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ABSTRACT

We present a new method of estimating the distribution of sales rates of, e.g., book titles at
an online bookstore, from the time evolution of ranking data found at websites of the store. The
method is based on new mathematical results on an infinite particle limit of the stochastic ranking
process, and is suitable for quantitative studies of the long tail structure of online retails. We give
an example of a fit to the actual data obtained from Amazon.co.jp, which gives the Pareto slope
parameter of the distribution of sales rates of the book titles in the store.
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1 Introduction.

Internet commerce has drastically increased product variety through low search and transaction
costs and nearly unlimited inventory capacity. With this new possibility a theory [Anderson, 2006]
has been advocated which claims that a huge number of poorly selling products (long tail products)
that are now available on internet catalogs could make a significant contribution to the total sales.
In this paper, we refer this theory as the possibility of long tail business.

In studying the possibilities of long tail business, we need a precise, quick, and costless quanti-
tative method of analyzing the long tail structure, but there we encounter a problem. For example,
online bookstores have millions of books on their electronic catalogues, but many of the books have
average quarterly sales less than 1. This means that if we start collecting the sales record, we will
end up, after waiting for 3 months, with a list which has ten thousand lines with 0 sale and another
ten thousand with 1 sale, and so on. Moreover, the result will not mean that a particular book
with 1 sale has a better potential sales ability than a book with 0 sale: A problem characteristic
of quantitative analysis of long tail business is, that for product items of low sales potentials, fluc-
tuations dominate in the observed data. Even though we want to suppress fluctuations, since each
item produces very little profit, we cannot afford to spend time and money in collecting extensive
data over a long period required from the law of large numbers.

If we hope to estimate the total sales of a store, we could obtain it from an observation in
a short period with less relative fluctuations, thanks to the law of large numbers. For a revenue
officer, this may be sufficient. But for those who we are interested in the long tail business, for
example, an executive running the online store or a stockholder waiting for disclosure, as well as
an observer for research purpose, a detailed structure of the contribution of less sold items would
be important. More specifically, we would like to know the distribution of sales potentials of the
products at an online store, such as the ratios of the number of items with average sales rate below
any given number. As discussed in the previous paragraph, extracting the average sales rate of
an item would require a long time of observation. One would then consider observing sufficiently
many items of relatively low sales and calculate an average, to suppress statistical fluctuation, but
then one faces a problem of selecting product items of similar sales potential, and we come back to
the problem of statistical fluctuation for the data on a single item in the long tail regime.

On web pages, various ranking data can be found. An example is the sales rankings of books
at online bookstores such as Amazon.com. On the web page of each book, we see, as well as
the title, price, and description of the book, a number ranging from 1 to several millions which
indicates the book’s relative sales ranking at the online store. In this paper, based on the analysis
of a mathematical model defined and studied in [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b], we
propose a new and simple method, using the ranking data, to overcome the problem of statistical
fluctuations of the data on items with low sales potential. Our method allows us, by observing
how the sales ranking of a single product develops with time, to reproduce the distribution of sales
potentials of all the products sold at the online store, free of statistical fluctuations. Our theory
could serve as an efficient and inexpensive method of a prompt analysis of long tail sales structure.

The plan of the paper is as follows. In Section 2 we review the model of stochastic ranking
process, and explain the main theorems in [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b]. To test
the applicability of our theory in practical situations, we apply in Section 3 the formulas summarized
in Section 2 to the rankings at Amazon.co.jp. In Section 4 we discuss further implications of
the theory of the stochastic ranking process and possible implications of the results obtained at
Amazon.co.jp.
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2 Formulation.

In this section, we summarize the main results in [K.&T. Hattori, 2008a] on the stochastic ranking
process. It is a simple model that describes the time development of sales rankings at online
bookstores.

Consider a system of N items (say, book titles), each of which has a ranking ranging from 1
to N so that no two items have the same ranking. Each item sells at random times. Every time
(a copy of) an item sells, the item jumps to rank 1 immediately. If its ranking was m before the
sale, all the items that had rank 1 through m − 1 just before the sale shift to rank 2 through m,
respectively. Thus, the motion of an item’s ranking consists of jumps to the top and monotonous
increase in the ranking number between its own sales, caused by the sales of numerous other items.

We prove that under appropriate assumptions, in the limit N → ∞, the random motion of each
item’s ranking between sales converges to a deterministic trajectory. This trajectory can actually
be observed as the time-development of a book’s sales ranking at Amazon.co.jp’s website. Simple
as our model is, its prediction fits well with observation and allows the estimation of the Pareto
slope parameter. We also prove that the (random) empirical distribution of this system (sales rates
and scaled rankings) converges to a deterministic time dependent distribution.

To formulate the model mathematically, let us introduce notations and state assumptions. Let
i = 1, · · ·N be the labels that distinguish the items. We denote the sales ranking of item i at time

t by X
(N)
i (t), for i = 1, 2, · · · , N . Assume that a set of initial rankings x

(N)
i,0 = X

(N)
i (0), satisfying

x
(N)
i (0) 6= x

(N)
i′ (0) for i 6= i′, and sales rates w

(N)
i > 0 are given (non-random). Namely, items with

various sales rates (selling well or poorly) start with these given initial rankings x
(N)
i,0 , and set out

to motion according to their sales rates. Let τ
(N)
i,0 = 0 and τ

(N)
i,j , i = 1, · · · , N , j = 1, 2, · · ·, be the

j-th sales time of item i, which is a random variable. Assume that sales of different items occur

independently, and furthermore, for each i, the time interval between sales {τ (N)
i,j+1 − τ

(N)
i,j }j=1,2,···

are independent and have an identical exponential distribution to that of τ
(N)
i,1 given by

P[ τ
(N)
i,1 ≦ t ] = 1 − e−w

(N)
i t, t ≧ 0.

