for any λ in the interval (0, 12 ). So we

look for a fifth order formula of the form

κ2Σ2(λ, λ) +
2
∑

i=1

κi1Σ1(λ
i
1) + κ0A . (132)

Matching the coefficient of E2+2 gives

κ2 =
1

72λ4
, (133)

while matching the coefficient of A gives

κ0 = 1−R0 , R0 = ξ2κ2 + ξ
2
∑

i=1

κi1 . (134)

Matching the coefficients of C2 and E4 gives a N = 2 Vandermonde system
(

c.f. Eq. (88)
)

with

xi =(λi
1)

2 , wi = κi1(λ
i
1)

2 ,

q1 =
1

6
− ξ

36λ2
,

q2 =
−1

15
− ξ

36
.

(135)

C. Seventh order formula

To get a seventh order formula, we have to match the coefficients appearing on the first two

lines of Eq. (122). Since there is only one three-partition term, G2+2+2, we can extract it from

Σ3(λ, λ, λ) for any λ in the interval (0, 13). We look for a seventh order formula of the form

κ3Σ3(λ, λ, λ) +
2
∑

i=1

κi2Σ2(λ
i
2, λ

i
2) +

3
∑

i=1

κi1Σ1(λ
i
1) + κ0A , (136)

with matching the coefficient of G2+2+2 requiring

κ3 =
1

1296λ6
. (137)



47

To reduce the number of function calls, we take λi+1
1 = 2λi

2 , i = 1, 2, with only λ1
1 an additional

parameter. Matching the coefficients of the two-partition terms E2+2 and G4+2 gives a N = 2

Vandermonde system with

xi =(λi
2)

2 , wi = 2κi2(λ
i
2)

4 ,

q1 =
1

36
− ξ

216λ2
,

q2 =− 1

90
− ξ

216
,

(138)

while matching the coefficient of A gives

κ0 = 1−R0 , R0 = ξ3κ3 + ξ2
2
∑

i=1

κi2 + ξ

3
∑

i=1

κi1 . (139)

Matching coefficients of the single-partition terms C2, E4, and G6 gives the N = 3 Vandermonde

system with

xi =(λi
1)

2 , wi = κi1(λ
i
1)

2 ,

q1 =
1

6
− ξ2

432λ4
− 2ξ

2
∑

i=1

κi2(λ
i
2)

2 ,

q2 =− 1

15
− ξ

36
+

ξ2

432λ2
,

q3 =
8

63
+

ξ

90
+

ξ2

432
.

(140)

D. Ninth order formula

To get a ninth order formula, we have to match the coefficients of all three lines of Eq. (122).

Since there is only one four-partition term I2+2+2+2, we can extract it from Σ4(λ, λ, λ, λ) for any

λ in the interval (0, 14). We look for a ninth order formula of the form

κ4Σ4(λ, λ, λ, λ)+
2
∑

i=1

κi3Σ3(λ
i
3, λ

i
3, λ

i
3)+κ′2Σ2(3λ, λ)+

3
∑

i=1

κ̄i2Σ2(λ
i
2, λ

i
2)+

4
∑

i=1

κi1Σ1(λ
i
1)+κ0A , (141)

with matching the coefficient of I2+2+2+2 requiring

κ4 =
1

31104λ8
. (142)
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To reduce the number of function calls, we take λi
2 = λi

3 , i = 1, 2, and λi
1 = 3λi

2 , i = 1, 2, 3,

with only λ3
2 and λ4

1 additional parameters. Matching the coefficients of the three-partition terms

G2+2+2 and I4+2+2 gives a N = 2 Vandermonde system with

xi =(λi
3)

2 , wi = 6κi3(λ
i
3)

6 ,

q31 =
1

216
− ξ

1296λ2
,

q32 =− 1

540
− ξ

1296
.

(143)

Taking the difference of the matching equations for I6+2 and I4+4 determines κ′2 to be

κ′2 =
237

8164800λ8
=

237

262.5
κ4 , (144)

while matching the coefficient of A gives

κ0 = 1−R0 , R0 = ξ4κ4 + ξ3
2
∑

i=1

κi3 + ξ2(κ′2 +
3
∑

i=1

κ̄i2) + ξ
4
∑

i=1

κi1 . (145)

Matching the remaining independent two-partition terms E2+2, G4+2, and I4+4 gives a N = 3

Vandermonde system with

xi =(λi
2)

2 , wi = 2κ̄i2(λ
i
2)

4 ,

q21 =
1

36
− κ′218λ

4 − ξ2

2592λ4
− 6ξ

2
∑

i=1

κi3(λ
i
3)

4 ,

q22 =− 1

90
− κ′290λ

6 − ξ

216
+

ξ2

2592λ2
,

q23 =
1

225
− κ′2162λ

8 +
ξ

540
+

ξ2

2592
.

(146)
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Finally, matching coefficients of the single-partition terms C2, E4, G6, and I8 gives a N = 4

Vandermonde system with

xi =(λi
1)

2 , wi = κi1(λ
i
1)

2 ,

q11 =
1

6
− ξ3

7776λ6
− κ′210ξλ

2 − 3ξ2
2
∑

i=1

κi3(λ
i
3)

2 − 2ξ

3
∑

i=1

κ̄i2(λ
i
2)

2 ,

q12 =− 1

15
− ξ3

7776λ4
− κ′282ξλ

4 − 3ξ2
2
∑

i=1

κi3(λ
i
3)

4 − ξ q21 ,

q13 =
8

63
− ξ3

7776λ2
− κ′2730ξλ

6 − 1

2
ξ2 q31 − ξ q22 ,

q14 =− 8

15
− ξ3

7776
− κ′26562ξλ

8 − 1

2
ξ2 q32 − ξ q23 .

(147)

E. Leading term in higher order

As in the simplex analysis, in the hypercube case we have not systematically pursued con-

structing integration formulas of orders higher than ninth, but this should be possible by the same

method. Again, one can see what the pattern will be for the leading term in such formulas. An

integration formula of order 2t + 1 will have a leading term Σt(λ, ..., λ), with t arguments λ. The

only t-partition term appearing in the continuation of Eq. (122) will be 2 + 2+ ....+2, containing

t terms 2. So λ can be taken to have any value in the interval (0, 1t ), and the leading term in the

integration formula will be κtΣt(λ, ..., λ), with κt given by

κt =
1

t !6tλ2t
. (148)

Where nonleading terms give multiple equations of the same order, corresponding to inequivalent

partitions of 2t,... one has to include terms proportional to Σt−2(3λ, λ, ..., λ), and other such

structures with asymmetric arguments summing to tλ, for the differences of these multiple equations

to have consistent solutions. Once such multiplicities have been taken care of, the remaining

independent equations will form a number of sets of Vandermonde equations.

F. One dimension revisited: comparison of Vandermonde moment fitting to standard one

dimensional methods

In this subsection we address several related issues. We first set up a one-dimensional analog

of the moment fitting method that we have used in general p dimensions to develop higher order
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integration formulas. The one dimensional moment fitting equations can be satisfied by leaving

the sampling points as free parameters, giving in any order a Vandermonde equation system to

determine the weights assigned to the sampling points. Alternatively, the moment fitting equations

can be satisfied by restricting the sampling points, which is what is done in Gaussian quadrature,

which reduces the number of function calls. We then show that the fifth (and higher) order direct

hypercube integration formulas for p dimensions, when restricted to one dimension, involve a larger

number of function calls than needed for the case when the sampling points are all free parameters.

We interpret this as resulting from linear dependencies in low dimension among the various terms

appearing in the generating function of Eq. (128). We study these linear dependencies as a function

of dimension p, and suggest that the integration rule of order 2t + 1 has redundant parameters

when the spatial dimension p < t.

Let f(x) = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + ... be a function that is power series expandable on

the interval (-1,1), and consider the one dimensional integral

I =
1

2

∫ 1

−1
f(x)dx

=f0 +
f2
3

+
f4
5

+
f6
7

+
f8
9

+ ... .

(149)

Defining Σ1(λ) by

Σ1(λ) = f(λ) + f(−λ) , 0 < λ ≤ 1 , (150)

we look for an integration formula of the form

I =κ0f(0) +
n
∑

i=1

κiΣ1(λ
i)

=f0 +

n
∑

i=1

κi[f0 + f2(λ
i)2 + f4(λ

i)4 + f6(λ
i)6 + f8(λ

i)8 + ...] .

(151)
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Matching the coefficients of fℓ between Eq. (149) and Eq. (151), we get the system of equations

1 =κ0 + 2

n
∑

i=1

κi ,

1

3
=2

n
∑

i=1

κi(λi)2 ,

1

5
=2

n
∑

i=1

κi(λi)4 ,

1

7
=2

n
∑

i=1

κi(λi)6 ,

1

9
=2

n
∑

i=1

κi(λi)8 ,

(152)

and similarly if one wishes to go to higher order than ninth.

There are now two ways to proceed to solve the matching equations, to give a discrete approxi-

mation to the integral to a given order of accuracy. The first, which is what we have done in getting

simplex and hypercube integration formulas, is to regard all of the λi as adjustable parameters,

and to determine the coefficients κi to satisfy the system of equations of Eq. (152) to the needed

order. Thus, to get a first order accurate formula, we take I ≃ f(0) with all the κi equal to zero,

which is the center-of-bin rule. To get a third order accurate formula we must take κ1 as nonzero

and solve the system

1 =κ0 + 2κ1 ,

1

3
=2κ1(λ1)2 .

