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Abstract

In this paper we analyzed dependencies in commodity markets investigating corre-
lations of future contracts for commodities over the period 1998.09.01 - 2007.12.14.
We constructed a minimal spanning tree based on the correlation matrix. The tree
provides evidence for sector clusterization of investigated contracts. We also stud-
ied dynamical properties of commodity dependencies. It turned out that the market
was constantly getting more correlated within the investigated period, although the
increase of correlation was distributed nonuniformly among all contracts, and de-
pended on contracts branches.
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1 Introduction

Commodity markets are in their origins the prime and the most basic mar-
kets rooted in times when people were exchanging goods even before money
was invented. Today’s commodity markets are mature and highly developed
institutions, playing a very important role in modern economy. They are not
only places of goods exchange, but also a theater of speculative activity.

Nowadays, when we are used to highly sophisticated financial instruments,
including credit derivatives, contracts for other contracts for some artificial
underlying instruments, etc., commodities seem to be rather old-fashioned.
Yet, they remain important, not only due to their being primary raw materials
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for other stages of economic activity, but also because they can be a reliable
measure of value, especially in times of crisis or other historical turbulence.

Commodities, traded at free markets, follow the rules of the efficient market
hypothesis [1], the same as stocks, currencies, and others. Changes of their
prices are, therefore, random and in major part unpredictable. A model which
reflects this property is the geometric Brownian motion of prices, the core of
the Black-Scholes theory [2]. However, real prices of financial assets deviate
from the Brownian behavior, what has been clearly shown by investigations
using different tools of econophysics. The autocorrelation function of the ab-
solute returns decays as a power law with an exponent −0.3 [3]. The returns
are weakly correlated [2,4] and show persistent behavior of their sign [5,6]. All
those observations for stock markets should be also in general valid for com-
modity markets, despite observed differences such as a spatial arbitrage effect
[7], or different multifractal properties [8]. Matia et al. [9] showed also that
the prices of commodity futures obey a different scaling law from the prices
of spots. The former are more similar to stocks in this aspect.

It is well known that stocks of different firms are mutually correlated in a way
that cannot be totally explained by the random matrix theory [10,11,12,13].
The correlation coefficients of stock price returns can be used to obtain a
minimal spanning tree and associated with it a hierarchical tree of the sub-
dominant ultrametric space, which was done by Mantegna [14]. He detected
grouping of firms of a similar profile in the minimal spanning tree. This effect
can be reproduced neither by the random model of uncorrelated time series,
nor by the one-factor model [15].

In this paper we analyzed cross-correlations in commodity markets. We cre-
ated the correlation matrix and corresponding correlation-based metric. Using
the correlation metric we created a minimal spanning tree of investigated con-
tracts, looking for sector clusterization. We also examined dynamic properties
of correlations, finding out that commodity contracts were getting more and
more correlated, and mean distances in a corresponding minimal spanning tree
were smaller and smaller in the course of time. However, individual contracts
contributed to the increase of mean correlation differently. Their idiosyncratic
contribution to the correlations was characterized by an introduced quantity
(strength) and its evolution.

The motivation for our research was a growing interest of investors and mass
media in commodity markets. Skyrocketing oil prices were expected to reach
the level of 200 USD per barrel during one week, and went down under 100
USD during another. We wanted to investigate the behavior of the commodity
markets with the tools of complex system physics. We found the mirroring of
the specific situation of last years in a time dependent picture of commodity
prices correlations.
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2 The data

We investigated 35 future contracts for commodities traded at different mar-
kets. Futures rather than spots were examined as the data were more accessi-
ble.

We used data from: Chicago Board of Trade (CBOT), Chicago Mercantile
Exchange (CME), IntercontinentalExchange (ICE), Kansas City Board of
Trade (KCBT), London Metal Exchange (LME), Minneapolis Grain Exchange
(MGEX), New York Board of Trade (NYBOT), New York Mercantile Ex-
change (NYMEX), Winnipeg Commodity Exchange (WCE). For today’s in-
vestors in the globalized world market a contract traded in London or in
Chicago is only another financial instrument that they can buy or sell no
matter where.

Table 1 presents the list of investigated contracts, their symbols, and symbols
of corresponding markets. All the contracts were quoted in USD. We took
under consideration day closing prices.