A property of exponential distributions implies that w
(N)
i corresponds to the average number of

sales per unit time. In the time interval (τ
(N)
i,j , τ

(N)
i,j+1) the ranking X

(N)
i (t) increases by 1 every time

one of other items in the tail side of the sales ranking (i.e., with larger X
(N)
i′ (t)) sells. Thus, the

stochastic ranking process is defined as follows: for i = 1, · · · , N ,

(i) X
(N)
i (0) = x

(N)
i,0 ,

(ii) X
(N)
i (τ

(N)
i,j ) = 1, j = 1, 2, · · ·,

(iii) for each i′ 6= i and j′ = 1, 2, · · ·, if X
(N)
i (τ

(N)
i′,j′ − 0) < X

(N)
i′ (τ

(N)
i′,j′ − 0) then X

(N)
i (τ

(N)
i′,j′ ) =

X
(N)
i (τ

(N)
i′,j′ − 0) + 1, where τ

(N)
i′,j′ − 0 means ‘just before’ time τ

(N)
i′,j′ ,

(iv) otherwise X
(N)
i (t) is constant in t. 3

Since sales rankings are determined by random sales times, sales rankings are also random variables.

Let x
(N)
C (t) = ♯{i | τ

(N)
i,1 ≦ t}, where ♯A denotes the number of the elements of a set A. x

(N)
C (t)

is the number of the items which has sold at least once by time t. Note that in the ranking queue of
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items, the item with rank x
(N)
C (t) marks a boundary; all the items with X

(N)
i (t) ≦ x

(N)
C (t) (‘higher’

rankings) has experienced a sale, while those with X
(N)
i (t) > x

(N)
C (t) (‘lower’ rankings) have not

sold at all by time t.

We can also see x
(N)
C (t) + 1, 0 ≦ t ≦ T as the trajectory of the sales ranking of an item that

started with rank 1 at time 0 and has not sold by time T . It is convenient to consider the scaled

trajectory defined by y
(N)
C (t) =

1

N
x

(N)
C (t), for it is confined in the finite interval [0, 1]. The scaled

trajectory is random, but the following proposition shows that this random trajectory converges to
a deterministic (non-random) one as N → ∞.

Recall that item i has sales rate w
(N)
i . This determines the empirical distribution of sales rate

as λ(N)(dw) =
1

N

N
∑

i=1

δ
w

(N)
i

(dw), where δc with c ∈ R denotes a unit distribution concentrated at c.

Namely, for any set A ⊂ [0,∞),

∫

A
δc(dw) =

{

1 , if c ∈ A,
0 , if c 6∈ A.

Proposition 1 Assume that the empirical distribution of sales rate λ(N) converges as N → ∞
weakly to a distribution λ. Then

y
(N)
C (t) → yC(t) (1)

in probability, where

yC(t) = 1 −
∫

∞

0
e−wtλ(dw). (2)

3

This proposition is a straightforward result of the law of large numbers. Intuitively, the stochastic

process y
(N)
C converges to the deterministic curve yC because a trajectory of an item between the

point of its sales is determined by the independent sales of numerous others (towards the tail side
of the book in observation in the ranking). The popularity of the observed book is reflected in the
length of sojourn in the sequence before it makes next jump (i.e., ordered for sales.)

Remarks. (i) The random variable y
(N)
C (t) converges as N → ∞ to a deterministic quantity yC(t).

It implies that if N is large enough, the scaled trajectory provides us with fluctuation-free
information. If we try to know the sales rate of each product by counting the sales for a
certain period of time, we cannot avoid fluctuation. The more precise data we want, the
more time is needed to count the sales, especially for items that rarely sell, say, once a month.
This proposition ensures that by observing the time development of the sales ranking of a
single item, we can reproduce the distribution of sales rates, free of statistical fluctuation.

(ii) L(t) =

∫

∞

0
e−wtλ(dw) on the right-hand side of (2) is the Laplace transform of the distribution

λ. There is a uniqueness theorem according to which the Laplace transform completely
determines the distribution [Billingsley, 1995]. 3

Intuitively, we can guess that near the top of the ranking, there are more items with large sales
rates than in the tail regime. This intuition can be made mathematically precise and rigorous:

Theorem 2 Assume the following:
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(1) The combined empirical distribution of sales rate and the initial scaled sales rankings y
(N)
i,0 =

1

N
(x

(N)
i,0 − 1)

µ
(N)
y,0 (dw dy) =

1

N

∑

i

δ
w

(N)
i

(dw) δ
y
(N)
i,0

(dy),

converges as N → ∞ to a distribution µy,0(dw) dy on R+×[0, 1] which is absolutely continuous
with regard to the Lebesgue measure on [0, 1].

(2) λ({0}) = 0D

(3)

∫

∞

0
wλ(dw) < ∞.

Then the combined empirical distribution of sales rate and scaled rankings Y
(N)
i (t) =

1

N
(X

(N)
i (t)−

1)

µ
(N)
y,t (dw dy) =

1

N

∑

i

δ
w

(N)
i

(dw) δ
Y

(N)
i (t)

(dy)

converges as N → ∞ to a distribution µy,t(dw) dy which is absolutely continuous with regard to the
Lebesgue measure on [0, 1].