(153)

To get a fifth order accurate formula we must take both κ1 and κ2 as nonzero and solve the system

1 =κ0 + 2(κ1 + κ2) ,

1

3
=2κ1(λ1)2 + 2κ2(λ2)2 ,

1

5
=2κ1(λ1)4 + 2κ2(λ2)4 ,

(154)
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to get a seventh order accurate formula we must take κ1,2,3 as nonzero and solve the system

1 =κ0 + 2(κ1 + κ2 + κ3) ,

1

3
=2κ1(λ1)2 + 2κ2(λ2)2 + 2κ3(λ3)2 ,

1

5
=2κ1(λ1)4 + 2κ2(λ2)4 + 2κ3(λ3)4 ,

1

7
=2κ1(λ1)6 + 2κ2(λ2)6 + 2κ3(λ3)6 ,

(155)

and so forth. Evidently, to get an order 2t + 1 formula, we must take n = t, so that there are t

distinct positive sampling points λ1,...,t,and to determine the coefficients κ1,...,t we must solve an

order N = t Vandermonde system. The resulting order 2t + 1 integration formula uses 2t + 1

function values.

An alternative way to proceed is to adjust the values of the sampling points so that fewer of them

are needed to satisfy the matching conditions. This is what is done in the well-known Gaussian

integration method, which gives a more efficient scheme, in terms of the number of function calls,

starting with third order. Referring to Eq. (153), we can evidently achieve a third order match by

taking

2κ0 =0 , 2κ1 = 1 ,

λ1 =
1√
3

.

(156)

Similarly, referring to Eq. (154), we can evidently achieve a fifth order match by taking

2κ0 =
8

9
, 2κ1 =

5

9
,

λ1 =

√
3√
5

.

(157)

Proceeding in this way, we can obtain the general Gaussian integration formula, which for order

2t + 1 integration involves t points. Of course, the usual derivation of the Gaussian integration

rule does not proceed this way, but instead uses an argument based on one dimensional polynomial

long division to relate the special points λi to zeros of the Legendre polynomials. Since in higher

dimensions there is no analogous polynomial division rule, there is no universal higher dimensional

analog of the Gaussian integration rule, although there are a multitude of special formulas using
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specially chosen sampling points in higher dimensions (see, e.g., Stroud (1971)). On the other hand,

as we have seen, the method of keeping all the sampling points λi as free parameters, and solving

a set of Vandermonde equations to get the coefficients κi, readily extends to higher dimensions.

Let us now examine the number of function evaluations required by our general moment fitting

formulas for hypercubes, when restricted to one dimension. The first order center-of-bin formula

requires just the one function evaluation f(0), and so is the same in all methods. The third order

formula of Eq. (131) involves f(0) and one Σ1(λ), and so uses 3 function values, in agreement

with Eq. (153), whereas the Gaussian formula needs 2 function values. Turning to the fifth order

formula of Eq. (132), calculation of Σ2(λ, λ) requires 3 function evaluations, calculation of each

of the two Σ1(λ
i) requires 2 function evaluations, and evaluation of f(0) requires one function

evaluation, for a total of 8 function evaluations. This is to be compared to the one dimensional

moment fitting formula of Eq. (154) which requires 5 function evaluations, and the Gaussian

method, which requires 3.

The reason that the fifth order integration formula for general p, when specialized to one di-

mension, requires more function evaluations than the moment fitting method of Eq. (154), is that

whereas in two and higher dimensions W4 and W 2
2 are linearly independent, in one dimension they

are proportional to one another by virtue of the identity t41 = (t21)
2. Hence the term Σ2(λ, λ) in

the general integration formula is not needed to get a match, and when this is dropped one has

a formula identical in form to that of Eq. (154), requiring only 3 function calls. Turning to the

higher order hypercube formulas, we see that the seventh order hypercube formula of Eq. (136)

has redundant parameters and function calls for dimension p < 3, since in 2 dimensions W6, W2W4

and W 3
2 are linearly dependent by virtue of the algebraic identity

0 = (t21 + t22)
3 − 3(t21 + t22)(t

4
1 + t42) + 2(t61 + t62) . (158)

Similarly, the ninth order hypercube formula of Eq. (141) has redundant parameters and function

calls for dimension p < 4, since in 3 dimensions W8, W
2
4 , W2W6, W

2
2W4, and W 4

2 are linearly

dependent by virtue of the identity

0 =(t21 + t22 + t23)
4 − 6(t81 + t82 + t83) + 3(t41 + t42 + t43)

2

+8(t21 + t22 + t23)(t
6
1 + t62 + t63)− 6(t21 + t22 + t23)

2(t41 + t42 + t43) .

(159)

These results suggest the conjecture that the hypercube formula of order 2t + 1 will involve

redundant parameters and function calls for dimension p < t, and we expect an analogous state-
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ment to apply for the simplex formulas derived by the moment fitting method in Sec. VII. This

redundancy for small p is a consequence of the fact that the integration formulas that we have

derived for simplexes and hypercubes are universal, in the sense that they involve the same num-

ber of parameters irrespective of the dimension p. As p increases, the number of sampling points

increases, but the number of parameters, and the size of the Vandermonde systems needed to find

coefficients, remains fixed.

X. FUNCTION CALLS NEEDED FOR INTEGRATION ROUTINES OF VARIOUS

ORDERS

We summarize in this section the number of function calls needed for a single call to the

integration routines of various orders. These are obtained by running the programs to integrate

the function fcn=1, in which case the programs exit without subdividing the base region, giving

the desired function call count for two samplings of the integral at the indicated order of accuracy,

as well as unity as the output integral (since the programs all compute the integral over the base

region, divided by the base region volume).

In Table VI we give the function call counting for the simplex integration programs of first

through fourth, fifth, seventh, and ninth order. For comparison, in Table VII we give a similar table

from the paper of Genz and Cools (2003), which gives the function call counting for one evaluation

of the indicated order, plus a second evaluation at a lower order used for error estimation. Unlike

our method, which proceeds directly from the vertices of a general simplex, the Genz and Cools

program uses integration rules for a standard p-simplex, with an affine transformation needed to

treat more general simplexes. Although not directly comparable, the two tables show that the

strategy we have used, of incorporating a number of free parameters into the integration which can

be used to give different samplings of the integrand, does not lead to an inefficiency of more than

a factor of 2 to 3 compared to the method used by Genz and Cools.

In Table VIII we give the function call counting for the direct hypercube programs of first,

third, fifth, seventh, and ninth order. For comparison, in Table IX we have tabulated tp+(t+1)p,

with the odd order of integration n related to t by n = 2t+ 1; this is the number of function calls

needed if one uses a p-fold direct product of Gaussian integrations of indicated order, together

with a p-fold direct product of Gaussian integrations of the next higher odd order to get an error

estimate. One sees from these tables that for t = 1, 2, 3 our parameterized method is more efficient

than direct product Gaussian for dimension p ≥ 4, and for t = 4 the parameterized method is more
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TABLE VI: Function calls by for simplex integration of order n in dimension p by method of Sec. VII

n p → 1 2 3 4 5 6 7 8 9

1 3 4 5 6 7 8 9 10 11

2 5 7 9 11 13 15 17 19 21

3 7 10 13 16 19 22 25 28 31

4 10 16 23 31 40 50 61 73 86

5 20 31 43 56 70 85 101 118 136

7 37 71 117 176 249 337 441 562 701

9 74 168 316 531 827 1219 1723 2356 3136

TABLE VII: Function calls for simplex integration of order n in dimension p from Genz and Cools (2003)

n p → 2 3 4 5 6 7 8 9

3 7 9 11 13 15 17 19 21

5 16 23 31 40 50 61 73 86

7 32 49 86 126 176 237 310 396

9 65 114 201 315 470 675 940 1276

efficient for p ≥ 5. Since the number of function calls in the parameterized method is asymptotically

polynomial of order (2p)t/t !, whereas in the direct product Gaussian method it is exponential in

p, the parameterized method becomes markedly more efficient for large dimension p.

These results reinforce the indication from the previous section that, as a very rough rule of

thumb, in using integration routines with n = 2t+ 1 in dimension p, one should avoid high order

routines with t > p. This is true both because in low dimension the higher order routines have

redundant function calls, and because the extra computation involved in using a high order routine

is justified only when the 2p scaling in the number of subregions, as the program subdivides from

level to level, becomes large enough. However, this is only a very general criterion, since the

optimum choice or choices of integration routine order will depend on the nature of the function

being integrated. Moreover, in dimension p = 1 the programs are so fast on current computers that

use of the fifth or seventh order integration routines, while not as efficient as Gaussian integration,

still gives good results.
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TABLE VIII: Function calls for hypercube integration of order n in dimension p by method of Sec. VIII

n p → 1 2 3 4 5 6 7 8 9

1 3 5 7 9 11 13 15 17 19

3 5 9 13 17 21 25 29 33 37

5 12 27 46 69 96 127 162 201 244

7 21 69 153 281 461 701 1009 1393 1861

9 48 192 501 1059 1966 3338 5307 8021 11644

TABLE IX: Function calls for hypercube integration of order n in dimension p by comparison of two product

Gaussian rules

n p → 1 2 3 4 5 6 7

3 3 5 9 17 33 65 129

5 5 13 35 97 275 793 2315

7 7 25 91 337 1267 4825 18571

9 9 41 189 881 4149 19721 94509

XI. PUTTING IT ALL TOGETHER – SKETCH OF THE ALGORITHMS

We are now ready to give a sketch of the adaptive algorithms incorporating the elements de-

scribed above. The basic algorithm starts from a base region, which acts as the initial level

subregion, which is either a standard simplex, a Kuhn simplex (for hypercube integration treated

by tiling with Kuhn simplexes), or a half-side 1 hypercube. It then proceeds recursively through

higher levels of subdivision, by evaluating the integral using an integration method of order speci-

fied by the user with two different parameter choices, giving two estimates of the integral over the

subregion divided by the subregion volume, which we denote by Ia(subregion) and Ib(subregion).

