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ABSTRACT 

Recently the “bag of words” model becomes popular in the 
approaches to object recognition. These approaches model 
an image as a collection of local patches called “visual 
words”, and recognize objects in the image through 
inferring latent topics associated with the set of visual words.  
In this paper, we apply an extension version of Pachinko 
Allocation Model (PAM) [5] to object recognition. Our 
PAM based approach models the correlation-ship of latent 
topics explicitly in a hierarchical structure. To relax the 
independent assumption for visual words and refine the 
topic inferring, we incorporate the prior knowledge of co-
occurrence dependence among visual words into PAM. 
Highly competitive recognition results on both Caltech4 and 
Caltech101 datasets show the proposed approach is more 
expressive and discriminative than most existing methods of 
object recognition. 

Index Terms— object recognition, “bag of words”

1. INTRODUCTION 

Object recognition is a challenging issue in computer vision. 
Even rigid objects in the same category may take on very 
different appearances, due to variable lighting, affine or 
projective transformation, occlusion, and clutter, etc.  In 
recent years, approaches to object recognition based on the 
“bag of words” model become very popular. The related 
approaches follow a same general framework: firstly, a 
stable keypoint detector is used to identify informative local 
patches; secondly, discriminative descriptors are calculated 
for these local patches; thirdly, each descriptor is quantized 
into a discrete visual word; finally, an effective learning 
technique is exploited to model the mapping between object 
categories and the set of visual words. 

The “bag of words” representation of an image makes 
the researchers of object recognition easily benefit from 
successful paradigms in natural language processing (NLP). 
Recently some important works [1,2 ] in object recognition 
motivate its popularity. Sivic et.al. [1] apply the model 
Probabilistic Latent Semantic Analysis (pLSA) used in the 
statistical NLP to discover object categories. Li Feifei et.al. 

[2] present a Bayesian hierarchical model based on Latent 
Dirichlet Allocation (LDA) to classify natural scenes. Both 
methods assume: each visual word in an image arises from a 
mixture of topics; topics are shared by all images in a 
collection; topic proportions are image-specific and 
randomly drawn from a certain distribution. Probabilities of 
visual words as well as the latent topics are learned in a 
statistical manner. Inter-relationships among the visual 
words are ignored and topics are assumed to be independent 
with each other. 

Some researchers model object categories by adding 
correlation information among visual words. Fergus et.al.[3] 
present a new model TSI-pLSA that integrates relative 
location information into the pLSA model to learn object 
categories. Gang Wang et.al. [4] extend Hierarchical 
Dirichlet Process (HDP) by taking account of co-occurrence 
of visual words. The HDP captures topic correlation defined 
by nested data structure, but it can not automatically 
discover correlations from un-structured data. These 
methods above discover the topic distribution by capturing 
correlations among visual words, but they fail to directly 
model correlation of topics. 

Correlated topics are common for visual data in real 
world (e.g. cars and streets). Ignoring topic correlations may 
hamper coherent topics discovery. In this paper, we propose 
a new approach to object recognition based on dependent 
PAM (DPAM), which captures topics correlation explicitly 
from dependent visual words. 

2. OBJECT RECOGNITION BASED ON DPAM 

Our approach also uses the “bag of words” representation of 
images and follows the general framework for object 
recognition. In the four-level PAM as depicted in Fig.1, a 
sub-topic is assigned to each visual word of an image, and a 
super-topic which explicitly models the correlation among 
sub-topics is assigned to each sub-topic. All the super-topics 
share a same root. This multi-level directed acyclic graph 
(DAG) structure is called Pachinko Allocation Model(PAM) 
[5] in text processing. Inspired by [4], we incorporate some 
prior knowledge of co-occurrence dependence among visual 
words into the PAM to better model a generating process of 
an image. In the following subsection, we will introduce the  
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Fig1. Hierarchical topic structure.       Fig.2. Graphical model for DPAM 

details of our model DPAM, the parameter estimation 
algorithm and the object recognition algorithm. 

2.1. Dependent Pachinko Allocation Model 
In our model, each visual word is denoted by an integer 

{1, 2,..., }w W , which corresponds to  the index of the 
visual word in a visual vocabulary V. An image d is a 
collection of Nd visual words, i.e. 1 2( Ndd w ,w ,...w ,
where wi is the ith visual word of the image d. A corpus D is
a collection of I images of the same object class, denoted 
as 1 2{ , ,... }ID d d d .