In particular, the ratio of items with 0 < a ≦ w ≦ b and rankings in [0, y] ⊂ [0, 1) at time t is
given by

∫ y

0
µz,t([a, b]) dz =















∫ b

a
(1 − e−wt0(y))λ(dw), y < yC(t),

∫ b

a
(1 − e−wt)λ(dw) +

∫ b

a
e−wt

∫ ŷ(y,t)

0
µz,0(dw) dz, y > yC(t),

(3)

where t0(y) is the inverse function of the strictly increasing continuous function yC(t):

yC(t0(y)) = y, 0 ≦ y < 1, (4)

and ŷ(·, t) is the inverse function of yC(y, t) = 1 −
∫ 1

y

∫

∞

0
e−wtµz,0(dw) dz., which is a strictly

increasing continuous function of y.

Furthermore, the trajectory 1
N X

(N)
i (τi,j + t), time-shifted by τi,j, converges as N → ∞ to yC(t)

given in Proposition 1 up to the next jump time ( 0 ≦ t ≦ τi,j+1 − τi,j ). 3

Remarks. (i) Assumption (1) says that in actual applications we are considering a long tail econ-
omy with a large number of items N ≫ 1, and that we may regard the empirical distribution

µ
(N)
y,0 at the starting point of observation as a continuous distribution.

(ii) Assumption (2) implies that all the items sell. With extra notations Theorem 2 essentially
holds without Assumption (2), but we will keep it to avoid complications.

This assumption implies that yC is a strictly increasing function of t, and the inverse function
t0 : [0, 1) → [0,∞) exists. Under Assumption (2), yC(y, t) is a strictly increasing function of
y, thus the inverse ŷ(·, t) : [yC(t), 1) → [0, 1) exists.

(iii) Assumption (3) assures the explicit form of the limit (3) in the following Theorem to hold also
for y = 0. For y > 0 the Theorem holds without Assumption (3). (Hence the only essential
assumption is the Assumption (1).)
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(iv) The last statement in the Theorem implies that by observing the time development of the
ranking xC(t) of any single item from the moment of its sales point (xC(0) = 0), we can,
by equating yC(t) = xC(t)/N with (2), obtain the information on the distribution of sales
potential {wi}, of all the items listed in the rankings.

(v) This Theorem is mathematically nontrivial in the sense that a law of large numbers of ‘de-
pendent’ random variable is the key to the proof.

It is also known that µy,t(dw) satisfies the following set of partial differential equations: For
any measurable set A ⊂ [0,∞),

∂ µy,t(A)

∂t
+

∂ (v(y, t)µy,t(A))

∂y
= −

∫

A
wµy,t(dw),

∂ v

∂y
(y, t) = −

∫

∞

0
w µy,t(dw).

For mathematical details, see [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b]. 3

In the subsequent sections we consider the stochastic ranking process as a model for the rankings
found, for example, at the web sites of an online bookstore. We regard an item in the model as a
book title, and the jump time to rank 1 as the time that the title is ordered for sale. According
to the definition of the model, we assume that each time a book is ordered the ranking of the title
jumps to 1, no matter how unpopular the book may be. At first thought one might guess that such
a naive ranking will not be a good index for the popularity of books. But thinking more carefully,

one notices that well sold books (items with large w
(N)
i , in the model) are dominant near the head

of the ranking, while books near the tail are rarely sold. Hence, though the ranking of each book
is stochastic and has sudden jumps, the spacial distribution of jump rates are more stable, with
the ratio of books with large jump rate high near the top position and low near the tail position.
Seen from the bookstore’s side, it is not a specific book that really matters, but a totality of book
sales that counts, so the evolution of distribution of jump rate is important. Theorem 2 says that
we can make this intuition rigorous and precise, with an explicit form of the distribution when the
total number of titles in the catalog of the bookstore is large (i.e., in the large N limit).

3 Application to sales analysis of Amazon.co.jp.

In this section, we give an explicit example of how the theoretical framework in Section 2 could
be applied to realistic situations. We will focus on the sales ranking data found at the websites of
Amazon.co.jp, the Japanese counterpart of the online bookstore Amazon.com.

We first give in Section 3.1 a brief explanation about the sales ranking number found at the web
pages for Japanese books at Amazon.co.jp, and summarize in Section 3.2 the method of applying
Section 2 to actual ranking data, and give an explicit result of statistical fits of the distribution of
sales rate of the books at the online bookstore.

3.1 Amazon.co.jp book sales ranking.

The web sites of Amazon (irrespective of countries) have a web page for each book title, where
we find, as well as its title, author and price, a number which represents the sales ranking of the
book. It has been noticed [Chevalier etal., 2003, Brynjolfsson etal., 2003] that this number serves
as an important data for quantitative studies of the economic impact of online bookstores. This is
because the number reflects the sales rate of the book, and especially in the situation that, in terms
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of [Brynjolfsson etal., 2003], ’Internet retailers are extremely hesitant about releasing specific sales
data’, it can be one of the scant data publicly available.

We refer to [Chevalier etal., 2003] for general structure of the web pages, and to [Rosenthal, 2006]
for a summary based on apparently a long and extensive observation of the ranking number at Ama-
zon.com, and in particular, discussion on its relation to the actual sales of the book at Amazon.com.
Here we focus on observed facts about the time evolution of ranking numbers at Amazon.co.jp.
Firstly, it is said that Amazon.com adopts an involved definition of the ranking numbers than the
stochastic ranking process. Secondly, Amazon.co.jp is easier for the authors to find appropriate
data (it is our home country).