(Dividing out the volume is convenient because of the 1/V factor appearing on the left hand side of

Eqs. (62) and (122).) If the level number exceeds a user-specified value ithinlev which determines

when thinning begins, then a thinning condition is applied. When the user-specified thinning

function parameter ithinfun is given the value 1, the thinning condition used is

|Ia(subregion)− Ib(subregion)| < ǫ , (160)

with ǫ an error measure specified by the user. (Further thinning options will be discussed shortly.)

If this condition is met, the results are retained as contributions to the Ia and Ib estimates of

the integral divided by the base region volume, and the subregion is not further subdivided. If

this condition is not met, then the subregion is subdivided into 2p subregions, and the process is
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repeated. The process terminates when either the thinning condition is met for all subregions, or

a limit to the number of levels of subdivision set by the user is reached. In the latter case, the

contributions of the remaining subregions that have not satisfied the thinning condition are added

to the Ia and Ib totals, as well as to the sum of the absolute values of the local subinterval errors.

With either termination, we get the final estimates of the integral divided by the base region

volume,

Ia ≃
∑

subregions

V (subregion)Ia(subregion) ,

Ib ≃
∑

subregions

V (subregion)Ib(subregion) .

(161)

Here V (subregion) is the subregion volume divided by the base region volume, and since the

subregions are a tiling of the initial base region, we have

∑

subregions

V (subregion) = 1 . (162)

From the difference of Ia and Ib we get an estimate of the error, given by

|outdiff| ≡ |Ia − Ib| . (163)

We can also (as in the one dimensional illustration) compute the sum of the absolute values of the

local subinterval errors,

errsum ≡
∑

subregions

V (subregion)|Ia(subregion)− Ib(subregion)| . (164)

Comparing Eqs. (161), (163), and (164), we see that errsum and |outdiff| obey the inequality

errsum ≥ |outdiff| , (165)

with equality holding if Ia − Ib has the same sign in all subregions. When the condition

|Ia(subregion) − Ib(subregion)| < ǫ is met for all subregions, errsum reduces, using Eq. (162),

to

errsum < ǫ . (166)

Hence to evaluate the integral to a relative error δ, one should choose

ǫ ∼ δ|Ia| . (167)
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Since Ia and Ib give the integral over the base region divided by the base region volume, to get the

value of the integral without normalization by the base region volume, one must multiply these

outputs by the base region volume V0. For a standard simplex, V0 = 1/p !, for a side 1 hypercube,

V0 = 1, while for a half-side 1 hypercube, V0 = 2p.

Note that the thinning condition determining whether to subdivide a subregion does not include

a factor of the subregion volume; we are testing variances of the integrand as sampled over the

subregion, not variances of the net contribution to the integral. This may seem counter-intuitive,

but is motivated by the formulas of Eqs. (162)–(166), by simplicity, and by the fact that it works

well in practice. The problem with including a subregion volume weighting factor in the thinning

condition is that at a very fine level of subdivision, there are many subregions, and so small error

contributions from each can add up to a large error in the total. Since the local test does not

involve comparisons of the errors from different regions, the calculation in each subregion proceeds

independently from that in all the others. The local thinning condition that we use is equivalent

to the “Local Subdivision Strategy” described in the monographs of Krommer and Ueberhuber

(1991) and Ueberhuber (1995) using a parameter ǫabs, which plays the role of our ǫ.

Using |Ia(subregion)− Ib(subregion)| as the basis for a thinning decision is only one possibility

of many. More generally, given A ≡ Ia(subregion) and B ≡ Ib(subregion), one can take as the

thinning function any function f(A,B) with the properties f(A,B) ≥ 0 and f(A,B) = 0 iff A = B,

imposing now the thinning condition f(A,B) < ǫ. In the programs, we have included three

options, (1) f(A,B) = |A − B| as in the discussion above, (2) f(A,B) = |A − B|/|A + B|, and
(3) f(A,B) = (A−B)2. In many cases, and in particular for polynomial integrals, we found their

performance (with appropriate ǫ) to be similar, but for the singular integral
∫ 1
0 dx 1√

1−x2 we found

choice (3) to perform considerably better than the other two.

Three versions of the basic algorithm are presented in each of the directories of programs. In

the first, the algorithm subdivides until all subregions obey the thinning condition, or until a preset

limit on the level of subdivisions is reached, which is dictated by the available memory. Typically,

for simple integrands and moderate dimension p, this happens rather quickly, in other words, the

algorithm has saturated capabilities of the machine memory, but not of the machine speed. In a

second version labelled “r”, the algorithm is “recirculated” by keeping, at a level limit set by the

user which is chosen to avoid exceeding machine memory capabilities, all the subintervals that do

not obey the thinning condition. These are then treated one at a time by the same algorithm,

up to a second level limit again set by the user. This can take hours or days for high accuracy,

high p computations, with a practical limit set by the speed capabilities of the machine. Finally,
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a third version labelled “m” takes the “recirculating” algorithm and parallelizes it using the MPI

(message passing interface) protocol, by distributing to each process of a cluster a large number

of the subintervals that do not obey the thinning condition , each of which is then processed by

the algorithm sequentially. This speeds up the computation by a factor of the number of processes

available. All routines are coded in double precision, but since the ninth order integration formulas

involve large numbers in computing coefficients, double precision computation is not enough to

give double precision accuracy results, so for the fifth, seventh, and ninth order routines in both

the simplex and direct hypercube cases, we also give a quadruple precision
(

real(16)
)

version of

the programs.

The programs present the user with various options. By an appropriate choice of ithinlev,

thinning can be delayed, or even suppressed entirely so that all subdivisions take place to the

specified subdivision limits. This can give a check that subregions with large contributions, but

accidentally small error estimates, have not been harvested prematurely, and when the programs

are modified, gives a useful check that the tiling condition of Eq. (162) is obeyed. By a choice of

ithinfun, the user can choose which of three preset thinning functions to use, or by modifying the

subroutine containing these functions, the user can make another choice of thinning function. For

simplex integration, the user can choose whether to use the recursive or the symmetric subdivision

algorithm. The user can choose the accuracy of the integration method used: first through fourth,

fifth, seventh, or ninth for simplex based routines, and first, third, fifth, seventh, and ninth for

the direct hypercube routines. Finally, the user can modify the free parameters in the integration

routines, so as to get different samplings of the integrand, which can give a useful assessment of

whether the error estimates from the initially used sampling are realistic.

XII. TEST INTEGRALS; FALSE POSITIVES AND THEIR AVOIDANCE

For verifying the higher order integration programs, and for checking the operation of the

adaptive programs, it is essential to have test integrals with known answers. For the standard

simplex (c.f. Eqs. (30) and (31)), a useful formula is the multinomial beta function integral,
∫

standard simplex
dx1...dxp (1− x1 − x2 − ...− xp)

α0−1xα1−1
1 ...x

αp−1
p =

∏p
a=0 Γ(αa)

Γ(
∑p

a=0 αa)
, (168)

with Γ the usual gamma function (see the Wikipedia article on Dirichlet distributions). When

αa − 1 = νa , a = 0, ..., p with νa an integer, this can be rewritten as
∫

standard simplex
dx1...dxp (1− x1 − x2 − ...− xp)

ν0xν11 ...x
νp
p =

∏p
a=0 νa !

(p +
∑p

a=0 νa) !
. (169)
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The ν0 = 0 case of this formula is the formula given by Stroud (1971)
(

see also Grundmann and

Möller (1978)
)

for the integral of a general monomial over the standard simplex.

For a unit hypercube, the corresponding formula is

∫ 1

0
dx1...

∫ 1

0
dxpx

ν1
1 ...x

νp
p =

p
∏

ℓ=1

1

νℓ + 1
, (170)

while for a half-side 1 hypercube the corresponding monomial integrals are (c.f. Eqs. (118) and

(119))

∫ 1

−1
dx1...

∫ 1

−1
dxp x

ν1
1 ...x

νp
p = 2p

p
∏

ℓ=1

1

νℓ + 1
for all νℓ even, and zero otherwise . (171)

Testing the simplex programs with the integral of Eq. (169), and starting thinning at level 1,

shows that when the order of the monomial is less than or equal to the order of the integration

formula used, the iteration terminates at the initial level, and the difference between Ia and Ib is of

order the computer truncation error. When a monomial is integrated that is of higher order than

the integration formula used, with a small enough error measure ǫ, the adaptive program starts to

subdivide the base region.

