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ABSTRACT 

 
Natural image matting plays an important role in image and 
video editing. It has been addressed hotly because it is 
inherently an under-constrained problem – we must estimate 
both the foreground and background colors (we call them 
component colors) at each pixel to calculate its opacity, 
according to the only known observed color. Prior 
assumption such as statistics and smoothness are utilized for 
estimation, but these methods either are simple to handle 
situations such as complex background and large interaction 
region or have high computational complexity. 
      This paper  proposes a fast technique to estimate the 
component colors based on structure information. Our 
approach exploits a simple convolution operation to detect 
structure information in images. It then uses two kinds of 
estimation methods to propagate colors based on the 
structure types. Experimental results show that our method 
is fast and efficient to handle objects with strong structures 
and large part of interaction region with the background 

 
1. INTRODUCTION 

 
Image matting is an important technique in image and video 
postproduction. Formally, an observed image C is 
considered as a composite of a foreground image F and a 
background image B  under an opacity matteα . For a pixel 

( , )C i j at location( , )i j , the matting equation is 

where ijα  denotes the opacity at location( , )i j  in imageC , 

[0,1]ijα ∈ . In traditional movie industry, editors generally 
simplify the problem through setting a single background 
color, and this technique is called “blue screen matting”. 
Smith et al. [1] have given a well study on this problem.  
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Recently, many researchers have worked on the matting 
technique for natural images. It is a challenging task to 
extract objects from complex unknown background. General 
solution to this issue usually includes three steps.  First, hint 
information of foreground and background are obtained 
through user interaction. As a result, the observed image is 
partitioned into foreground, background and uncertain 
regions. Then some prior constraints are exploited to 
estimate F and B for each pixel in uncertain regions. Finally, 
α is calculated according to eq.(1). Apparently, color 
estimation in the second step is the core technique for 
natural image matting. 
 
1.1. Previous work 
 
The existing color estimation methods can be classified into 
two categories: (1) methods that employ local color statistics 
information; and (2) methods that utilize smoothness 
assumptions. In first category, the component colors of a 
pixel are considered as derived from the color models of the 
local region at which it centered. The models are calculated 
by sampling in a local window which includes both 
foreground and background pixels. Berman et al. [2] 
estimated component color as a weighted sum of the colors 
of pixels on the perimeter of definite regions. Ruzon et al. 
[3] first introduced probability into estimation problem. 
They used GMM to describe color distributions in each 
small region. The component colors of a pixel are estimated 
as a weighted sum of the color pairs of F and B in the color 
models. Based on [3], Chuang et al. [4] presented a well-
defined Bayesian framework and estimated F, B and 
α simultaneously by the maximum-likelihood criterion. 
The calculations in this category are direct and fast but they 
usually get poor results in complex images or large 
uncertain regions. 

Methods in the second category add smoothness 
assumptions to improve the matting results. Sun et al. [5] 
supposed that F and B are smooth, by taking the gradient 
over eq.(1) and neglecting the gradients in F and B, they 
derived a Poisson equation to approximate the gradient field 
of α  matte. Wang et al. [7] included the smoothness of 
α value in 4-nighborhood as a constraint in their object 
function. They employed belief propagation algorithm to 

( , ) ( , ) (1 ) ( , ),ij ijC i j F i j B i jα α= + −  (1) 
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iteratively pass information of colors andα values between 
pixels. Levin et al. [8] derived a closed form solution to 
matting. They assumed that both F and B are constant over a 
small window and then reduced the matting function into a 
quadratic function only with α as unknown. Generally, 
methods in the second category usually get better matte 
results, but the computational costs are also very expensive. 
 
1.2. Structure information in images 
 
Images have various structures, such as smooth regions with 
homogeneous color, one-pixel-width lines corresponding to 
hair-like boundaries, and edges disjoining two distinct 
regions, etc. These structures imply the spatial relationship 
of pixels in a neighborhood. Pixels located on the same 
structure have similar colors. These information give us 
clues where the right colors can be sampled for estimation. 

Based on the above observation, we present a fast and 
efficient method to estimate the component colors. Our 
method first extracts the structure information in uncertain 
region. Then it exploits two kinds of strategies to propagate 
the known colors into uncertain regions based on the 
structure types. Compared with previous approaches, our 
method has two advantages: (1) the smoothness constraint is 
not imposed in the form of assumption. It is directly 
extracted from the observed images, so our calculation does 
not need any iterative computation; (2) the color 
propagation strategy gives pixels on smooth structure 
priority to be estimated. Therefore our method has the 
ability to handle objects having large interaction regions 
with background. 