If we keep observing the ranking number of a book, we soon notice that it is updated once per
hour regularly. For a relatively unpopular book title, the corresponding ranking number increases
steadily and smoothly for much of the time as the number is updated, but once in a while we see
a sudden jump to a smaller number around ten thousand. This happens when a copy of the book
is ordered for purchase, which can be checked by personally ordering a copy at Amazon website;
at the update time which is 1 – 2 hours after the order, the ranking number is observed to jump.
Actually, except for the top ten thousand sellers out of a few million Japanese book titles catalogued
at Amazon.co.jp, a book sells less than 1 per hour on average, hence the qualitative motion just
described hold for 99 percent of the book titles at Amazon.co.jp.

Note that this behavior of the time evolution of a ranking number is similar to that of stochas-
tic ranking model in Section 2. The correspondence is also natural from an observation by
[Rosenthal, 2006] that the Amazon’s ranking number system ‘is based almost entirely on “what
have you done for me lately”’. For seldom sold books, any natural definition of the ranking number
satisfying such a criterion would be in the order of latest sales time, because any sales record before
the latest one should be further remote past and would have only a small effect on any reasonable
definition of the ranking number. Hence the definition of the stochastic ranking process in Sec-
tion 2, even though it may have sounded over-simplified, has a chance of being a good theoretical
basis for modelling the ranking numbers on the web, especially for probing a large collection of
titles in the long tail regime of the catalog, which is of interest in this paper.

If we further assume as usual that the point of sales are random, then we will have a full
correspondence between the stochastic ranking model and the time evolutions of ranking numbers
at Amazon.co.jp. Based on the correspondence, we give, in the next subsection Section 3.2, explicit
formulas which relate a time evolution of a ranking number xC(t) to a distribution of average sales
rate of the book titles at the bookstore, and then using the formulas we give results of fits with
observed data.

3.2 Stochastic ranking process analysis of book sales ranking.

We start with a standard assumption, as, for example, in [Chevalier etal., 2003, Brynjolfsson etal., 2003],
that the probability distribution of book sales rate is a Pareto distribution (also called a power law
or a log–linear distribution). In the notations of Section 2 this means that we assume the probability
measure λ to be

λ([w,∞)) =

{
( a

w

)b
, w a,

1, w < a,
(5)

where a and b are positive constants. Its probability density function is given by

dλ

dw
(w) =







bab

wb+1
, w ≧ a,

0, w < a.
(6)
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In terms of books, w denotes the average sales rate of a book on the list of a bookstore; a book with
w sells on average in the long run w copies per unit time. λ is the distribution of w; for example,
λ([w,∞)) is the ratio of the number of book titles with sales rate w or more to the total number of
titles. Alternatively we could start with another (discrete) formulation of the Pareto distribution

wi = a

(

N

i

)1/b

, i = 1, 2, 3, · · · , N, (7)

where the constant a in (7) (or in (5)) denotes the lowest positive sales rate among the book titles
at the store. Note that the books that never sell should be omitted in applying our theory. N is
the total number of such titles as actually sell catalogued at the online bookstore, and wi is the
average sales rate of the i-th best seller. The ratio of titles with w or more average sales rate is
then

1

N
♯{i | wi ≧ w} =

1

N
♯{i | i ≦ N

( a

w

)b
} =

( a

w

)b
,

for w ≧ a, reproducing (5).
The exponent b (−1/b corresponds to the Pareto slope parameter) is crucial in the analysis

of economic impact of the retail business in question. In fact, previous studies using the ranking
numbers at the online bookstores [Chevalier etal., 2003, Brynjolfsson etal., 2003] use the data for
extracting the exponent b, which then was used to study various aspects of economic impact of
the online bookstores. An intuitive meaning of the exponent b can be seen, for example, by taking
ratio of (7) for i = 1 and N , to find

w1

wN
= N1/b, (8)

which roughly says that for large N if b is small then w1 is very large compared to wN , so that
the greatest hits dominate the sales, while if b is large the contributions are more equal, and since
there are many unpopular titles, their total contribution to the sales may dominate (the ‘long tail’
possibility). We will discuss further on the implications of the parameter b in Section 4.

Our method of obtaining the parameters a and b is to observe a time development of the
ranking of any single book title, which contains information of λ, with statistical fluctuations
strongly suppressed. (One may be curious why a data from a single title could have fluctuation
suppressed. This is because the time development of the ranking, during the book in question is
not sold, is a result of the total sales of the the large amount of titles in the tail side of the observed
book in the catalog of an online bookstore, hence the statistical fluctuation is suppressed by a law-
of-large-numbers mechanism. This is a practical meaning of the deterministic motion appearing as
an infinite particle limit stated in Section 2.) Substituting (5) in (2) we have

yC(t) = 1 − bab

∫

∞

a
e−wtw−b−1dw = 1 − b(at)bΓ(−b, at), (9)

where Γ is the incomplete Gamma function defined by Γ(z, p) =

∫

∞

p
e−xxz−1dx. Since b is positive

Γ(−b, at) → ∞ as t → 0. This divergence is mathematically harmless because of the factor tb, but
from a practical point of view, it is convenient to use the integration-by-parts formula

Γ(z, p) = −z−1pze−p + z−1Γ(z + 1, p) (10)

to obtain
yC(t) = 1 − e−at + (at)bΓ(1 − b, at). (11)
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This formula is satisfactory for 0 < b < 1. For 1 < b < 2 use (10) again to obtain

yC(t) = 1 − (1 − at

b − 1
) e−at − (at)b

b − 1
Γ(2 − b, at). (12)

In principle, we may perform integration by parts as many times as required, though we did not
come across values b ≧ 2 in the literature or in our data. For b = 1, we need a slightly different
formula with ‘logarithmic corrections’, but we have not observed any practical evidence that the
exact value of b = 1 occurs, so we will always assume b 6= 1 in the following, to simplify the formulas.