3 Correlations

Let Pi(t) be a day closing price of a contract i at time t. From logarithmic
returns ri = log(Pi(t + 1)) − log(Pi(t)) we calculated a Pearson correlation
coefficient:

Cij =
〈rirj〉 − 〈ri〉〈rj〉

√

(〈r2
i 〉 − 〈ri〉2)(〈r2

j 〉 − 〈rj〉2)
. (1)

The correlation coefficients Cij were computed for all pairs of futures from
Tab. 1 over a span between 1998.09.01 and 2007.12.14. The average 〈...〉 was
calculated for the whole period, but only for days when all the contracts were
traded. There were T = 2190 overlapping records in the mentioned period.

One could expect that due to long, compared to a number of assets, time
series, the correlation matrix would have a low level of noise. According to the
random matrix theory (RMT) [10], the eigenvalues spectra of a correlation
matrix for N uncorrelated Gaussian time series of the length T is bounded by
a maximum λmax and a minimum λmin value, which is equal to:

λmax
min = 1 +

1

Q
± 2

√

1

Q
, (2)
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symbol name market symbol name market

AA F aluminum alloy LME MW.F wheat spring MGEX

AL F aluminum LME NG.F natural gas NYMEX

BO.F soybean oil CBOT NI F nickel LME

C.F corn CBOT OJ.F orange juice NYBOT

CC.F cocoa NYBOT PA.F palladium NYMEX

CL.F crude oil NYMEX PB.F pork bellies CME

CO F copper LME PL.F platinum NYMEX

CT.F cotton NYBOT RR.F rough rice CBOT

FC.F feeder cattle CME RS.F canola WCE

GC.F gold NYMEX S.F soybean CBOT

HG.F copper NYMEX SB.F sugar NYBOT

HO.F heating oil NYMEX SC.F brent oil ICE

KC.F coffee NYBOT SI.F silver NYMEX

KW.F wheat KCBT SM.F soybean meal CBOT

LB.F lumber CME TI F tin LME

LC.F live cattle CME W.F wheat CBOT

LE F lead LME ZI F zinc LME

LH.F lean hogs CME

Table 1
List of investigated future contracts for commodities in the alphabetical order of
their symbol.

where Q = T/N . In our case Q ≈ 62.57 and λmin ≈ 0.76, λmax ≈ 1.27. In
figure 1 the eigenvalue spectrum is presented. The majority of the eigenvalues
lies outside the RMT region.

Plotting components of two eigenvectors corresponding to the two largest
eigenvalues shows a clustering structure of the correlation matrix [16]. As-
sets of specific sectors depend on common factors in a similar way and give a
similar contribution to the eigenvectors (fig. 2).

Following Mantegna [14] we computed a metric distance matrix,

dij =
√

2(1 − Cij). (3)
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Fig. 1. Eigenvalues of the correlation matrix. The gray rectangle corresponds to the
area of a random matrix.
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Fig. 2. Two eigenvectors corresponding to the two largest eigenvalues of the corre-
lation matrix. Each point can be identified as a contribution of a certain contract
to an eigenvector.

The function dij is a well-defined metric measure. It measures a distance be-
tween two time series, that is in our case between returns of two commodity
futures. The closer they lie in the sense of the metric, the more correlated they
are.

The distance matrix dij determines a weighted fully connected graph of cor-
relation distances. Being symmetric, it has N(N − 1) independent elements,
so does the correlation matrix Cij.
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Fig. 3. (Color online) MST composed of 35 future contracts from tab. 1 with corre-
sponding weights. For a given node its radius is proportional to its strength. Color
denotes the branch: yellow -metals, red -fuels, green -plants, brown -animals.

For a weighted network associated with dij we can create a minimal spanning
tree (MST). A spanning tree of a weighted graph G is a tree that contains all
vertices of G and links of the tree are a subset of the links of G. A minimal
spanning tree of a graph G has the lowest sum of weights among all spanning
trees of G. A MST of the distance matrix dij has N − 1 links. It pictures only
the most important interactions, and hence is a useful tool for correlation
visualization.