 
The remainder of the paper is organized as follows. 

Section 2 gives a detailed description of our method. 
Experimental results are shown in section 3 and section 4 
concludes the paper 
 

2. OUR METHOD 
 
Our method requires user to provide a tri-map (as shown in 
Fig.3(c)) to pre-segment observed images into foreground, 
background and uncertain regions. It then detects the 
structure information of the 9-nighborhood of each pixel in 
uncertain regions. Two kinds of propagation techniques are 
introduced to estimate the component colors for each pixel 
according to the detected structure type. The propagation is 
performed by a well defined processing order. Finally, 
collinear constraints are used to improve the accuracy of the 
estimation. 
 
2.1. Structure detection 
 
For a 9-neighborhood, we classify its structure information 
into four categories: flat, line, edge and clutter. As shown in 
Fig.1, each structure type exhibits its own color smoothness. 
For flat type, all neighboring pixels have similar color with 

the center pixel. For line type, there is a one-pixel-width line 
crossing the center, and pixels on the line have homogenous 
colors while other pixels have another kind of color. For 
edge type, the center pixel is on the boundary of two regions 
which have different colors. For clutter type, the nine pixels 
have different colors. 
 

       
        (a) flat                   (b) line                 (c) edge                (d) clutter 
Fig. 1 sketch map of structure types in 3×3 region 
 

We use Frei-Chen masks [9] to detect the structure types. 
These masks, as shown bellow, describe different features of 
structure: u1 and u2 are gradient masks; u3 and u4 correspond 
to ripples; u5 and u6 represent one-pixel-width line; u7 and u8 
are similar to Laplacian masks; the last one is an average 
mask. 
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Convolving these nine masks with an image I, we get 
nine response images. For convenience of presentation, we 
first define some notations for further discussion. Ri denotes 
the response image of convolution between image I and 
mask ui; (x,y) is the location of pixel at each image, z(x,y) 
denotes the intensities of the 9-nighborhood centered at 
pixel (x,y) in I,  we can write the convolution as 

9

1
( , ) ( , ),

ji ij j
R x y u z x y

=
=  

so Ri means the projection of z onto mask ui, if the sub-
image has the similar type with a certain mask, the 
convolution get a higher response. 

To detect the structure type, we classify the nine masks 
into three subsets: {u1~u4}, {u5~u8} and {u9}, corresponding 
to the type of edge, line and flat respectively. We use the 
method in [10] for detection. Four values are calculated: 
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It can be proved that
9 9

2 2
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i ii i
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= =
= , 

because these masks are orthogonal. So we can reduce the 
computation cost by calculating 

edge line flatE E E E= − − . 
Type detection is described in Alg.1, 
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Alg.1 classify the structure types of 9-neighborhood z 

if / 1flatE E t> , then ( )type z is flat;. 
else 

if / 2line edgeE E t> , then ( )type z is line;  
else 

if / 3edge lineE E t> ,  then ( )type z is edge;  
else  ( )type z is cluster;  

where 1, 2, 3t t t are predefined thresholds. 
We assign the detected structure type of the  

neighborhood  to its center pixel. The information will guide 
us to choose the most similar colors from nearby pixels for 
color estimation during the propagation process. 
 
2.2. Propagation strategy 
 
Based on the detected structure types, two different 
propagation strategies, smoothing propagation and sampling 
propagation, are employed. The former, corresponding to 
types of flat, line and edge, utilizes the smoothness 
information to estimate component colors. The latter, 
corresponding to clutter, estimates component colors from 
nearby pixels through statistical method. We design a 
processing order to make sure that in each estimation the 
most available known information are used.  
      Color propagation starts from the definite foreground 
(background) regions inward to the uncertain regions 
separately. Suppose that p is the current pixel to be 
processed on the boundary, estimation is described as 
follows. 
 
2.2.1 Smoothing propagation 
If p has flat type, we search its 8-neighborhood to find a 
pixel q satisfying conditions that it has been processed and 
has the most similar observed color with p. If the similarity 
of the observed colors exceeds a threshold, we copy the 
component colors of q to p. Otherwise, the structure type of 
p is set to clutter.  

If p has line type, we detect the direction of line 
crossing p. If the direction extends from the known region 
into the uncertain region, we propagate the known color 
through the line. Otherwise, the structure type of p is set to 
clutter. 

If p has edge type, we can find the isophote line 
crossing p, which is perpendicular to the gradient direction. 
Since colors along the isophote line are similar, we 
propagate colors using the same method as for the line type. 
 