Note in particular, that (11) implies that for b < 1 we have a concave time dependence for short
time,

yC(t) = (at)bΓ(1 − b, 0) + o(tb),

while (12) implies that for b > 1 we have linear short time dependences. According to the results
in Section 2, yC(t) is the relative position (i.e., 0 ≦ yC(t) < 1) at time t in the ranking of the title
which was at the top position (i.e. sold) at t = 0. The corresponding ranking number xC(t) is
given by

xC(t) ≃ N yC(t) = N (1 − e−at + (at)bΓ(1 − b, at)). (13)

where N is the total number of the catalogued titles that actually sell. We cannot control sub-
leading order in N because of the statistical fluctuations. (The limit theorems in Section 2 assures
that the leading order is free of statistical fluctuations.) However, since Amazon has a huge ‘elec-
tronic bookshelf’ of order N = O(106), we will omit the statistical fluctuations of relative order

O(
√

N
−1

) = O(10−3).

Incidentally, we can alternatively start from (7) and use the empirical distribution
1

N

N
∑

i=1

δwi

for λ, where δw is a unit distribution concentrated at w. Then from (2) we have, by elementary
calculus,

yC(t) = 1 − 1

N

N
∑

i=1

e−a(N/i)1/bt = 1 −
∫

∞

a
e−wtbab

∫

∞

a
e−wtw−b−1dw + O(N−1),

reproducing (9).
Before closing this subsection, we recall that (2) implies that the ranking of an item is, as a

function of time t, essentially the Laplace transform of the underlying distribution λ of the jump
(sales) rates. If we have a accurate and long enough ranking data (i.e., observation of the time
evolution of the ranking xC(t) for a very long period and with very fine intervals), the uniqueness
of inverse Laplace transform assures in principle the determination of λ non-parametrically, i.e.,
without assumptions on λ such as assuming Pareto distribution (5). This approach however requires
a very fine data, because the Laplace transform has smoothing effect through e−wt factor, and a
small irregular differences in the Laplace transform could result in a large difference in the original
function. In the case of Amazon.co.jp, which we see in Section 3.3, the ranking is updated only once
per hour and we cannot expect fine enough data (as is also the case of Amazon.com), so we will
follow a standard approach assuming a Pareto distribution for λ. (Needless to say, the managers
in the Amazon company have access to precise real-time data, hence our methods will help them
analyze and plan the inventory controls and evaluate the sales.)

If long tail economy expands in the future, and our methods turn out to be of practical use, it
would be preferable to have real time spontaneous updates of the ranking data, which will make our
methods more efficient and accurate. (It will not cost any more than the current Amazon’s ranking
data updates with hourly intervals; in fact, the title listings at the 2ch.net adopt such algorithms
[K.&T. Hattori, 2008b].)
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3.3 Results from Amazon.co.jp.

By performing a statistical fit to (13) of ranking time evolution data, we can in principle obtain
the parameters a and b which determine the distribution of average sales rates of the book titles at
Amazon.co.jp. In the practical situations, it turns out that the total number N of the book titles
also needs to be determined from the data.

We are aware that Amazon.co.jp publicizes at their website the total number of book titles on
their catalog, which can be reached by making an unconditioned search at the Amazon website.
However, the book catalogs at Amazon websites contain books which are not available and therefore
do not sell, hence, as we noted below equation (7) while describing the Pareto distribution, should
be discarded from our analysis. We have experienced more than once that we order a book at the
website and receive a note after a while that the book has not been found and that the order is
cancelled. At the same time, we observe the ranking number of that cancelled title making jumps
to the tail side. We thus realize that the claimed number of titles at the website contains those
with w = 0 and is therefore strictly larger than what we should use for N in our formulation. As
an explicit example, the number from Amazon.co.jp search results was 2,587,571 on Oct. 4, 2007,
while our fits indicates N to be strictly less than 1 million (see (14)). Now we turn to our results of

500 1000 1500 2000

500000

Fig 1: A long time sequence of data from Amazon.co.jp. The solid curve is a theoretical fit.
Horizontal and vertical axes are the hours and ranking, respectively.

observation. The plotted nd = 77 points in Fig. 1 show the time evolution of the ranking of a book
we observed between the end of May, 2007 (at which point the book was ordered for sales) and mid
August, 2007 (at which point the book was bought again). The solid curve is a least square fit of
these points to (13). The best mean-square fit for the parameter set (N, a, b) is:

(N∗, a∗, b∗) = (8.57 × 105, 3.939 × 10−4, 0.6312). (14)

Note that N∗ is large, hence the fluctuations arising from randomness in the sales are relatively
suppressed (O(1/

√
N∗) = O(10−3)), as expected, while the number is smaller than that found by



11

performing a search at the Amazon website (8.57× 105 < 2.6× 106), so that a fit of N is necessary.
a∗ is in units of [1/hour] and corresponds to 3.5 months for 1/a∗, which is longer than the interval
of observation (2.5 months). Our method allows the determination of time constants longer than
the interval of observation because there are a large amount of (mostly unpopular) titles which
theoretically allow a law-of-large-numbers mechanism. (The obtained value of a∗ does not mean
that there are no books at all which sells, say, only one copy a year on average; it says that such
books are much less than would be expected from a log-linear (Pareto) distribution and have a
negligible economic impact.)

The total variance χ2 of the data from this fit is χ2 = 1.599 × 1010, hence the statistical
fluctuation ∆yC of the relative ranking is roughly of order

∆yC =
1

N
∆xC ∼ 1

N

√

χ2/nd = 0.02.