We calculated node strength defined as:

Si =
∑

j 6=i

1

dij

. (4)

We also created a MST based on the metric distance using Prim’s algorithm
[17]. Figure 3 presents the MST with weights corresponding to distances be-
tween given nodes, and a node radius proportional to their strength. We used
colors to distinguish different branches: metals with yellow, fuels with red,
plant products with green, and animals with brown. The sector clusteriza-
tion is clearly visible. We can identify connected subgraphs of specific profiles:
metals (containing all listed metals), fuels (CL.F, SC.F, HO.F, NG.F), grains
(S.F, C.F, W.F, KW.F, MW.F, RR.F, BO.F, RS.F, SM.F), animals (LB.F,
PB.F, FC.F, LC.F), plant products (CC.F, KC.F, SB.F, LB.F) and outsiders
(OJ.F, CT.F). One can also observe market clusterization, for example all
metals from LME form a connected subgraph.

To find out the importance of a vertex in a graph different measures can be
used. One of them is node strength (4), which informs how much a given vertex
is correlated with the others. Another is a node degree, defined as a number
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of links attached to a given node, or betweennes centrality, which is defined
as [18]:

B(i) =
∑

(j,l)

σjl(i)

σjl

, (5)

where σjl is the number of the shortest paths going from j to l and σjl(i) is
the number of the shortest paths from j to l passing through i. The sum is
over indices j, l fulfilling the condition: i 6= j 6= l 6= i.

For the minimal spanning tree (fig. 3), treated as an unweighted graph, we
computed betweenness centrality of each node, its strength and degree (tab. 2).
The vertices with highest degrees are: SO.F 6, CO F 5, GC.F 4. The strongest
are: S.F 27.7, CO F 27.62, CL.F 27.50, and the most between: SI.F 0.67, S.F
0.59, GC.F 0.48.

4 Time evolution

Choosing a time window ∆T for correlations calculation is always a compro-
mise choice between a level of noise from one side and a good estimation of
temporal correlation from the other. Increasing ∆T reduces the noise level, but
it gives an average correlation coefficient of the whole window. The correlation
coefficients evolve in time and the corresponding MST shrinks during a stock
market crisis [19]. Some dynamical aspects of correlations were investigated
in ref. [20,21].

We divided the period 1998.09.01 - 2007.12.14 into three subperiods of equal
lengths and created MST for this data, computing also strengths of the con-
tracts (fig. 4 - 6). The tree changed, but branch clusterization remained.

A change in strength of the strongest nodes is presented in fig. 7. To check
whether the change is caused by a real trend, and not by fluctuations, we
recalculated the strength for the same time window starting 7 days earlier, and
7 days later. The results, providing the scope of the strength change, enabled
us to include errorbars in figure 7. The errorbars appeared to be negligible
compared to the change of the strength. It means that while shifting the time
window by 7 days the strength remained almost unchanged. All presented
contracts increased their strengths, especially gold whose increase was most
abrupt.

A more detailed view on the strength evolution can be obtained by applying
a moving time window analysis. We calculated strengths of contracts for a
time window ∆T = 1000 (fig. 8). Contracts of the same branch obey similar
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symbol deg. strength betw. symbol deg. strength betw.

AA F 1 26.42 0 MW.F 1 27.13 0

AL F 2 27.42 0.06 NG.F 1 24.91 0

BO.F 2 26.79 0.06 NI F 1 26.08 0

C.F 2 26.73 0.16 OJ.F 1 24.38 0

CC.F 3 24.59 0.17 PA.F 1 25.54 0

CL.F 3 27.50 0.17 PB.F 1 24.46 0

CO F 5 27.62 0.37 PL.F 2 25.65 0.06

CT.F 1 25.02 0 RR.F 1 24.84 0

FC.F 2 24.41 0.06 RS.F 1 26.18 0

GC.F 4 26.43 0.48 S.F 6 27.70 0.59

HG.F 2 26.54 0.37 SB.F 1 24.90 0

HO.F 2 26.86 0.06 SC.F 1 27.40 0

KC.F 2 24.87 0.06 SI.F 3 26.66 0.67

KW.F 2 27.26 0.06 SM.F 2 26.85 0.21

LB.F 1 24.26 0 TI F 2 25.78 0.06

LC.F 1 24.71 0 W.F 2 27.32 0.11

LE F 1 26.16 0 ZI F 2 27.18 0.06

LH.F 2 24.68 0.17

Table 2
Degree, strength, and betweenness of future contracts in the period 1998.09.01 -
2007.12.14.

changes. Except for animal products, which did not change significantly, all
contracts increased their strengths within the investigated period. Also the
shape of the evolution curve proves that the observed change is the effect of
real trend rather than fluctuations.