Dependent Pachinko Allocation Model (DPAM) is a 
four level hierarchical structure composed of one root topic, 
s1 super-topics at the second level, s2 sub-topics at the third 
level and visual words as leaves. Parent nodes in the upper 
level are fully connected with child nodes in the lower level. 
It means that sub-topics are shared among different super-
topics, and visual words are shared among different sub-
topics. Fig. 2 shows the graphical model of DPAM. The 
multinomial distributions of the root topic and super-topics 
are sampled individually for each image from a single 
Dirichlet distribution ( )i ig , where i is a vector with the 
same dimension as the number of children in root topic or 
super-topic. For simplification, the multinomial 
distributions for sub-topics are sampled once for the whole 
corpus from a single Dirichlet distribution ( )g , where is
a vector of W dimensions. ( )g can be thought as a 
mixture model for all visual words, while ( )i ig acts as a 
mixture model for all sub-topics in different images. 
According to the standard PAM [5], an image d is generated 
by the following process: 

1. Sample
0 1 1 2, ,..., ( 1 )s

d d d
t t t s s s from

1 10 0 1 1( ), ( ),..., ( ), ( )s sg g g g , where i
d

t is a 

multinomial distribution of topic it over its children. 
2. For each visual word w in an image d,
a) Sample a topic path 0 1 2, ,w w w wz z z z . 0

wz is

always the root  topic 0t . 1
wz and 2

wz correspond to 

a super-topic and a sub-topic respectively. w
iz , as a 

child of 1
w
iz , is sampled according to the 

multinomial distribution 
1

w
i

d
z

b) Sample the word w from
2
w

d
z .

Following this process, the joint probability of 
generating an image d, the topic assignments dz , and the 
multinomial distribution d can be calculated by: 
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Integrating out d and summing over dz , we can get the 
marginal probability of a document ( | , )P d . The 
probability of generating the corpus D is calculated by: 

1

( | , ) ( | , )
I

i
i

P D P d                      (2) 

Since the visual words with high dependence may share 
the same semantic meaning in the real world. To relax the 
independent assumption for visual words in standard PAM 
and refine the topic inferring, we extend PAM through 
introducing a prior knowledge of the co-occurrence 
dependence among visual words. A dependence structure C
is introduced at the stage of topic sampling, so that the co-
occurrence visual words in an image tend to share the same 
topic.

1
( | )w

k

w d
k z

P z (k = 1, 2) in (1) is replaced 

by
1

( | , )w
k

w d
k wz

P z C , and we have 

1 1
' ( ), '

( | , ) ( | ) (1 ( , '))w w
k k w

k

w d w d
k w kz z

w A z w w

P z C P z C w w     (3) 

where wC  represents the dependence between the visual 
word w and the others in the vocabulary V. ( )w

kA z is the set 
of visual words that have been assigned with the topic w

kz .
The dependence coefficient ( , ')C w w  which captures the 
co-occurrence of two visual words w and 'w  is defined as  

2 ( , ')( , ')
( ) ( ')

( , ') ( , ')                
( ) ( ') ( ) ( ')

Frq w wC w w
Frq w Frq w

Frq w w Frq w w
Frq w Frq w Frq w Frq w

   (4)

( , ')Frq w w  is the number of times that  w and 'w  appear in 
a same image. ( )Frq w  denotes the number of times that w
appears in the corpus.  is a constant slightly bigger than 
1.0. The last two terms in (4) are penalty factors. 

2.2. Parameter estimation with Gibbs sampling 

Now we show how to train a DPAM for an object category. 
Our goal is to obtain the probabilities ( | )P w z  of visual 
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words conditioned on different sub-topics and the sub-
topics distribution ( )P z  for each object class. Given a 
corpus of images from the same class, for each visual word 
w in an image d, the joint probability of a super-topic and 
sub-topic is estimated by 

1 2( , | , , , , )w w
k p w wP z t z t d z C

00
1

' , ' 00
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' , '

1 1
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    (5) 

where kt  and pt correspond to the super-topic and sub-topic 

assignments respectively for w, and wz is the topic 
assignments for all the visual words except w. Excluding the 
current visual word w, d

xn is the number of occurrences of a 

topic xt  in the image d; d
xyn  is the number of occurrences 

that a topic yt  is sampled from its parent xt  in d. xn  is the 

number of occurrences of sub-topic xt  for the whole corpus;

xwn is the number of occurrences of the word w in the topic 

xt  for the whole corpus. xy is the yth component of x ,
and w is the wth component of . The first and the second 

ratio in (5) express the probabilities of super-topic kt  and 

sub-topic pt  in d respectively. The last ratio expresses the 

probability of w under sub-topic pt . The first and the third 
term are dependent correction factors. For simplicity, we 
update x and xy after each iteration by moment matching, 
and the related details refer to [5]. 