This seems a little larger than an expectation from the Gaussian fluctuation which would be of
order 1/

√
N = 10−3. Fig. 1 suggests that a possible reason of the deviations of data from the fit is

caused by a small jump at about t = 300 hours. We suspect this as a result of inventory controls at
the web bookstore, such as unregistering books out of print. Apparently, Amazon.co.jp in the year
2007 was updating their catalogs manually and only occasionally, making it a kind of unknown
time dependent external source for our analysis.

500 1000 1500 2000 2500 3000 3500 4000

500000

Fig 2: Two long time sequence of data from Amazon.co.jp. One sequence with 77 points is the
data in Fig. 1, another one with 27 points. The solid curve is a theoretical fit to the 77 + 27 data.
Horizontal and vertical axes are the hours and ranking, respectively.

Concerning the stability of the parameters, we made another series of observation between
November, 2007 and March, 2008. This time, having less time to spare we recorded only once a
week resulting in nd = 27 points. The solid curve in Fig. 2 is a least square fit of the combined 27
points and the 77 points in Fig. 1 to (13). The best mean-square fit for the parameter set (N, a, b)
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is:
(N∗, a∗, b∗) = (8.00 × 105, 5.803 × 10−4, 0.7959). (15)

χ2 = 2.0111 × 1010 (∆yC ∼ 0.02) effectively remained same as (14). The parameters have changed
somewhat; change in the total number of active books N∗ is not large (about 7%), 1/a∗ = 2.4
months which is somewhat shorter than (14). The exponent b∗ is larger, but note that we again
have exponent b strictly less than 1.

Though we clearly and consistently have b < 1 (also seen from the concave figure in Fig. 1 and
Fig. 2), its value has changed. The change of N∗ and a∗ between (14) and (15) is consistent with
a hypothesis that Amazon.co.jp performed inventory controls (as they should do) and got rid of
books with low sales between the two series of observations, so one explanation is that the exponent
b also changed. Another possible reason is that the new data of once per week are too sparse and
that we need finer data for stable fits. In fact, as pointed out at the end of Section 3.2, a fit to the
distribution may be sensitive to small changes in the ranking data, and a data finer than once per
week may be required. This problem could be overcome by automated data acquisition through
computer programming.

The values b∗ = 0.6312 in (14) and b∗ = 0.7959 in (15) are both less than 1. The result, b∗ < 1
obtained from our data may also be convincing by a look at Fig. 1 and Fig. 2, because, as we
noted below (12), the short time behavior of the ranking is proportional to tb for b < 1 (which
implies the graph is tangential to the ranking axis), while is linear for b > 1. Previous studies
[Chevalier etal., 2003, Brynjolfsson etal., 2003] adopt values b > 1. (The correspondences of the
notations are b = −1/β2 for [Brynjolfsson etal., 2003] and b = θ for [Chevalier etal., 2003]. In
statistics textbooks b = α and a = 1/β are also used.) According to what we remarked below (8),
this implies that, in general, the economic impact of keeping unpopular titles at online bookstores
may be overestimated in the previous studies. We will continue on this point in Section 4.

4 Discussions.

4.1 Formulas for the long tail structure of online retails.

In Section 3 we dealt with an application of a formula (2) in a practical situation, a prediction on
the time evolution of the ranking of a book. The theoretical framework in Section 2, introducing
the main results of [K.&T. Hattori, 2008a], contains more than this, and predicts the total amount
of sales (per unit time) that could be expected from the items (e.g., books, in the case of an online
bookstore) on the tail side of any given ranking number m ≦ N .

Note that this is not equal to the total contribution to the sales from the tail side aligned

in order of potential (average) sales rate, which is
N

∑

i=m

wi in the notations in Section 3. This is

because, since the ranking number jumps to the head each time the item sells at a random time,
and since there are a very large number of items (N ≫ 1), we always have some lucky items with
low potential sales around the head side of the rankings, and according to a similar argument, we
also must have some ‘hit’ items towards the tail side. The main theorem in [K.&T. Hattori, 2008a],
as explained in Section 2, states that the ratio of such (un-)lucky items having ranking numbers
very different from those expected from their potential sales ability wi is non-negligible even in the
N → ∞ limit.

An explicit formula can be derived from (3). Note that (2) and Assumption (2) for Theorem 2
imply lim

t→∞

yC(t) = 1, hence after a sufficiently long time since the start of the bookstore and its
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ranking system, one may assume that the ranking reaches a stationary phase and the first equation
in (3) holds for all 0 ≦ y < 1. Letting a = w and b = w + dw in (3) we have

∫

z∈[0,y]
µz,t(dw) dz = (1 − e−wt0(y))λ(dw). (16)

Let 0 < r1 < r2 ≦ 1, and denote by S̃(r1, r2) the contribution to the total average sales per unit
time from the items with ranking number between r1N and r2N . For a very large N , we may let
N → ∞ and use (16) to find

lim
N→∞

1

N
S̃(r1, r2) =

∫

(w,z)∈[0,∞)×[r1,r2]
wµz,t(dw) dz

=

∫

(w,z)∈[0,∞)×[0,r2]
wµz,t(dw) dz −

∫

(w,z)∈[0,∞)×[0,r1]
wµz,t(dw) dz

=

∫

∞

0
w(e−wt0(r1) − e−wt0(r2))λ(dw).

