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Abstract 

 
Aiming at the problem when both positive and negative 

training set are enormous, this paper proposes a novel 
Matrix-Structural Learning (MSL) method, as an extension 
to Viola and Jones’ cascade learning method for object 
detection. Briefly speaking, unlike Viola and Jones’ method 
that learn linearly by bootstrapping only negative samples, 
the proposed MSL method bootstraps both positive and 
negative samples in a matrix-like structure. Moreover, an 
accumulative way is further presented to improve the 
training efficiency of MSL by inheriting features learned 
previously during training procedure. The proposed 
method is evaluated on face detection problem. On a 
positive set containing 230,000 face samples, only 12 hours 
are needed on a common PC with a 3.20GHz Pentium IV 
processor to learn a classifier with false alarm rate less 
than 1/1,000,000. What’s more, the accuracy of the learned 
detector exceeds the state-of-the-art results on the 
CMU+MIT frontal face test set. 

1. Introduction 
Object detection is one of the classical problems in 

computer vision and pattern recognition, with wide 
potential applications such as visual surveillance, robotics, 
image retrieval, and intelligent user interfaces. Large 
variations in pose and individual difference, as well as 
varying backgrounds and imaging conditions, make this 
problem particularly challenging.  

There have been many important successes over the past 
several years for some visual patterns such as faces [19], 
pedestrians [12], and cars [14]. Especially, the face detector 
of Viola and Jones is among the most influential systems 
[19] for its high detection speed. The key elements of Viola 
and Jones’ approach include: 1) the cascade structure, 
which enables the detector to be not only fast but also 
accurate. 2) The use of AdaBoost [3] to combine weak 
hypotheses into a strong ensemble. 3) Weak hypotheses 
designed by thresholding on single simple Haar-like 
feature. 

The large body of literature spawned by this seminal 
work has tended to focus on alternatives to AdaBoost [6, 9, 
11, 16, 18, 20, and 21], Haar-like features [8], 
coarse-to-fine architecture [5, 7, 13, and 22] or 
optimization tuning of the cascade architecture [1, 10, 15, 
20, and 21]. However, the aspect about the training set has 
not received adequate attention yet. In this paper, we focus 
on how to train a cascaded classifier efficiently when both 
positive and negative training sample sets are enormous. 
For simplicity, hereinafter, “enormous sample set” is 
abbreviated to ESS. 

Cascade design deal with the negative ESS successfully 
in company with an efficient classifier structure. The 
detector is designed as a cascade of sub-classifiers as 
shown in figure 1. Each sub-classifier deals with some of 
the non-object examples and makes a decision to either 
reject the input candidate, i.e. classifying it as non-object, 
or continue evaluation using the next sub-classifier.  

Sub-Classifier #1

Sub-Classifier #n

Sub-Classifier #2

...

Classify as object

Reject as non-object

Condidates

Reject as non-object

Reject as non-object

 
Figure 1: Structure of the cascaded classifier. 

Increasing the size of training set is one of the good 
means to obtain classification performance promotion 
which is in practice often more significant than expected. 
Furthermore, collecting hundreds of thousands of positive 
training samples in some applications is not such a difficult 
job sometimes. Taking frontal face as example, we can 
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easily collect images with frontal faces from various 
sources such as the explosive WEB, public databases, and 
digital photo albums. Also, the frontal face sample set can 
be enlarged by generating new samples with domain 
knowledge incorporated, i.e. mirroring, in-plane rotation, 
small changes in translation and scale. Then, given a face 
set, containing e.g. 10000 frontal face samples, we can 
obtain up to 800000 samples by mirroring, half pixel shift 
in 8 directions, and 5 rotations in plane. 

Training classifier with such kind of ESS directly is 
hardly tractable on common personal computers. Sung and 
Poggio [17] proposed a training scheme, called bootstrap, 
and applied it for negative training samples collecting from 
negative ESS. During bootstrap procedure, false detections 
are collected iteratively into the training set, and a very low 
false positive rate is achieved after several iterations. 

Even with small negative training sample set collected 
by bootstrap, training time cost is still a very tedious 
problem for cascade learning, since Boosting cascade 
learning is very time-consuming. For instance, Viola and 
Jones reported training time on the order of days or even 
weeks. If positive ESS is further taken into account, more 
time are needed obviously.  