However, a more complicated pattern is seen for the hypercube integrals when evaluated by the

direct hypercube algorithms, and this brings us to the issue of false positives. As in the simplex

case, when thinning is started at level 1 and the order of the test monomial is less than or equal

to the order of the integration formula used, the iteration terminates again at the initial level, and

Ia − Ib is of order the truncation error. However, when a monomial is integrated that is of higher

order than the integration formula used, the adaptive program does not always start to iterate. For

example, using the fifth order hypercube formula in dimension p = 4, the program iterates for the

integrand x61, but not for the integrand x21x
2
2x

2
3. The reason is that the latter function, although of

higher order than that of the integration formula, vanishes on the hyperplanes spanning the axes

where the fifth order integration formula samples the integrand, and so the Ia and Ib evaluations

give the same answer (zero), and the thinning condition is obeyed for arbitrarily small ǫ. This is an

example of a false positive, in which the thinning condition is obeyed even though the actual error

is large. Any sampling program for evaluating integrals is subject to false positives for functions

that take special values (in our case zero, or a constant) on the sampling points. Since the sampling

points in the simplex integration formulas are on oblique, rather than axis-parallel, lines or planes,

this problem is not so readily seen with the multinomial test functions of Eq. (169), but we

have nonetheless found examples of false positives. For example, using fifth order integration and

symmetric subdivision, the p = 5 monomial x(1)x(2)x(3)x(4)2x(5), when computed with thinning
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starting at any level below 3, develops a false positive at level 2 and gives an answer that is wrong

in the fourth decimal place, even though the output error measures suggest much higher accuracy.

There are several general ways to guard against false positives. The simplest is to use the freedom

of choosing the parameter ithinlev to delay thinning until several subdivisions have taken place.

False positives are most dangerous if they occur in the initial few levels, since these have the largest

subregions, and if a subregion is prematurely harvested, there is a possibility of significant error. On

the other hand, thinning becomes most important after several subdivisions have taken place, when

the number of subregions is large. So there can be a useful tradeoff between starting thinning early

and starting it late. If computer time permits, one can always do an a posteriori check by choosing

ithinlev greater than the limit on the number of levels, which suppresses thinning altogether, and

gives the approximate Riemann sum corresponding to the level of subdivision attained.

A second general way to guard against false positives is to compute the integral using alternative

options, for example, using integration programs of several different orders, or where allowed as an

option for simplex integrals, to use recursive instead of symmetric subdivision. In the fifth order

p = 5 example noted above, changing to seventh order integration, or changing from symmetric to

recursive subdivision while maintaining fifth order integration, both eliminate the false positive at

level two.

A third way is to add a function with known integral to the integrand, which has significantly

different local behavior, and to subtract its known integral from the total at the end. For example,

in the hypercube case, consider the integral

0 =

∫ 1

−1
φq(x) , φq(x) =

1

(q + x)2
− 1

q2 − 1
, (172)

which exists for any q > 1. Adding a multiple of

p
∏

ℓ=1

φq(xℓ) (173)

to the test monomial integrands does not change the expected answer, but forces the adaptive

program to start to subdivide at level 1 (for small enough ǫ) in all monomial cases. It is of

course not necessary for the added function to have an integral that can be evaluated in closed

form. In the p = 5 simplex case discussed above, we eliminated the false positive at level 2 by

numerically integrating the function (1+x(1))−1, and then adding a multiple of this function to the

integrand and subtracting its integral from the answer. When adding such an auxiliary function, it

is probably a good idea to rescale it so that its order of magnitude is similar to that of the integral

being evaluated. Clearly there is an infinite variety of such auxiliary functions that can be added
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to the integrand, each of which shifts the false positive problem to a different part of integrand

function space. Even when one is dealing with generic integrands, in which the program starts to

subdivide as expected, adding such functions will alter the pattern of subdivision, and can be used

(in addition to changing the integration formula parameters) to give further estimates of the errors

in the output values Ia,b provided by the integration algorithm.

We do not recommend just changing the integration formula parameters as a way of eliminating

false positives. The reason is that the samplings in both the simplex and hypercube cases take

place on hyperplanes that are determined by the general structure of the integration formulas,

but do not vary as the parameters in the integration formulas are changed. So if a false positive

is associated with a zero or constant integrand value on one of these hyperplanes, it will not be

eliminated by changing the parameter values. Similar remarks apply to changing the thinning

function as a way of eliminating false positives.

For related reasons we have not written into the programs another way of creating a criterion

for thinning, the comparison of results from integration programs of different orders (say, of fifth

and seventh order). In the simplex example discussed above, doing this would eliminate the

false positive, since the seventh order routine uses sampling points that avoid the problematic

hyperplanes sampled by the fifth order routine. However, in this case one may as well do two

seventh order samplings to set up the thinning condition , and thus benefit from the higher accuracy

accruing from use of the seventh order routine for smooth integrands.

XIII. DESCRIPTION OF PROGRAMS IN THE SEVEN DIRECTORIES

A. General description

The Fortran programs are grouped into 7 directories, named simplex123, simplex4, simplex579,

simplex579 16, cube13, cube579, and cube579 16. All programs are valid for arbitrary dimension

p ≥ 1

The simplex programs all perform adaptive integration over a standard simplex or a Kuhn

simplex with one vertex at the origin, using real(8) precision
(

except for simplex579 16, which

uses real(16)
)

. The programs in simplex123 perform first through third order integration, the

programs in simplex4 perform fourth order integration, and the programs in simplex 579 perform

fifth, seventh, or ninth order integration.

The same adaptive program treats both the standard and Kuhn simplex cases, with a subroutine
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argument “i init” determining which initialization is used. Included in all the simplex packages

are programs for integration over a side 1 hypercube with one vertex at the origin, by tiling with

Kuhn simplexes followed by adaptive simplex integration.

The programs in simplex4 perform fourth order adaptive integration using a different subdivision

strategy from that used in all the other cases. In simplex4 the simplex vertices are used as sampling

points, with the side midpoints giving the vertices at the next level of subdivision. In all the

other programs, only interior points of the simplex are used for sampling. Hence, the simplex4

programs cannot be used to integrate functions which have integrable singularities at the base

simplex boundary, whereas the other programs can be used in this case.

The programs in cube13 perform first or third order adaptive integration, and those in cube579

perform fifth, seventh, or ninth order adaptive integration, over half-side 1 hypercubes centered on

the origin, with real(8) precision. These programs use less memory (by roughly a factor 1/p) than

the hypercube tiling programs. The cube programs are valid for arbitrary dimension p ≥ 1.

The programs in simplex579 16 are real(16) re-writings of those in simplex579, and the programs

in cube579 16 are real(16) re-writings of those in cube579. The real(16) versions are obtained from

the corresponding real(8) programs by making the following global substitutions: (1) Replace “d0”

by “q0”, (2) replace “implicit real(8)” by “implicit real(16)”, (3) replace “dabs” by “qabs”, (4)

replace “d20.13” by “d32.36”. These changes can be made using a “replace all” utility, since the

strings that have to be modified do not occur anywhere else in the programs. Note that explicit

data type declarations that override the implicit ones are not changed.

Each directory contains a package of subprograms, labeled respectively simplexsubs123.for, sim-

plexsubs4.for, simplexsubs579.for, simplexsubs579 16.for, cubesubs123.for, cubesubs579.for, and

cubesubs579 16.for. The subroutines in these packages do not have to be accessed by the user

in normal operation of the adaptive programs. If they are accessed to alter the programs, we

strongly recommend doing several test integrals before and after the changes, to make sure they

still operate correctly. Each directory also contains a series of main program files, and each main

program file contains the main program proper, as well as a subroutine setting up the function to

be integrated, subroutines setting up the free parameters used in the parameterized integrations,

a subroutine setting up three options for the thinning function, and in the case of the Kuhn tiling

treatment of hypercubes, a subroutine symmetrizing the function to be integrated over all its vari-

ables. Each program that requires user setting of input parameters contains comment statements

giving instructions. To run the programs, the user must compile and link the subroutine package

in a directory with the appropriate main program file in the same directory.
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As noted in the section on Vandermonde solvers, all programs are self-contained, since their

subroutine packages include Vandermonde solvers that compute the explicit solution of the Vander-

monde system for the relevant values of N . Because the ninth order simplex integration routines

and associated Vandermonde equations involve large numbers in computing coefficients, use of

real(16) is recommended if one wants to get answers with real(8) accuracy. Solving the Vander-

monde equations to get the coefficient parameters for the integrations need be done only once before

adaptive integration begins; this is done in the subroutines with names beginning with “ext”, the

output of which is then fed to the integration programs that are used repeatedly in the adaptive

integration process.

There are three generic types of main programs in each directory. Those with names not ending

in “r” or “m” execute adaptive integration to a subdivision level set by the user (and limited by

machine memory). Those with names ending in “r” execute the “recirculating” routines, in which

after the first stage of subdivision, the remaining subregions are subdivided sequentially in a second

stage to a second level of subdivision set by the user. Those with names ending in “m” execute an

MPI parallel version of the “recirculating” routines, in which after the first stage of subdivision,

the remaining subregions are farmed out to the available processes for a second stage of subdivision

to the second level of subdivision set by the user.