(17)

This is valid for an arbitrary sales rate distribution λ; for the Pareto distribution (6) we have, using
the incomplete Gamma function as in (9),

lim
N→∞

1

N
S̃(r1, r2) = ab (Γ(1 − b, q(r1)) q(r1)

b−1 − Γ(1 − b, q(r2)) q(r2)
b−1), (18)

where q(r) = a t0(r) is given by (4) with (11):

r = 1 − e−q(r) + q(r)b Γ(1 − b, q(r)). (19)

For 1 < b < 2, a better expression using (10) as in (12) would be

lim
N→∞

1

N
S̃(r1, r2) =

ab

b − 1
(e−q(r1)−Γ(2−b, q(r1)) q(r1)

b−1−e−q(r2)+Γ(2−b, q(r2)) q(r2)
b−1), (20)

with

r = 1 − e−q(r) (1 − q(r)

b − 1
) − q(r)b

b − 1
Γ(2 − b, q(r)). (21)

S̃(r1, r2) is to be compared with the contribution S(r1, r2) to the total average sales per unit
time from the items i between r1N and r2N ordered in decreasing order of potential sales rate wi,
as in (7). We have,

lim
N→∞

1

N
S(r1, r2) = lim

N→∞

1

N

r2N
∑

i=r1N

wi = lim
N→∞

1

N

r2N
∑

i=r1N

a

(

N

i

)1/b

= a

∫ r2

r1

x−1/bdx

=
ab

b − 1
(r

(b−1)/b
2 − r

(b−1)/b
1 ).

(22)

Note that q(0) = 0 and q(1) = ∞. The latter is from (9):

r = 1 − bq(r)b Γ(−b, q(r)) = 1 − b

∫

∞

1
e−q(r)yy−b−1dy.

The last term is a convergent integral for b > 0, which is proved by (19) for 0 < b < 1 and by (21)
for 1 < b < 2. It converges to 0 as q(r) → ∞.
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The special case of r2 = 1 corresponds to the contribution from the tail side in the ranking for
S̃(r, 1) and the tail side in the potential sales rate for S(r, 1) (the ‘long tail’), which are (after some
elementary calculus as above)

lim
N→∞

1

N
S̃(r, 1) = abΓ(1 − b, q(r)) q(r)b−1

=
ab

b − 1
(e−q(r) − Γ(2 − b, q(r)) q(r)b−1),

(23)

with q(r) given by (19) or (21), and

lim
N→∞

1

N
S(r, 1) =

ab

b − 1
(1 − r(b−1)/b). (24)

Concerning the contributions from the head side (‘great hits’), we note that the cases b > 1 and

b < 1 are different. This is easy to see in (22), where we find lim
r1→+0

lim
N→∞

1

N
S(r1, r2) = ∞ if b < 1,

while for b > 1, we can safely take r1 → 0 limit to find

lim
N→∞

1

N
S(0, r) =

ab

b − 1
r(b−1)/b.

This quantity represents an average sales rate per unit time per unit item, which is finite for the
realistic situations. For b < 1 great hits dominate in the total sales, which theoretically becomes
infinitely large as N → ∞ (see (7)), while for b > 1 all the items contribute non-trivially, and
that with a large number of items, the contribution from the ‘long tail’ would dominate, which
intuitively explains the difference in the behavior. The divergence is a result of N → ∞ limit. We
will consider cases b > 1 and b < 1 separately and discuss the implication of the value of b in detail.

4.2 Implications of the Pareto exponent b.

We noted at the end of Section 4.1 and also below (8) that large b means that the ‘long tail’ is
important while small b means that great hits dominate. Intuitively, there are O(1) great hits
and O(N) long tail items, so the ratio of the contribution of the former to the latter is, using (8),

O(
w1 × 1

wN × N
) = N1/b−1, hence when the total number of items N is large, the dominant contribution

to the total sales change between b > 1 and b < 1.

4.2.1 Case b > 1: The long tail economy.

Let b > 1 and assume N is large.
For 0 ≦ r ≦ 1, the contribution to the total sales per unit time of the N(1 − r) items (out of

the total N) with low sales potentials is given by (24):

S(r, 1) ≃ Nab

b − 1
(1 − r(b−1)/b). (25)

In particular, the total sales per unit time at the online store is

Stot = S(0, 1) ≃ Nab

b − 1
. (26)

Subtraction gives us the total sales amount from the Nr top hits per unit time:

S(0, r) ≃ Nab

b − 1
r(b−1)/b. (27)
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Similarly, (23) gives the contribution to the total sales per unit time from the N(1 − r) items
in the tail side of the ranking :

S̃(r, 1) ≃ NabΓ(1 − b, q(r)) q(r)b−1 =
Nab

b − 1
(e−q(r) − Γ(2 − b, q(r)) q(r)b−1);

r = 1 − e−q(r) (1 − q(r)

b − 1
) − q(r)b

b − 1
Γ(2 − b, q(r)).

(28)

In particular, noting q(0) = 0 and

Γ(1 − b, q) qb−1 =

∫

∞

1
e−qyy−b dy →

∫

∞

1
y−b dy =

1

b − 1
, q → 0,

we have S̃(0, 1) =
Nab

b − 1
for b > 1, which is equal to (26) as expected, because all the items in the

store are listed on the ranking. Subtraction gives us the total sales amount from the top Nr items
in the ranking (at any given time, if the ranking is stationary) per unit time:

S̃(0, r) ≃ Nab (1 − Γ(1 − b, q(r)) q(r)b−1) =
Nab

b − 1
(1 − e−q(r) + Γ(2 − b, q(r)) q(r)b−1). (29)

The large b implies that there is a good chance in the long tail business. For example, for
a extreme case of b = 2, (27) implies S(0, 0.2)/S(0, 1) ≃