Intuitively, bootstrap scheme can also be applied to 
positive samples. For example, one can bootstrap positive 
sample set by using cascaded classifier as a whole, as 
illustrated in figure 6. But it is computationally not smart 
(refer to section 3 for details). Instead, in this paper, we 
propose a novel method, named Matrix-Structural Learning 
(MSL), to take advantage of the modularity of cascaded 
classifier design to improve the efficiency. Briefly speaking, 
unlike Viola and Jones’ methods that learn linearly by 
bootstrapping only negative samples, the proposed MSL 
method bootstraps both positive and negative samples in a 
matrix-like structure.  

Moreover, an accumulative way of sub-classifier 
training is presented to improve the training efficiency of 
MSL further by inheriting features learned previously 
during the training procedure, which can greatly reduce the 
time cost on feature selection of MSL learning.  

The proposed method is evaluated on face detection 
problem. On a positive set containing 230,000 face samples, 
only 12 hours are needed on a common PC with a 3.20GHz 
Pentium IV processor to learn a classifier with false alarm 
rate less than 1/1,000,000. The accuracy of the detector 
learned exceeds the state-of-the-art results on the 
CMU+MIT frontal face test set. 

The rest of the paper is organized as follows: we first 
describe in detail of the proposed MSL method in Section 2, 
then in section 3 an alternative method and a discussion of 
its computation cost compared with MSL is given. The 
feature-inheriting technique for speeding up is introduced 
in Section 4. Experimental setup and results are given in 
Section 5 and finally conclusion is drawn in section 6. 

2. Matrix-structural learning 
Boosting cascade proposed by Viola [19] has been 

proved to be an effective way to detect faces with high 
speed, but it is time-consuming in training. Based on the 
modularity of the cascade structure, taking into account a 
larger positive sample size, a novel matrix-structural 
learning (MSL) for cascaded classifier is proposed to 
accelerate cascade training. 

For simplicity, the symbols and their denotations used in 
this paper are listed in figure 2. 

C(i,j) classifier built by ith stage learning from jth 
positive training sample set of bootstrap by MSL

C’(i,j) classifier built by ith stage learning from jth 
positive training sample set of bootstrap by LSL

N(i,j) Negative training set of C(i,j) learning 
N’(i) Negative training set of C’(i,j) learning 
P(i,j) Positive training set of C(i,j) learning 
P’(i) Positive training set of C’(i,j) learning 
Fj total feature number of C(i,j) 
fjk kth feature of C(i,j) 
Hi total iterations of ith positive bootstrap in MSL 
B stage number of cascade 
Mi iteration number of positive bootstrap of ith 

stage learning in MSL 
M iteration number of positive bootstrap in LSL 

 
Figure 2: Symbols and their denotations used in this paper. 

2.1. Bootstrap positive sample in sub-classifier 
learning 

Bootstrap proposed by Sung and Poggio [17] is a good 
way to collect a small and representative training set for 
learning a classifier, which was applied for negative 
training samples collecting from negative ESS. We argue 
that it can not only be applied for negative samples, it can 
also be applied for positive sample. Before discussing how 
MSL integrates positive sample bootstrap into cascade 
learning, the bootstrap schema is given firstly in figure 3. 
This bootstrap method starts with a randomly sampling 
training set. So we name it randomly starting bootstrap in 
contrast with the new bootstrap method we proposed in 
Section 2.2. There are two assumptions in bootstrap schema: 
1) selecting a small training sample set and learning with it 
will take less computation cost in comparison with learning 
directly with the whole ESS; 2) the selected training 
samples can well represent the original ESS in terms of 
classification performance of the final classifier. 

A modified version of negative sample bootstrap is used 
in cascade learning proposed by Viola and Jones [19], i.e. 
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1) Start with a small set of training samples randomly 

picked out from ESS; 

2) Train a classifier with current training set; 

3) Run the classifier on ESS. Collect some samples that the

current system wrongly classifies. Add these samples to

the training set as new training samples. 

4) Return to 2).  
Figure 3: Schema for randomly starting bootstrap. 

each bootstrap iteration results in a sub-classifier and the 
false positives of all previous sub-classifiers are collected 
into a new negative training set with a predefined size. The 
sub-classifier is constructed by boosting. Each step of the 
boosting involves a tradeoff between accuracy and speed. 
Generally speaking, the more features used, the higher 
detection accuracy achieved. By using suitable number of 
features, each sub-classifier is adjusted to have a very high 
target detection rate and moderate false alarm rate to 
achieve the overall high detection rate and very low false 
alarm rate of the final strong classifier.  

The framework of the proposed MSL method is 
illustrated in figure 5. In the figure, Ni and P(.) denote the 
bootstrapped negative and positive training set respectively, 
and C(.) denotes sub-classifier. As can be seem clearly, 
MSL is a matrix-like structure with two alternated 
bootstrap procedures, i.e. positive and negative sample set 
bootstrap. While the negative bootstrap is conducted 
similarly as in Viola and Jones’ method, the positive 
bootstrap is illustrated in figure 4 and described as follows.  