In order to conserve memory, the labeling of simplex and cube points and the simplex subdivision

routines use a lattice built on integer(2) arithmetic. This allows 14 levels of subdivision in the initial

stage, since 214=16384, which is half the maximum integer representable in integer(2). In order

to go beyond 14 levels of subdivision in one stage, say to 30 levels of subdivision, one would have

to replace 16384 in the subroutines by 230 = 1, 073, 741, 824, which is half the maximum integer

representable in integer(4), replace all integer(2) data type declarations by integer(4), and enlarge

the level number limits in the programs. The explicit limits in the programs on the number of levels

correspond to the requirement that the minimum integer(2) lattice spacing must not be smaller

than 1, since in integer arithmetic 1/2 is replaced by 0. Program stages that pass on subdivided

regions have a limit of 14 levels, while output stages that do not pass on subdivided regions have a

limit of 15 levels. An exception to this rule is in the simplex4 programs, where there is an explicit

division by 2 in the programs, and so the corresponding limits are 13 and 14. Note that in integer(2)

arithmetic, 16384/2 + 16382/2 = 16384 6= (16384 + 16384)/2 = (−32768)/2 = −16384, which is

why in the simplex4 integration program we have not regrouped added terms into parentheses.

The recirculating and MPI programs make use of the observation that symmetric (or recursive)

subdivision of standard simplexes, symmetric and recursive subdivision of Kuhn simplexes, and
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hypercube subdivision, all give after ℓ subdivisions a subregion that fits within a hypercube of side

1/2ℓ (or 1/2ℓ−1). This observation, which is an unproved conjecture supported by our numerical

results in the case of standard simplexes, permits a doubling of the number of levels attainable

within integer(2) arithmetic in the “r” and “m” programs, as follows. At the start of the second

stage of subdivision, each subregion is translated by a shift vector and is rescaled by a factor which

expands it to just fit within the initial lattice containing base region. This permits another 15 (or

for recursive subdivision, 14) levels in the second stage
(

with corresponding limits in the simplex4

programs of 14 (or 13)
)

, and so the “r” and “m” programs can subdivide to subregions that have

a dimension 2−28 = 3.725 × 10−9 of the base region dimension. Whether this can be attained

in practice for a given dimension p of course depends on available machine memory. Subdivision

limits appropriate to the various cases have been incorporated into the main programs.

Because simplex points are represented in integer(2) arithmetic, in order to apply the simplex

subroutines to a starting simplex that does not have only 0s or 1s in the vertex coordinates (for

example, an equilateral triangle), one would have to change the integer(2) data type declarations

to real(4) for the programs to work correctly. This change increases the memory requirements, and

should not be made unless needed. We note also that with the aim of conserving memory, we have

used allocatable memory to store subregion information, allocating memory where needed at each

level of subdivision, and deallocating memory when no longer used.

Finally, we note that the MPI programs are written using only simple MPI Send and MPI Recv

commands. All processes simultaneously carry out the first stage of subdivision, and then each

process of rank greater than 0 takes its share of the remaining subregions after the first stage and

processes them further. This wastes some processor time, but avoids large data transfers. Only at

the end, when all processes of rank greater than 0 have finished, is their output combined in process

0. Because MPI can only pass real(8) numbers as messages, the real(16) MPI programs give only

real(8) output. (This is one of the reasons why the explicit real(8) declarations are not modified

in the conversion substitutions leading to real(16) programs.) Nevertheless, the MPI programs

compute the sensitive parts of the high order integrations in real(16), converting to real(8) only at

the end when process outputs are combined.

To enhance readability of the programs, we have used indents to show the different levels of

“if” chains, except in one place in the MPI programs, where we have given the “if”, “else if”, and

“end if” lines statement numbers 97,98,99. We have not indented the contents of “do” loops, since

these always begin and end with a statement number, and never with an unnumbered “enddo”.
(

The one exception to this is in the subroutine BestLex used for the symmetrization step in the
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Kuhn tiling programs for integration over hypercubes, which has been taken verbatim from H. D.

Knoble’s (1995) website.
)

This is of course a matter of taste; our feeling was that indenting both

the “if” chains and “do” loops would result in so many levels of indents that readability of the

programs would be decreased. We also remind the reader that the direct hypercube programs were

written by minimal modification of the simplex programs, changing array arguments where needed

(e.g., “ip+1” for simplexes becomes “2∗ip” for hypercubes), but not changing array names. So the

array names in the direct hypercube subroutines are not the ones that would naturally be chosen

if these programs were written without reference to the simplex case.

B. Inputs

The main programs require the following inputs to be set by the user:

1. ithinlev tells the program when to begin thinning subregions, by harvesting those that obey

the thinning condition of Eq. (160). Thinning begins when the total level number exceeds

ithin. Thus, with ithin = 0, thinning begins at level 1, while if ithin is greater than or equal

to the maximum total level number, there is no thinning.

2. ithinfun tells the program which thinning function option to use. As explained in Sec. X,

ithinfun = 1 corresponds to a thinning function f(A,B) = |A − B|, ithinfun = 2 to

f(A,B) = |A−B|/|A+B|, and ithinfun = 3 to f(A,B) = (A−B)2.

3. isubdivision tells the simplex programs whether to use symmetric subdivision (isubdivision =

1) or recursive subdivision (isubdivision = 2). This parameter does not appear in the

main programs in cube13, cube579, and cube579 16, where there is no choice of subdivision

methods.

4. iaccuracy tells the programs to use the integration program of order iaccuracy. For example,

in the simplex123 programs, to select third order accuracy one sets iaccuracy = 3, and in

the simplex 579 programs, to select seventh order integration one sets iaccuracy = 7. This

parameter does not appear in the main programs in simplex4, which uses only fourth order

integration.

5. ip gives the spatial dimension p of the simplex or hypercube being integrated over, and can

take any integer value ≥ 1. Thus, to integrate over a three dimensional cube one would set

ip = 3.
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6. eps sets the parameter ǫ appearing in the thinning condition of Eq. (160). For ithinfun=1,

this gives an absolute error criterion; to achieve a given level of relative error, one needs

a rough estimate of the value of the integral as given by outa or outb, which can be used

to readjust eps by use of Eq. (167). For nonsingular integrands, the eps value when using

ithinfun=3 should, as a first guess, be taken as the square of the eps value that one used for

ithinfun=1. Note that if ithinlev is greater than the total level number, so that thinning is

suppressed, the results are independent of the value given to eps.

7. In all programs other than the hypercube tiling program, the external function is supplied by

the user in the subroutine fcn.for. In the tiling programs, fcn.for is instead the symmetriza-

tion program for the external function supplied by the user in the subroutine fcn1.for.

8. llim sets the limit to the number of subdivisions in the programs with names not ending

in “r” or “m”. It can be any integer between 1 and 15, except in the simplex4 programs,

where the range is 1 to 14. In practice, the effective upper limit is set by machine memory.

Start with a low value of llim, and then to improve the accuracy, increase it until you get

a diagnostic saying memory has been exceeded; the value of llim one less than this is the

maximum value llim = LMAX that does not exceed memory. Since the final level l = llim

does not further subdivide, this limit is associated with the number of subregions carried

forward from level l−1 to the final level. As llim is increased the execution time will increase,

and this will also impose an effective upper limit.

9. llim1 and llim2 in the programs with names ending in “r” and “m” set the limit to the number

of subdivisions in the first and second stages of subdivision, respectively. The maximum

value of llim1 is 14 and of llim2 is 15, except in the simplex4 programs, where the respective

limits are 13 and 14, and also except for recursive subdivision, where the maximum value

of llim2 is one less than the corresponding value for symmetric subdivision. In all cases,

the built-in subdivision limits prevent the program from dividing 1 by 2, giving an integer

arithmetic answer of 0. As before, the effective upper limit will be set by machine memory

and machine execution speed. In using the “r” and “m” programs, and setting llim2 = 1, the

maximum value of llim1 that will not exceed memory is llim1 = LMAX−1, with LMAX the

corresponding maximum determined as above for the single stage program. Once LMAX

is determined, one can take any value 1 ≤ llim2 ≤ LMAX without exceeding memory.

Because of the staging, the numerical output depends only on the sum llim1 + llim2, that
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is, one is free to redistribute the computational effort between the first and second stages.

10. The parameters for the higher order integration routines are contained in the main program

files in subprograms with names beginning with “setparam”. They are given in array con-

structors, and have been preset to values indicated. The program variable names have been

chosen to roughly correspond to the symbol names in the formulas of Secs. VII and VIII.

For example, for the direct cube routines, where λ is a free parameter, it is called aalamb;

in the order 7 routine for simplex integration, λi
1 and λi

2 are the respective elements of the

array constructors alamb1 (blamb1) and alamb2 (blamb2) corresponding to the first (second)

choice of parameter values. (In the fifth order cube and simplex routines, where only one

pair of array constructors is needed, they are called alamb (blamb), even though the corre-

sponding quantity is labeled λi
1 in Secs. VIIC and IXB.) These presets can be changed by

the user to give a different sampling of the integrand in the integration subregions, subject to

the following rules: (i) The inequalities in the comment statements must be obeyed, to keep

the sampling points inside the subregion, as discussed in Secs. V and VI. (ii) The parame-

ters in each array constructor must have non-degenerate values, so that the corresponding

Vandermonde equations will be solvable. If two parameters in an array constructor are very

close, solution of the Vandermonde system will have large truncation errors, so care should

be taken to keep the parameters in each array constructor reasonably well spaced. (iii) The

“a” and “b” array constructors should have different parameter values, since these are used

to give the two different integrand evaluations used in the error estimate.