We also calculated betweenness centrality for each tree treated as an un-
weighted network (fig. 9). One can observe a monotonic betweenness decrease
of corn, copper, soybean, and an increase of gold betweenness. There can also
be observed an abrupt increase of crude oil betweenness.

The change in the picture of correlations can be caused by noise fluctuation
or by a real evolution of market trends. Because our time series are long,
compared to their numbers (T ≫ N), we suspect that we observed a trend
evolution rather than fluctuations.
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Fig. 4. (Color online) MST with weights and none strengths for the period 1989.01.03
- 2001.05.10.
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Fig. 5. (Color online) MST with weights and none strengths for the period 1989.01.03
- 2001.05.10
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Fig. 6. (Color online) MST with weights and none strengths for the period 2004.11.08
- 2007.12.14

We investigated the evolution of the mean correlation,

C̄T (t) =
2

N(N − 1)

∑

i<j

CT
ij(t), (6)
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where CT
ij(t) is a correlation coefficient for a time window [t − ∆T, t]. A con-

stant upgoing trend is visible (fig. 10). Its interpretation is quite obvious - the
mean correlation increased significantly in the investigated period. We also
calculated the variance of the correlation coefficients:

σ2
C =

2

N(N − 1)

∑

i<j

(CT
ij(t) − C̄T (t))2. (7)

It is usually positively correlated with the mean correlation [22].
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Fig. 10. Mean correlation (C̄T (t)) and variance σC of 35 contracts for ∆T = 1000
and period 1998.09.01 - 2007.12.14. Because it requires 1000 records to calculate
C̄T (t) for a given window ∆T = 1000, the figure begins with the end of the year
2002. On the horizontal axis t = 2003, 2004, ... means the first (trading) day of a
year.

During financial crashes a growth of the mean correlation can be observed [22].
We can see in the investigated period a constant growth of C̄(t). We calculated
C̄T (t) and σ2

C for a longer period, i.e. 1990.04.03 - 2007.12.14 with a smaller
set of contracts (fig. 11). We used only 27 contracts that had been traded
through the whole period. The mean correlation was fluctuating between 0.06
and 0.07 until the year 2003, next, it started a constant growth to the value
0.14 at the end of 2007.
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Fig. 11. Mean correlation (C̄T (t)) and variance σ2
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and longer period 1990.04.03 - 2007.12.14.
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for a reduced sample of contracts in a longer period. The data of L35 for better
visibility were shifted upwards by an additive constant equal to 1. The values were
computed for the time window∆T = 1000.

Let us define the mean occupation layer [22]:

L =
1

N

∑

i

l(vi), (8)

where l(vi) denotes the level of vertex i. The level measures the distance (in
nodes) to the central vertex (which is of level 0). Each time we chose as the
central vertex one that minimizes the mean occupation layer L. This measure
characterizes compactness of MST, which usually shrinks during abrupt price
changes (eg. crisis). This effect can be observed as a decrease of the L value.
Evolution of mean occupation layer L is presented in fig. 12. One can see large
fluctuations of both values. No constant trend can be found. Both values are
correlated with the correlation coefficient ρ = 0.53.

The arbitrage pricing theory [23,24] modells returns of financial assets as a lin-
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Fig. 13. Evolution of the largest eigenvalue normalized by the sum of all eigenvalues
for a moving time window ∆T = 1000.

ear function of different macro-economic factors. Such factors can be identified
with eigenvectors of a correlation matrix. The largest eigenvector corresponds
to an economic factor which has the most significant impact on the market.
The level of this impact can be measured by a corresponding eigenvalue nor-
malized by the sum of all eigenvalues. If we take a portfolio of contracts which
is a mixture of eigenvectors with equal weights, this value would present the
fraction of portfolio variance explained by the first factor. The evolution of
normalized largest eigenvalue is presented in fig. 13. The observed increase
means that the influence of the first factor became even stronger with time,
which caused the observed increase of the mean correlation (fig. 10).