Each row in figure 5 is an iteration of positive sample 
bootstrap, as shown in figure 4. To guarantee the same 

1) Start with a small set of positive training samples

randomly selected from ESS; 

2) Train a strong classifier on current training set with

terminal conditions of target detection rate dmin and target 

maximal false alarm rate fmax; 

3) Run the classifier on positive ESS to get a detection rate 

d. If d exceeds dmin, the classifier is the final

sub-classifier, train is over; otherwise, collect some 

samples that the current system wrongly classifies and 

add these samples into the training set as new training

samples, return to 2).  
Figure 4: positive sample bootstrap in sub-classifier learning. 

classification accuracy performance (detection rate) on 
both the whole positive ESS and the current training set, the 
sub-classifier learned from the training set with target 
accuracy is validated on the whole positive ESS. If the 
detection rate does not meet the target, new positive 
samples wrongly classified are collected by bootstrap and 
added to the training set, until the detection rate on positive 
ESS meets the target. Thus, in positive sample bootstrap, 
for the ith sub-classifier, the relation between two 
successive positive training sample sets, say the jth and the 
(j+1)th iteration, can be expressed as: 

( , )  ( , 1)P i j P i j⊂ +   0<i<B+1, 0<j<Mi  
where P(.) denotes the bootstrapped positive training set, B 
the total number of sub-classifiers, and Mi the number of 
bootstrap of positive samples.  
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Figure 5: Matrix-Structural Learning of Cascaded Classifier. 
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2.2. Incremental bootstrap of positive samples for 
cascade learning 

This sub-section describes another important novel point 
in the proposed MSL, which can greatly speed up the 
bootstrap procedure. 

As we have seen in section 2.1, in each step of positive 
sample bootstrap, the representation ability of the positive 
training sample set used by current sub-classifier is 
gradually enhanced. At the same time, in consideration of 
the moderate target false alarm rate, there is large 
intersection between the negative sample sets of two 
successive stages. So, the positive training sample set of 
previous sub-classifier still has much representation ability 
of the positive ESS. Therefore, in our method, the positive 
training set collected by the bootstrap of previous 
sub-classifier is used as the initial set of the positive 
bootstrap for current sub-classifier. Formally, this can be 
expressed as): 

1( ,1)  ( -1,  )iP i P i M −=    1<i<B+1  
This is also illustrated as the red arrow-line from P(i-1, Mi-1) 
to P(i, 1) in figure 5. By this means, the iteration (positive 
bootstrap) stops of each sub-classifier can be impressively 
reduced. Note that, for the first sub-classifier learning, the 
initial positive sample set, i.e. P(1, 1), is still constructed by 
random sampling.  

3. An alternative method and computation 
cost discussion 

In contrast with MSL, there is an alternative way to 
integrate positive sample bootstrap into cascade learning. 
Cascaded classifier can be treated as a whole in positive 
sample bootstrap. The method is illustrated in figure 6. 
Since it is line-structural, for simplicity, we call it LSL. The 
denotations used in figure 6 of symbols can be referred to 
figure 2. 

To analyze the computation cost of MSL and LSL is not 
easy. Here we give a simple and rough discussion.  

Cascade learning procedure can be considered to consist 
of two unit procedures. First is the collecting of positive 
training samples by bootstrap and sub-classifier learning 
with training set. For simplicity, we denote the procedure 
by CL. Collecting of positive training samples by bootstrap 
tests current stage classifier on positive ESS. This 
procedure spends little time. Sub-classifier learning learns 
the stage classifier with boosting from current negative and 
positive training sample set. It takes almost all the 
computation of CL. Second is the collecting of negative 
training sample by bootstrap; the procedure is denoted by 
CN.  

C'(1,1)

C'(B,1)

C'(2,1)

N'(2,1)

N'(1,1)

N'(B,1)

...

C'(1,2)

C'(B,2)

C'(2,2)

N'(2,2)

N'(1,2)

N'(B,2)

...

P'(2)

C'(1,M)

C'(B,M)

C'(2,M)

N'(2,M)

N'(1,M)

N'(B,M)

...

... P'(1)P'(M)

 
Figure 6: Cascade of Linear Structure Learning. 

MSL only needs B executions of CN, with B the stage 
number of cascade. But LSL needs M*B executions of CN, 
which is M times more than the one in MSL, with M the 
iteration times of positive sample bootstrap. 