C. Outputs (and their use in making memory and running time estimates)

Program outputs (except in the MPI case) are written to a file “outdat.txt” and also appear

on the screen. In the MPI case, outputs are written to the output file specified by the system for

a “print” statement. A brief description of output labeling follows:

1. All programs write out the user-set values of ip, llim (or llim1 and llim2), eps, ithinlev,

ithinfun, isubdivision, and iaccuracy. They do not print out the values of the parameters

in the array constructors in the subprograms setparam.

2. In all programs, outa and outb give two evaluations of the integral divided by the base

region volume, corresponding respectively to the two different samplings of the integrand set

by the “a” and “b” parameters in the array constructors, and |outdiff | gives the difference
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|outa − outb|. The size of |outdiff | gives an estimate of the likely error in the answer; this

estimate can be improved by evaluating the integral with a number of different choices of the

array constructor parameters, and also by comparing the evaluations obtained using different

program options as set by the user-set inputs. As noted in Sec. XI, to get the value of the

integral without normalization by the base region volume, one must multiply outa and outb

by the base region volume V0. For a standard simplex, V0 = 1/p !, for a side 1 hypercube,

V0 = 1, while for a half-side 1 hypercube, V0 = 2p.

3. In all programs, errsum gives the sum of the absolute values of the local subinterval thinning

tests,

errsum ≡
∑

subregions

V (subregion)|f
(

Ia(subregion, Ib(subregion)
)

| , (174)

with f(A,B) the thinning function. As explained above, for the choice ithinfun = 1 this

gives an upper bound for |outdiff |, and when Ia(subregion− Ib(subregion) has uniform sign

over all subregions, errsum = |outdiff |. However, when signs are not uniform over sub-

regions, errsum for ithinfun=1 can be much larger than the actual error, as in the two

Gaussian example discussed below.

4. In all programs, l gives the level number, ind gives the number of subregions carried forward

to the next level, indmax gives the maximum value of ind encountered over the course

of the various levels that have been executed, fcncalls gives the number of function calls,

t current gives the current elapsed time in seconds at the various levels of the first stage,

and t f inal gives the total elapsed execution time in seconds. In the approximation in

which the geometric series summing the number of function calls over the various levels is

approximated by its largest term, corresponding to the highest level attained, and when

there is no thinning, fcncalls ≃ T2p(llim−1) for the single stage program, and fcncalls ≃
T2p(llim1+llim2−1) for the “r” and “m” programs, with T the appropriate function call value

from Table VI or VIII.
(

In the absence of thinning, the exact formula summing the geometric

series is fcncalls = T [2p(K+1) − 1]/[2p − 1], with K = llim− 1 for the single stage program

and K = llim1 + llim2 − 1 for the “r” and “m” programs.
)

When there is thinning, this

gives an upper bound on the number of function calls.

5. In the “recirculating” programs with main program name ending in “r”, t restart gives the

time at which the second stage is initiated, in which the subregions carried forward from the
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first stage are subdivided sequentially. During the second stage, the program will indicate

approximately when it is 10, 20, ..., 90, 100 percent finished in sequentially processing the

subregions carried forward from the first stage, by printing this information to the screen

(but not by writing it to file). In interactive mode, this permits one to gauge how long the

calculation will take to finish; if it looks like the calculation will take longer than one wishes

to wait, one can stop execution and restart with different, more tractable, parameter values.

Since these numbers are computed by integer division, the actual numbers may be 9,19,... or

other similar strings, depending on the residue modulo ten of the number of regions carried

forward. One can also estimate the total running time by multiplying t restart by the

number of subregions ind carried forward to the second stage from the final level of the first

stage, further multiplied by 2p(llim2−llim1) to correct for a difference in the first and second

stage level numbers. (Similarly, for the single stage programs, from t current and ind at

the output of any level l, the maximum running time, in the absence of thinning, to reach

the level limit llim1 is the product t current times ind, further multiplied by ep(llim1−l).)We

generally found that timing values, on a laptop, varied by one or two tenths of a second

between identical runs, so estimates of total running time become reliable only when one

has proceeded to the point where several seconds have elapsed. The final statistics include

indcount, which gives a sum of the ind values at each level of the second stage, and which

indicates the ind value that would be needed if the second stage subdivisions were carried

out in the first stage by using a larger llim1 value. Because of the staging strategy, the

maximum ind value that is required is the much smaller number indmax.

6. In the MPI programs with main program name ending in “m”, t restart is the time at the

end of the first stage when the subregions carried forward, numbering indstart in total, are

distributed to multiple processes, and fcncalls gives the number of function calls up to this

point. If t restart does not appear in the output, the program has completed execution

before entering the second stage. Since MPI programs are typically run in batch mode, no

intermediate statistics are output during the second stage, but one can make a rough estimate

of total second stage running time by multiplying t restart by the number of subregions

indstart carried forward, further multiplied by 2p(llim2−llim1) to correct for a difference in

the first and second stage level numbers, and dividing by Nprocess − 1 (process 0 serves only

as an accumulation register for the output of the remaining Nprocess − 1 processes). If this

estimate is too large, one can stop execution and restart with less ambitious parameters.
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The final statistics include indmaxprocess, which is the maximum of the final indmax over

all of the processes.

XIV. SOME SAMPLE RESULTS, AND OPEN QUESTIONS

A. Sample results

We turn now to some sample results which illustrate the capabilities of our numerical integration

programs. Our first example is one given in the paper on VEGAS of Lepage (1978), consisting

of the sum of two spherically symmetric Gaussians equally spaced along the diagonal of a cubical

integration volume,

Ip =
1

2

(

1

aπ1/2

)p ∫ 1

0
d px[e−

∑p
i=1

(x(i)−1/3)2/a2 + e−
∑p

i=1
(x(i)−2/3)2/a2 ] , (175)

with a = 0.1. In this form Ip can be evaluated by the “cubetile” programs which tile a unit

hypercube with Kuhn simplexes. In order to apply the direct hypercube “cube” programs, we

make the change of variable x = (1+ y)/2 to rewrite Ip as an integral over a half-side 1 hypercube,

Ip =
1

2

1

2p

(

1

aπ1/2

)p ∫ 1

−1
d py[e−

∑p
i=1

(y(i)+1/3)2/(4a2) + e−
∑p

i=1
(y(i)−1/3)2/(4a2)] . (176)

In his paper Lepage compares numerical evaluations of Ip for various p with a target value of

unity, which is accurate enough for his purposes. However, the programs given here are capable

of much higher accuracy with current computers, so we will need a high accuracy evaluation of Ip

for comparison purposes. We can get this by noting that the two Gaussians contribute equally to

Ip
(

to see this, set x → −x in Eq. (176)
)

, and each individual Gaussian is the pth power of a one

dimensional integral J , giving

Ip =Jp ,

J =
1

2aπ1/2

∫ 1

−1
dye−(y+1/3)2/(4a2) .

(177)

The one-dimensional integral J can be evaluated in terms of error functions or complementary

error functions,

J =
1

2
[erf
(

1/(3a)
)

+ erf
(

2/(3a)
)

] ,

=1− 1

2
[erfc

(

1/(3a)
)

+ erfc
(

2/(3a)
)

] ,

(178)
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TABLE X: Evaluation of J to 13 place accuracy using 3rd, 5th, 7th order cube routines

iaccuracy |outdiff | fcncalls t final

3 10−16 0.2× 105 < .02s

5 10−15 0.5× 105 < .02s

7 10−13 0.9× 105 < .02s

TABLE XI: Evaluation of powers of J to give expected values of Ip to 13 place accuracy

p Ip = Jp

1 0.9999987857663

2 0.9999975715341

3 0.9999963573033

4 0.9999951430740

5 0.9999939288462

6 0.9999927146199

7 0.9999915003951

8 0.9999902861717

9 0.9999890719498

but it can also be evaluated numerically to 13 digit accuracy by running the “cube” program to

a depth of twelve total levels. Running the “r” version of the programs with parameter values

ip = 1, llim1 = 5, llim2 = 7, ithinlev = 12 (no thinning, which makes the results independent of

eps and ithinfun), and iaccuracy = 3, 5, 7, we get from all three runs the result

J = 0.9999987857663 . (179)

The statistics for running time (on a MacBook Pro) and the number of function calls for these

runs are given in Table X. Running with iaccuracy = 1 gave only 10 place accuracy with 12

levels, but gave 13 place accuracy when 20 levels were used (which took about a second, rather

than hundredths of a second). Thus, for this calculation iaccuracy = 3 is the most cost-effective

program.

Running a program to raise J to powers then gives the expected results for Ip given in Table

XI, with an uncertainty of 1 in the final decimal place.