We plotted evolution of the first eigenvector components (fig. 14) which can
be treated as an influence of the first factor on a given commodity. It strongly
decreased for plant products, increased for metals and fuels, and remained
almost unchanged for animals. While growing influence of the first factor re-
sulted in the increase of mean correlation, changes of eigenvector components
drove the evolution of strength parameters. It seems to be clear for metals, fu-
els and animals. However, for the case of plants we observed a decrease of first
eigenvector components. At the same time the largest eigenvalue increased.
The two opposite tendencies resulted in slight increase of strengths of plants.

5 Discussion and conclusions

We analyzed the correlation matrix of commodity prices. Due to long time
series the level of noise in correlation matrix was low. Two eigenvectors of
Cij, corresponding to the largest eigenvalues were plotted. The picture (2)
visualizes a clustering structure of correlations. Using a correlation metric dij

we created MST of investigated contracts. MST provides clear evidence for
the existence of strong correlations of commodities within a given sector and
for intersector correlations depending on the level of similarity.
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Fig. 14. (Color online) Contribution of selected contracts to the eigenvector corre-
sponding to the largest eigenvalue which is normalized to unity (∆T = 1000).

The above picture of correlations could be expected from similar studies of
stock markets and currencies. More interesting are investigated dynamical
properties of correlations which, as we observed, changed in time. In the stud-
ied period i.e. 1998.09.01 - 2007.12.14 the mean correlation (6) increased from
about 0.08 to about 0.13. The reason for this correlation increase can be as
follows. Commodity markets attracted a lot of investors’ attention in the last
years. A growing demand for energy, metals, and food from fast developing
Chinese and Indian economy created a boom for commodities and an impulse
for intensive speculations. This market boom makes prices follow one direc-
tion, which resulted in increase of correlation between the traded assets. A
similar effect was observed during market crashes [19]. The effect of the boom
for commodities is responsible for the observed growth of mean correlation
coefficient.

The mean correlation calculated as an average measure increased, but the
contributions of individual contracts to this difference were various. We in-
troduced strength of a contract expressing the magnitude of its correlation
with other contracts. Strengths calculation for moving time window visualised
the evolution of this parameter. It turned out that metals and fuels impor-
tantly participated in the increase of strength, while animals almost remained
unchanged.

It is obvious that prices of financial assets are driven by several economic
factors. Among them there is the most significant factor, called by us the
first factor. A measure of importance of the factor can be a corresponding
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eigenvalue. We showed that the role of the first factor was getting stronger,
so the market finally became more and more one-factored. This fact, that
can be observed in the increase of the first eigenvalue, is also responsible for
the increase of correlations, characterized by the mean correlation parameter.
That effect was caused by a growing price bubble.

We also observed the change of the first factor itself, or from the other view-
point, the change of its influence on specific commodities. The first eigenvector
components evolved in time in a way that depends on the commodity branch.
Contracts which became significantly more dependend on the first factor, that
is metals and fuels, became also stronger. Contracts with weak interactions
with the first factor, like animals, did not change their relatively low strengths.

We studied correlations of commodity contracts returns. Our analysis showed
that starting from the year 2003 the commodity market became more cor-
related, and was driven by a single economic factor. The dependence on the
factor got stronger with time. The result is most pronounced in an evolution
of the largest eigenvalue normalized by the sum of all eigenvalues, and it can
be also seen in the evolution of contracts strengths and their mean correlation.

The most important result seems to be the clear evidence of the constantly
increasing market synchronization. This fact can be even related to the global
scale of current economic crisis. However, the authors cannot suggest that they
found roots of recent dramatic market changes.

It was expected that dynamics of commodities belonging to the same sector
would be clustered, i.e. would be closely placed in the MST. One could how-
ever not predict in advance which of commodities would become synchronized
with the first eigenvalue (a market mode). It is surprising that the agriculture
products behaved differently compared to metals that became much more
synchronized.

An obvious implication from our study is the increasing risk for market players
that cannot effectively diversify their portfolios, since corresponding assets
are more and more correlated. It is well known that such correlations modify
substantially the optimal portfolios and make diversification more difficult
since the effective number of asses became smaller [2].
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