While for CL procedure, MSL needs 
1

B

k
k

M
=
∑ executions. 

And LSL needs M*B executions.  
Assuming the parameters of the bootstrap, such as initial 

sample size, maximum amount of new added samples in 
each bootstrap iteration, are the same in both methods. In 
LSL, M is the total iterations of positive sample bootstrap 
roughly according to the difficulty of the negative ESS. 

While in MSL, the corresponding number is
1

B

k
k

M
=
∑ . 

Generally, M and 
1

B

k
k

M
=
∑ are on a near order. If the 

corresponding positive training sample size of MSL to the 
one of LSL is roughly thought to be the same, the CL 
computation cost of LSL is roughly B times of that of MSL.  

From the analysis above, one can see that MSL is 
roughly B times more efficient than LSL. 

4. Feature-inheriting technique 
In order to further speed up the cascade learning, a 

feature-inheriting technique is further presented in this 
section. As mentioned above, during each stage of the 
learning, many temporary sub-classifiers are built 
sequentially during the positive sample bootstrap. And, for 
two successive sub-classifiers, only very small difference 
between their positive sets is introduced by the bootstrap, 
and their negative training sets are completely the same. In  
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Figure 7: Feature composition of ith layer in cascade. 

other word, their training sets are quite similar. Therefore, 
the features selected by the last sub-classifier can naturally 
applicable to the current sub-classifier learning. Therefore, 
except very few new features, most of the features for the 
current sub-classifier can be inherited directly from the last 
sub-classifier, which is called by us “feature-inheriting” 
technique. Intuitively, the computation for feature selection 
can be greatly reduced by such a technique.  

However, feature inheriting does not imply weak 
classifier inheriting. Due to the difference in training set, 
the weak classifiers based on these inherited features must 
be re-trained. Specifically, thresholds and weights for these 
weak classifiers must be learned based on the current 
positive and negative training set. Fortunately, this 
procedure is quite efficient.  

The above technique results in quickly an initial “strong” 
classifier for the current sub-classifier learning based on 
which some new features can then be added one by one via 
boosting until the target performance is satisfied. 
Intuitively, this learning procedure is like an incremental 
learning.  

The feature composition of the ith sub-classifier in the 
cascade is illustrated in figure 7. If FS (C) denotes the 
feature set of classifier C, the relation of two feature sets of 
successive sub-classifier during positive sample bootstrap 
procedure can be expressed as: 

( ( , )) ( ( , 1))FS C i j FS C i j⊂ +    0<i<B+1, 0<j<Mi+1 

5. Experiments 
In this section, a face detector based on MSL is 

implemented, and performance comparisons are made with 
Boosting cascade and MSL cascade. 

5.1. Experimental setup 
23,608 face samples are collected from various sources, 

such as WEB, FERET, and BioID. Most faces in the sample 
set have the variation of out-of-plane rotation within range 
of [-40°, 40°]. Totally 236,080 24×24 grayscale face 

samples are generated from the original 23,608 face images 
with manually labeled eyes by following transformation: 
mirroring, in plane rotation of -12°,-6°, 0°, and 6° 12°. 
Some examples are shown in figure 8. 

As for the negative samples, 15,000 images without 
faces are collected; extra 15,000 images without faces are 
generated by in-plane rotation of 45° to get more negative 
samples. So, there are totally 30,000 images for collecting 
the non-face samples. 

The testing set consists of the standard MIT+CMU 
frontal face database, which is composed of 130 images 
containing 507 frontal faces. All experiments are conducted 
on a common PC with a 3.20GHz Pentium IV processor. 

Feature pool consists of 31,728 Haar-like features of five 
types, as showed in figure 9.  

The basic sub-classifier learning method is RealBoost 
proposed in [5], an improved version of AdaBoost. And the 
basic cascade learning is nested cascade proposed in [5], 
also an improved version of Viola and Jone’s method[19]. 
Minimum detection rate and maximum false alarm rate are 
set to 0.9998 and 0.4 respectively.  

For the negative bootstrap, the number of re-sampled 
non-face samples for each stage is fixed to 10,000. While 
for the positive bootstrap, the size of the starting face 
sample set is 3000 and maximally 500 new samples can be 
added for each iteration. 

To detect faces with various scales, test images are 
down-sampled with scale coefficient of 0.8. 