We give in Table XII results for dimensions p = 2, 3, 4, and 5 as obtained from the “r” version

of the programs on a laptop, and in Table XIII for p = 7, 9 as obtained by running the “m” version

on a 64 process cluster. (Laptop runs were done on a MacBook Pro and an older Dell Inspiron, and

for the latter, the timings were rescaled by a factor 0.49 to give timings for a MacBook Pro. We
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made cluster runs with 128 or 64 processes, and for the former, we rescaled the running time to that

for 64 processes. We invite the reader to compare the running times and accuracies summarized

in Tables XII and XIII with those that can be obtained from other integration programs.) For

all of these runs, where thinning was used, we took ithinfun = 1. “Place accuracy” indicates

the decimal place where differences first appear from the 13 place result in Table XI. To within

an order of magnitude, this agrees with the difference |outdiff| between the two evaluations of the

integral given by the program. The values of errsum for these integrals (not shown) were typically

one to three orders of magnitude larger than both |outdiff| and the actual error, indicating that

the local subinterval errors do not all have the same sign. Since |outdiff| can be smaller than the

actual error, for an unknown integral it cannot be taken as giving the error; in this case the best

way to estimate the error is to run the program with different choices of program options and to

use the spread of results to estimate the error.

From Tables XII and XIII, we see that a minimum of 5 levels is needed to get good accuracy for

the double Gaussian example. With 5 levels, the smallest hypercube side is 1/32 = 0.03125, small

enough to resolve the double Gaussian characteristic scale of 0.1 in good detail. On the other hand,

with only 4 levels, the minimum side is 1/16 = 0.0625, making it harder to resolve a scale of 0.1 and

limiting the accuracy to 4 significant figures. Most of the cluster runs were done without thinning,

and thus should characterize the accuracy attainable for any function on a unit hypercube with

a characteristic scale length of 0.1. For serial runs done with thinning (Table XII), the reduction

in running time was proportional to the reduction in number of function calls, and ranged from a

saving in the range 30% to a factor of 3.5, for values of ǫ which yield the same or one place less

accuracy as when there is no thinning. For parallel cluster runs done with thinning (Table XIII),

the reduction in running time is considerably less than the reduction in number of function calls.

This arises from the fact that even though the program initially distributes subregions to processes

using a shuffling routine that assigns adjacent subregions in the stack to different processes, some

processes get subregions (like ones near the Gaussian peak) that are “hard” and so take longer to

finish, as compared with processes that get “easy”, readily thinned regions near the Gaussian tails.

Consequently, since the final time t f inal records the time when all processes have finished, it is

not reduced by thinning in proportion to the number of function calls.

From Tables XII and XIII, we see that thinning with a value of ǫ equal to the error level in the

runs with no thinning leads, in the double Gaussian examples, to a reduction in accuracy. This

reflects the fact that in the double Gaussian case, errsum is typically 2 to 3 orders of magnitude

larger than |outdiff|, indicating that the local errors are not of constant sign, and also errsum is 2
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to 3 orders of magnitude larger than ǫ, indicating that the local thinning condition is not satisfied

in all subregions. When local subregion errors alternate in sign and the thinning condition is not

uniformly obeyed, there can be cancelations of errors in the output integrals, leading to improved

accuracy and a smaller |outdiff|, but thinning can then reduce the degree of cancelation and

reduce the accuracy. Finally, we note that the 6 level run with iaccuracy = 9 did not give as

many significant figures as the corresponding run with iaccuracy = 7; we believe this is due to

the increased truncation errors associated with running the ninth order routine. The cluster which

we used was more than an order of magnitude slower in running quadruple precision
(

real(16)
)

as

opposed to double precision
(

real(8)
)

code, so it was not feasible for us to investigate this further

by repeating the ninth order 6 level run in quadruple precision. (We did, however, test in quadruple

precision that the ninth order routines integrate polynomials of ninth degree or lower to within

expected truncation errors.)

We also studied the double Gaussian example using the “cubetile” programs. These integrate

over a unit hypercube by integrating, over a single Kuhn simplex, the symmetrized function that

sums over corresponding points of a Kuhn tiling of the hypercube. Results for this study are

given in Table XIV. Because of the p ! symmetrization factor in the number of function calls, the

“cubetile” programs take longer to run than the “cube” programs for a corresponding number

of subdivision levels. Because tiling of a hypercube with Kuhn simplexes does not reduce the

subregion side length, the p ! increase in number of subregions does not compensate for insufficient

resolution when the attainable level number is not large enough. This can be seen from the results

in Table XIV. For p = 5, where 5 levels can be run on the cluster in reasonable time, significantly

better results are obtained from a 5 level “cubetile” run than are obtained from a 5 level “cube”

run, at the price of a factor of 120 more function calls. However, for p = 7 it was not possible to

do a 5 level calculation in reasonable cluster running time, so we had to settle for 4 levels, which

as we saw above has insufficient resolution to give very high accuracy for the double Gaussian test

problem. The “cubetile” results in this case are better than the 4 level “cube” results, reflecting

the factor of 5040 more function calls, but the 6 place accuracy achieved is not as good as what

can be achieved, in less running time, by using the “cube” program with 5 levels. We conclude

that the “cubetile” programs become significantly less useful as the dimension p increases, because

of the p ! symmetrization factor necessitated by Kuhn tiling.

Our next two examples illustrate results obtained from the “simplex” programs to evaluate

integrals over a standard simplex. For our first example, we consider an integral based on the
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TABLE XII: Double Gaussian results using the “cube” program for ip ≡ p =2 ,3 ,4 ,5 ,7 (timings for

MacBook Pro); levels ≡ llim1 + llim2 and “place accuracy” compares to Table XI

ip iaccuracy levels ithinlev eps t final fcncalls (outa+ outb)/2 |outdiff | place accuracy

2 3 10 no thinning – 1.2s 0.31× 107 0.9999975715340 0.4× 10−12 13

2 5 10 no thinning – 3.4s 0.94× 107 0.9999975715339 0.3× 10−14 13

2 5 10 2 10−13 2.1s 0.59× 107 0.9999975715340 10−14 13

2 7 10 no thinning – 8.5s 0.24× 108 0.9999975715342 0.5× 10−12 13

2 7 10 2 10−13 2.4s 0.68× 107 0.9999975715342 0.4× 10−12 13

3 3 7 no thinning – 1.7s 0.39× 107 0.999996358 0.2× 10−8 9

3 3 9 2 10−13 72s 0.18× 109 0.999996357305 0.9× 10−11 12

3 5 7 2 10−9 2.8s 0.71× 107 0.999996356 0.3× 10−10 9

3 5 7 2 10−13 4.1s 0.11× 108 0.99999635730 0.2× 10−10 11

3 5 9 2 10−13 190s 0.48× 109 0.9999963573032 0.3× 10−13 13

3 7 7 2 10−12 13s 0.32× 108 0.9999963573033 0.5× 10−12 13

4 3 7 2 10−9 55s 0.12× 109 0.999995143 0.3× 10−8 9

4 5 7 2 10−13 310s 0.71× 109 0.99999514305 0.4× 10−10 11

4 7 5 2 10−7 3.7s 0.83× 107 0.99999510 0.3× 10−8 8

4 7 6 2 10−13 90s 0.20× 109 0.99999514308 0.2× 10−10 11

5 3 5 2 10−13 6.4s 0.14× 108 0.9999940 0.7× 10−6 7

5 3 6 2 10−13 170s 0.37× 109 0.99999394 0.5× 10−7 8

5 5 5 no thinning – 49s 0.10× 109 0.99999386 0.2× 10−6 7

5 5 5 2 10−13 29s 0.63× 108 0.99999386 0.2× 10−6 7

5 7 5 no thinning – 240s 0.50× 109 0.99999393 0.1× 10−7 8

5 7 6 2 10−9 1700s 0.34× 1010 0.999993926 0.3× 10−10 9

7 3 5 no thinning – 6100s 0.78× 1010 0.999992 0.9× 10−6 6

7 3 5 2 10−9 840s 0.11× 1010 0.999991 0.9× 10−6 6

7 5 5 2 10−9 3500s 0.62× 1010 0.999991 0.2× 10−6 6

7 7 4 no thinning – 1200s 0.21× 1010 0.9997 0.4× 10−2 3

7 7 4 2 10−9 340s 0.60× 109 0.9995 0.4× 10−2 3

Feynman-Schwinger formula of Eq. (32), with D0 = 1 and D1 = ... = Dp = a,

1

ap
= p !