2.2.2 Sampling propagation 
For the clutter structure type, we estimate the component 
colors of p through a weighted sum of known pixel colors in 
a (2 1) (2 1)n n+ × +  sized window centered at p: 

( , )

'_ ( ) _ ( )
q window p n

qest color p w est color q
∈

= ⋅  (2) 

where '
qw  is the normalized weight of qw , which is defined 

as: 

2

( , )
exp ,       ;

0,                                  .
q

C p C qd ist
q has been processed

else
w σ

−
=  (3)

where ( , )p qdist C C  is the Euclidian distance of two observed 

colors 
pC and qC  in RGB color space.  

 
2.2.3 Processing orders 
The calculation starts from the boundaries of the uncertain 
region inward to it. The smoothing propagation executed 
first. When the types of pixels on the current boundaries are 
all clutter, sampling propagation is performed once to 
continue the whole processing. 

We use the term “confidence” to determine the order of 
processing during the smoothing and sampling 
propagations. The confidence of a pixel is defined as the 
number of pixels that has already been processed in its 8-
neighbor. The larger the number is, the more reliable 
information can be used, and the higher priority the pixel 
has to be handled in propagations. 
 
2.3. Co-linear constraints  
 
According to Equation (1), the colors C, F and B for a pixel 
are collinear, and the alpha value falls in [0, 1]. We utilize 
the following constraints to refine the estimation results.  
 

 
Fig. 2.  Color co-linear constraints. 
 

1. Distance constraint: As shown in Fig.2 (a), the ratio of 
d  to the length of FB  is required to be under a threshold, 
to prevent C  from being far away from FB .  
2. Projection constraint: as shown in Fig.2 (b) and (c), the 
projective point of C  onto FB is required to lie on FB , to 
guarantee the alpha value to belong to the interval [0, 1].  

Based on the above two constraints, the system checks 
the estimated color pairs F and B for each pixel, and for 
those failed points, they are estimated through sampling 
propagation under a bigger size of sampling window. 
 

3. EXPERIMENTAL RESULTS 
 
In our evaluation experiments, we first select two images 
with typical structures, peacock (Fig.3) and cobweb (Fig. 4) 
to check the validity of the proposed approach. We compare 
our algorithm with Wang’s method [7] in visual effect and 
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computation efficiency. All the experimental results are 
obtained on an IBM PC with P4 2.8G CPU and 256M 
RAM. In our experiments, the parameters in formula (2) and 
(3) are: n = 3 and  = 15.As shown in Tab.1, our method is 
obviously faster than Wang[7]. Moreover, the results 
generated by our method are visually comparable to theirs. 
Fig.3 shows the results for peacock generated by the 
methods of Wang et al. [7], Bayesian [4] and ours. The run 
time of Wang’s is longer (shown in Tab.1). Bayesian 
method fails because it can not get a well inference from far 
regions.  

There mainly two reasons for the good performance of 
our method. Firstly, instead of taking numerous iterative 
computations, our method extracts the smoothness 
information directly from an observed image. Secondly, the 
processing order preserves the smoothness and gives the 
priority for estimation along the smooth types. Thus for 
estimation in large uncertain regions, the color information 
we used usually has high reliability.  

 

(a) observed image (b) input strokes (c) input trimap 

 
(d) Wang ’s method (e) Bayesian (f) our method 

 Fig. 3. Matting results of peacock. (e) is taken from [7]. 
 

   
(a) original image            (b)Wang ’s method            (c) our method 

Fig. 4.  Matting results of the image cobweb. 
 

Tab. 1. Comparison of computational efficiency for two images 
Image Wang’s method[7] Our method 

Peacock 41.17s 16.77s 
Cobweb 46.68s 9.63s 

 

We also experiment on some hair-like images (in Fig.5) 
to further check the effectiveness and efficiency of our 
method. The results are encouraging. For the image head, 
the tiny strands of hair can be noticed. The computational 
time are summarized in Tab.2. It is obvious that our method 
has a good performance to objects with strong structures. 

 
4. CONCLUSION 

 
We have presented a simple and fast algorithm to solving 
the color estimation in natural image matting. Guided by the 
spatial structure information, two heterogeneous strategies 
are exploited to propagate color values from known regions 

into uncertain regions in an adaptive way. The experimental 
results show our method is comparable to the existing 
methods in accuracy, but is much more efficient in 
computational cost. 

 

       

     
  (a) Gandalf                   (b) Galadriel                   (c) head 

Fig. 5. Results of hair-like objects.  
 

Tab. 2. Computational time for the images in Fig.5 
Image Gandalf Galadriel head 

Wang’s [7] 2.05s 1.19s 4.17s 
Our method 1.92s 1.31s 2.03s 
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