2.3. Object recognition Based on DPAM 

Given an image ' ' '
1 2 '' ( , ,..., )Ndd w w w , the probability of an 

object class c is 
( | ') ( ' | ) ( ) ( ' | )P c d P d c P c P d c              (6) 

We use equal probability for ( )P c here, since we have no 
knowledge about the distribution of object classes. Through 
learning, we obtain a DPAM for each object class c. Based 
on the DPAM for c, ( | , )P w z c and ( | )P z c can be 
evaluated, where z denotes sub-topic. Then we have:  

2
' '

11 1

( ' | ) ( | ) ( ( | , ) ( | ))l l

Nd Nd S

i i
li i

P d c P w c P w z c P z c (7)                

The object class with the highest likelihood ( ' | )P d c is
regarded as the final recognition result. 

3. EXPERIMENTS 

We evaluate our method on two popular datasets Caltech 4 
and Caltech 101. Two keypoint detectors, saliency [6] and 
DoG[7] are used to locate interesting regions. Each region is 
characterized by a 72 dimensional SIFT descriptor. Through 
the K-means algorithm, we obtain a codebook of visual 
words with 800 entries. In sampling procedure, is set to 
1.05. Each entry of 0 is set to 0.1, and each entry of  is 
set to 0.01. 

3.1. Exp.1: Caltech 4 

For the Caltech 4 dataset, we randomly select 100 images 
from each object class for training and test. Four super- 
topics and ten sub-topics are chosen in both PAM and 
DPAM. The related experimental results are summarized in 
Table 1. The experiment shows DPAM has a better overall 
performance 97.75% than PAM (96.5%). Introducing the 
dependence of visual words is effective. The competitive 
performance obtained in our comparison experiments with 
[2, 4, 8] (see in Fig.3) also demonstrates DPAM is an 
effective modeling approach for object recognition. 

Table1. The confusion matrix of PAM and DPAM for Caltech 4 dataset.

The rows denote the ground-truth category labels. The columns denote 
classification results. For a/b in each grid, a: the performance of PAM,  
b: the performance of DPAM.
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          Fig.3. Performance comparison between DPAM and [2, 4, 8].

3.2. Exp.2: Caltech 101 

We further evaluate our model on more object classes based 
on the Caltech 101 dataset. 30 images are randomly selected 
from each class for training. Other settings are the same as 
Exp.1. An illustration is given in Fig.4 to show the power of 
DPAM in capturing the correlation-ship among multiple 
sub-topics, where each circle corresponds to a super-topic 
learned in car side category, and each box corresponds to a 
sub-topic. The number on the edge corresponds to xy for
super-topic x and sub-topic y.   

 Airplane Face Leopard Motorbike
a. 95.0/97.0 4.0/3.0 0/0 1.0/0 
f. 0/0 99.0/99.0 0/0 1.0/1.0 
l. 1.0/0 3.0/1.0 93.0/96.0 3.0/3.0 
m. 1.0/1.0 0/0 0/0 99.0/99.0 

Airplane     Face          Leopard       Motorbike
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Fig.4. An illustration of  correlated sub-topics captured by DPAM. 

For each super-topic x, we only show the sub-topics whose 
Dirichlet parameter xy is bigger than 1.0. For each sub-
topic, top five visual words with biggest ( | )P w z weight are 
shown in the box. We can see that all super-topics share the 
same sub-topic in the middle, which is prominent in car side 
category. 

We also compare the performances of our approach 
with other methods recently published on Caltech 101 
dataset in Fig.5. It shows the result of our approach is one of 
the best reported results on the Caltech 101 dataset. 
Compared with the methods [2, 4] based on latent topics 
and “bag of words” model, our method achieves significant 
improvement. It shows that modeling correlation of topics 
and dependence of visual words jointly is helpful for latent 
topic analysis in object recognition. Compared with other 
methods, the performance of DPAM is improved sharply as 
the number of training images increases. One possible 
explanation is that topics correlation and dependence of 
visual words can be modeled more accurately if more 
training images are used, and it helps to better model object 
categories. This phenomena has also been noticed in [4]. 
When the number of training images for each object class 
reaches 30, DPAM obtains a performance of 64.8%. 
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Fig.5. Performances of DPAM and other recent methods

4. CONCLUSION 

In this paper, we present a new approach to modeling object 
categories based on an extension of PAM model, i.e., 
DPAM. Our approach adopts more realistic assumptions for 
generating images and models the correlation of latent 

topics in images explicitly. Our experiments demonstrate 
the DPAM has a better modeling power to the issue of 
object recognition through considering the dependence 
among visual words. The competitive experimental results 
obtained on the Caltech 4 and Caltech 101 datasets show 
that our object recognition approach based on DPAM is 
very effective, and it is expected that DPAM can model 
object categories more accurately when more training 
images are available for each object category. 
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