5.2. Training efficiency investigation 
The training computation cost partly depends on the 

training set size. So, the number of training face samples of 
some stages is shown in Table1. One can see that in the first 
stage, only 3612 training face samples are used. With stage 
increasing, training face number increases too. This can be 
explained by the fact that the corresponding non-face 
samples are more and more similar to faces and difficult to 
distinguish from faces. 
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Stage Number 1 2 8 11 15 19 

Number of final training face samples 3612 3695 6629 8260 10498 12899 
Table 1: Training face sample number in final training set of some stages 

Stage Number 1 2 4 6 8 10 12 14 16 
Incremental bootstrap 5 4 4 4 5 5 7 7 6 
Random starting bootstrap 5 6 7 8 11 17 20 22 24 

Table 2: Number of iterations for randomly starting bootstrap and incremental bootstrap in some stages 

Bootstrap iteration number 1 2 3 4 5 6 Total 

Number of newly selected features  38 49 39 42 41 46 216 
Number of training face samples  10087 10291 10392 10482 10533 10602 —— 

Table 3: Number of newly selected feature and corresponding number of training face samples of MSL  
without using feature-inheriting technique for the 15th stage 

Bootstrap iteration number 1 2 3 Total 

Number of newly selected features  26 13 1 40 
Number of training face samples  10087 10447 10498 —— 

Table 4: Number of newly selected feature and corresponding number of training face samples of MSL  
with feature-inheriting technique for the 15th stage. 

 
Figure 8: some examples of face samples. 

 
Figure 9: Five types of candidate Haar-like features. 

To investigate the effect of incremental bootstrap, the 
number of iterations for randomly starting bootstrap and 
incremental bootstrap in some stages is gave in Table2. It 
can be seen that incremental bootstrap reduces the 
iterations more and more with stage number increasing. 
Compared with randomly starting bootstrap, incremental 
bootstrap has more stable number of iterations range from 4 
to 8. 

To show the efficiency of feature-inheriting technique, 
two experiments are conducted taking the 15th stage as 
example. The number of newly selected features and the 
corresponding number of training face samples in each 
bootstrap iteration are showed in Table3 and Table4, 
respectively. In the experiments, MSL without using 
feature-inheriting technique selects totally 216 new 

features while MSL with feature-inheriting technique 
selects only 40 new features. The number of newly selected 
features is largely reduced attribute to the feature-inheriting 
technique. The final quantities of features in the stage 
classifiers learned by the two methods are 46 and 40 
respectively. It is a little surprising that fewer features are 
learned by the stage classifier learned with 
feature-inheriting technique. We believe this can owe to the 
sequence forward learning mode of boosting.  

5.3. Experimental results 
Training the cascaded detector totally spent only about 

12 hours with a false alarm rate 1/1, 000, 000 by MSL along 
with feature-inheriting sub-classifier learning. Considering 
that 236,080 face samples are used for cascaded classifier 
learning, it is indeed quite efficient. In contrast, 17 hours 
were needed to train a detector based on RealBoost learning 
with a constant 10000 training face samples randomly 
selected from the same 236,080 samples. 

To get a sense of the accuracy of the classifier, face 
detector learned with MSL was tested on the CMU+MIT 
dataset comprising 130 images containing 507 faces. The 
ROC curves are given in figure 10. In order to construct a 
complete ROC curve, the last classifier layers are removed 
or adjusted by its threshold. Of particular interest is the 
improvement over [5], which is the baseline cascade 
learning method of MSL. This improvement can be 
attributed directly to the advantages of enormous positive 
sample set, since the two detectors are otherwise very 
comparable. The result reported in [23] is also listed for it 
used a different method of manifold to sub-sample face 
ESS. The results reported in [1] and [13] are comparable to 
our system. Nevertheless, an optimization strategy of ROC 
points for cascade is utilized in [1]. We believe if we use 
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some optimizations in adjusting thresholds of the cascade, 
the performance of our method will be improved also. Note 
that, in  [13], results are reported on a reduced dataset with 
5 images containing hand-drawn faces removed. 
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Figure 10: Performance comparison on CMU+MIT face set. 

6. Conclusions 
A novel learning method for cascaded classifier, called 

MSL, is proposed to learn from both enormous positive and 
enormous negative sample set for object detection. In MSL, 
boosting cascade and bootstrapping positive samples are 
integrated into single learning procedure in an efficient way, 
which not only provides a theoretically higher efficiency of 
learning with enormous training set, but also improves 
classifier performance by validating learned classifier on 
enormous positive sample set. Moreover, by the proposed 
feature-inheriting technique in MSL learning, more 
efficient cascade training is achieved.  

The experimental results on standard MIT+CMU frontal 
face test set have shown the robustness and superiority of 
the proposed method. Also we believe the learning method 
presented in this paper can be applied to other classification 
problems in computer vision. 
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