∫

standard simplex

1

[1 + (a− 1)
(

x(1) + ...+ x(p)
)

]p+1
. (180)

Taking a = 0.1 (and for p = 5, also a = 0.01) gives an integral that is sharply peaked on the

diagonal hyperplane 1 = x(1) + ...+ x(p) bounding the simplex. Results for this integral obtained

from the “m” version of the program, with symmetric subdivision and no thinning on a 64 process
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TABLE XIII: Double Gaussian results using the “cube” program for ip ≡ p =7, 9 from a 64 process cluster;

levels ≡ llim1 + llim2 and “place accuracy” compares to Table XI

ip iaccuracy levels ithinlev eps t final fcncalls (outa+ outb)/2 |outdiff | place accuracy

7 3 5 no thinning – 11s 0.78× 1010 0.999992 0.9× 10−6 6

7 5 5 no thinning – 120s 0.44× 1011 0.9999913 0.5× 10−6 7

7 7 5 no thinning – 760s 0.27× 1012 0.99999150 0.3× 10−7 8

7 1 6 no thinning – 2900s 0.52× 1012 0.999993 0.4× 10−6 6

7 3 6 no thinning – 4300s 0.10× 1013 0.9999915 0.8× 10−7 7

7 5 6 no thinning – 17000s 0.56× 1013 0.99999150 0.9× 10−8 8

7 7 6 no thinning – 98000s 0.35× 1014 0.9999915003 0.1× 10−9 10

7 7 6 2 10−10 37000s 0.37× 1013 0.99999148 0.1× 10−9 8

7 9 5 no thinning – 4000s 0.14× 1013 0.99999144 0.6× 10−7 8

7 9 6 no thinning – 510000s 0.18× 1015 0.99999148 0.1× 10−7 8

9 3 5 no thinning – 7500s 0.25× 1013 0.999989 0.1× 10−5 6

9 5 5 no thinning – 49000s 0.17× 1014 0.9999888 0.8× 10−6 7

9 7 5 no thinning – 380000s 0.13× 1015 0.99998907 0.7× 10−7 8

9 7 5 2 10−8 100000 s 0.52× 1013 0.9999885 0.7× 10−7 7

TABLE XIV: Double Gaussian results using the “cubetile” program with symmetric subdivision, for ip ≡
p =5, 7 from a 64 process cluster; levels ≡ llim1 + llim2 and“place accuracy” compares to Table XI

ip iaccuracy levels ithinlev eps t final fcncalls (outa+ outb)/2 |outdiff | place accuracy

5 7 5 no thinning – 73s 120× 0.27× 109 0.999993928884 0.7× 10−11 12

7 7 4 no thinning – 12000s 5040× 0.93× 109 0.999988 0.1× 10−5 6

cluster, are given in Table XV. “Place accuracy” indicates the decimal place where differences first

appear from the exact answer a−p, and this correlates well with the difference |outdiff| between
the two evaluations of the integral given by the program. The values of errsum for these integrals

(not shown) were nearly identical to |outdiff|.
As our second simplex example, we consider the polynomial integral

(

c.f. Eq. (169)
)

2p+1

(3p + 2)(3p + 1)...(p + 2)(p + 1)
= p !

∫

standard simplex
[1− x(1)− ...− x(p)]2

p
∏

i=1

x(i)2 , (181)

which is strongly suppressed at all the vertices of the simplex. Running a program to evaluate the

exact answer for this integral on the left hand side of Eq. (181), and then evaluating the integral

on the right on a laptop using the “simplex” programs, gives the results in Table XVI.
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TABLE XV: Feynman-Schwinger integral for ip ≡ p = 5, 7, 9 from a 64 process cluster, with no thinning;

levels ≡ llim1 + llim2 and “place accuracy” compares to the exact answer a−p

ip a iaccuracy levels t final fcncalls (outa+ outb)/2 |outdiff | place accuracy

5 0.1 7 5 0.39s 0.27× 109 0.99998× 105 0.3 5

5 0.01 7 9 52000s 0.22× 1014 0.999998× 1010 0.3× 104 6

7 0.1 7 5 160s 0.12× 1012 0.99995× 107 0.2× 103 5

7 0.1 7 6 20000s 0.15× 1014 0.9999995× 107 2. 7

9 0.1 7 5 56000s 0.48× 1014 0.9999× 109 0.3× 105 4

TABLE XVI: Polynomial integral for ip ≡ p = 4, 5 (timings for a MacBook Pro); levels ≡ llim1 + llim2

and “place accuracy” compares to the exact answer on the left hand side of Eq. (181)

ip iaccuracy levels t final fcncalls (outa+ outb)/2 exact answer |outdiff | place accuracy

4 5 6 8.7s 0.63× 108 0.88095326× 10−8 0.8809532619056× 10−8 0.1× 10−17 8

4 5 8 2200s 0.16× 1011 0.880953261905× 10−8 0.8809532619056× 10−8 0.3× 10−21 12

5 7 5 39s 0.27× 109 0.21591990× 10−10 0.2159199171337× 10−10 0.2× 10−18 8

5 7 6 1300s 0.86× 1010 0.2159199171× 10−10 0.2159199171337× 10−10 0.7× 10−21 10

As our final example, we consider the 1 dimensional singular integral
∫ 1

0
dx

1√
1− x2

= π/2 ≃ 1.57079633 . (182)

In Table XVII we give results for this integral using the “r” version of the “cube” program, with

p = ip = 1, llim1 = 14 and llim2 = 15 (that is, using the maximum allowed number of levels),

iaccuracy = 5, ithinlev = 0 (that is, thinning starts at the outset), and eps = 10−10, as a function

of the choice of thinning function ithinfun. We see that in this case, ithinfun = 3 gives the

fastest evaluation, with ithinfun = 2 next fastest and ithinfun = 1 the slowest. This differs from

the double Gaussian examples, where ithinfun = 1 gives better results than either ithinfun = 2

or ithinfun = 3.

B. Programming extensions and open questions

There are a number of possible extensions of the programs that could be pursued in the future.

(1) The MPI version of the programs could be rewritten to include redistribution of the process

workload after each level ℓ of the second stage. This would make the reduction in running time

when using thinning track more closely with the reduction in the number of function calls. (2) The

multistage strategy could be extended to a third (or more) stages, by not harvesting the subregions
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TABLE XVII: Evaluation of a one dimensional singular integral with different thinning functions. Running

times were all less than 0.1s; “place accuracy” compares to the exact answer

ithinfun fcncalls (outa+ outb)/2 |outdiff | place accuracy

1 0.24× 106 1.570778 0.35× 10−5 5

2 0.13× 105 1.570778 0.35× 10−5 5

3 0.45× 104 1.570777 0.43× 10−5 5

that fail to obey the thinning condition at the end of the second stage, but instead writing them

to a memory device which is then read sequentially by a third stage, etc. (3) One could build

in an option of permuting the simplex vertices at the start of the simplex programs, which gives

a different subdivision, and therefore a different evaluation of the integral for use in estimating

errors. (4) Finally, we remark that the same subdivision, thinning, and staging strategies that we

have used will apply with any integration formulas that give two different estimates of the answer

from each subregion, not just the parameterized moment fitting formulas that we developed in

Secs. VII and IX.

There are also a number of mathematical questions that we have left open. (1) We found

numerical evidence that symmetric subdivision of a standard simplex obeys the bound of Eq. (46)

for reduction of side length, and that after ℓ symmetric (recursive) subdivisions, the resulting

subsimplexes each fit within a hypercube of side 1/2ℓ (1/2ℓ−1). We do not have a proof of these

conjectures, but have assumed them true in constructing the programs. (2) Given the regularities

in the construction of parameterized fifth, seventh, and ninth order integration formulas for the

simplex and hypercube cases, it would be of interest to try to find a general all-orders rule for

these. (3) We have not addressed the question of analytic error estimates for the parameterized

integration formulas. (4) We have not addressed in any systematic way the question of deciding

which thinning function is optimal for a given choice of integrand. (5) It would be of interest

to study the systematics, in the moment fitting method, of the tradeoff between the number of

parameters that are fixed by appropriate conditions, and the number of function calls.
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XVII. CONTENTS OF PROGRAMS IN DIRECTORIES

Each file listed in this summary contains multiple programs, each of which begins with comment

lines describing its function.

• The simplex programs take as base region the standard simplex of Eq. (30).
(

When used as

part of the cubetile programs, the base region is the Kuhn simplex of Eq. (37).
)

• The cubetile programs take as base region the side 1 hypercube of Eq. (39).

• The cube programs take as base region the half-side 1 (i.e., side 2) hypercube of Eq. (47).

• The numbers after simplex or cube indicate the integration orders that are included.

A. Directory simplex123

This directory contains:

• The subprogram file simplexsubs123.for.

• Main program files simplexmain123.for, cubetilemain123.for.

• Recirculating main program files simplexmain123r.for, cubetilemain123r.for.

• MPI parallel main program files simplexmain123m.for, cubetilemain123m.for.

B. Directory simplex4

This directory contains:

• The subprogram file simplexsubs4.for.

• Main program files simplexmain4.for, cubetilemain4.for.

• Recirculating main program files simplexmain4r.for, cubetilemain4r.for.

• MPI parallel main program files simplexmain4m.for, cubetilemain4m.for.



82

C. Directory simplex579

This directory contains:

• The subprogram file simplexsubs579.for.

• Main program files simplexmain579.for, cubetilemain579.for.

• Recirculating main program files simplexmain579r.for, cubetilemain579r.for.

• MPI parallel main program files simplexmain579m.for, cubetilemain579m.for.

D. Directory simplex579 16

This directory contains:

• The subprogram file simplexsubs579 16.for.

• Main program files simplexmain579 16.for, cubetilemain579 16.for.

• Recirculating main program files simplexmain579 16r.for, cubetilemain579 16r.for.

• MPI parallel main program files simplexmain579 16m.for, cubetilemain579 16m.for.

E. Directory cube13

This directory contains:

• The subprogram file cubesubs13.for.

• Main program file cubemain13.for.

• Recirculating main program file cubemain13r.for.

• MPI parallel main program file cubemain13m.for.

F. Directory cube579

This directory contains:

• The subprogram file cubesubs579.for.
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• Main program file cubemain579.for.

• Recirculating main program file cubemain579r.for.

• MPI parallel main program file cubemain579m.for.

G. Directory cube579 16

This directory contains:

• The subprogram file cubesubs579 16.for.

• Main program file cubemain579 16.for.

• Recirculating main program file cubemain579 16r.for.

• MPI parallel main program file cubemain579 16m.for.
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