√
0.2 ≃ 0.447, so that top 20% of hit

items contribute only 45% of total sales, far less than 80% , challenging the widespread ‘20–80
law’. This is, however, too extreme, and we should use realistic values. Concerning the analysis
based on the rankings of Amazon.com, Chevalier and Goolsbee [Chevalier etal., 2003] explored a
number of sources of information, including their own experiment, and obtained values for the
exponent b ranging from 0.9 to 1.3, and adopted the value b = 1.2 for their subsequent calculations,
to find, for example, that the online bookstores have more price elasticity than the brick-and-
mortar bookstores and have a significant effect on the consumer price index. Brynjolfsson, Hu,
and Smith [Brynjolfsson etal., 2003] uses b = 1.15 (−1/b = β2 = −0.871 in their notations), to
evaluate the increase in consumer welfare by the introduction of large catalogues of books by the
online bookstores. They also quote the values in [Chevalier etal., 2003] and report a result of
similar experiment to obtain b = 1.09. For b = 1.2 and b = 1.15 we have S(0.2, 1)/Stot ≃ 0.235
and S(0.2, 1)/Stot ≃ 0.189, respectively, behaving more or less like ‘20–80 law’. Of course, we are
considering N of order of million (or more, with the advance in the web 2.0 technologies and online
retails expected in the close future) distinct items as in (14) or (15), and top 20% also means a
large number. The term ‘possibility of the long tail business’ makes sense for b > 1, in the sense
that, with a drastic decrease in the cost for handling a large inventory through online technology,
a retail with a million items on a single list produces a large profit.

Let us return to (28) and consider the role of the stochastic ranking process in inventory controls.
As an example, consider a situation where an online store is to open a new brick-and-mortar store
with rN items out of N item sold at the online store. If the manager knew the average sales rate wi

of each item i = 1, · · · , N (for example, based on past records at the online store), he would choose
the top rN items and the expected decrease in the total sales (per unit time) compared to the
online store will be S(r, 1). (wi will usually be estimated based on past record of sales, and there
is a potential problem, as expressed in the Introduction, that for items with small wi, one would
have small sales records, and statistical fluctuations obscure precise determination of wi in the long
tail regime. How the managers find way out in this approach is beyond the scope of this paper.)
Now if the manager considered it quicker to select top rN items in the ranking at the online store,
what would be the extra loss? In this case, the expected decrease in the total sales (per unit time)
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Fig 3: Ratio of contribution to the total sales from lower N(1−r) items in the ranking to that from
lower N(1− r) items in the sales potential. The upper and the lower curves correspond to b = 1.15
and b = 1.2, respectively. The horizontal and vertical axes are r and S̃(r, 1)/S(r, 1), respectively.

will be S̃(r, 1), so the ratio S̃(r, 1)/S(r, 1) measures the extra loss from the use of ranking number
in place of sales rate. Fig. 3 shows this ratio as a function of r for 0.1 ≦ r ≦ 0.9, calculated using
(28). As a value of b we adopted the values from [Chevalier etal., 2003, Brynjolfsson etal., 2003].
The ratio turned out to be insensitive to r in this range and shows 35% to 40% increase. (For r
near 0 and 1, the ratio approaches 1, and the use of ranking data is better. For large b the ratio
also approaches 1, and we also found that the ratio is not sensitive up to b close to 1.) This shows
an example of the use of ranking data as simple and effective measure of analyzing sales structure
of the long tails.

4.2.2 Case b < 1: The great hits economy.

Now let b < 1 and assume N is large.
As noted at the end of Section 4.1, when we are considering sales for b < 1, taking N → ∞

limit results in unrealistic infinities on average sales (sales per item), arising from divergence of
great hits. Explicitly, from (7) we have wi → ∞ as N → ∞ for each fixed i. Divergence from a
single item does not cause the divergence of the average, but for b < 1, there are many such items
which affect averages.

Before studying this problem, we note that the time evolution of the ranking of a single item
which we discussed in detail in Section 3 has no problem. Theoretically, this reflects the fact that
we assume nothing on the distribution λ in Proposition 1. The problem of divergence of the average
sales rate is theoretically reflected only in the fact that for b < 1 the Assumption (3) to Theorem 2
fails. As remarked below Theorem 2, this affects the distribution at y = 0, the top end of the
rankings, but no theoretical problem occurs for y > 0. Intuitively speaking, if there are (fictitious)
book titles which sell ‘infinitely many copies per unit time’, they keep staying at the top end of
the ranking, and the rest of ‘realistic’ book titles follow the evolution of ranking as predicted by
Proposition 1. Also, the contribution to the total sales from the tail side (both S(r, 1) and S̃(r, 1)
for r > 0) has no problem of divergence, i.e., asymptotically proportional to N as in (25) or (28).
In other words, formulas not containing contributions from the ‘greatest hits’ remain valid: For
0 < r ≦ 1, the contribution to the total sales per unit time from the N(1 − r) items (out of total

N) of low sales potentials is as (25), S(r, 1) ≃ Nab

b − 1
(1− r(b−1)/b), and that from the N(1− r) items
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in the tail side of the ranking is as (28) with (19),

S̃(r, 1) ≃ NabΓ(1 − b, q(r)) q(r)b−1; r = 1 − e−q(r) + q(r)b Γ(1 − b, q(r)).

In particular, we can perform a similar analysis as that concerning Fig. 3 using (28). The loss in
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Fig 4: Ratio of contribution to total sales from lower N(1 − r) items in the ranking to that from
lower N(1−r) items in the sales potential. The upper and the lower curves correspond to b = 0.6312
and b = 0.7959, respectively. The horizontal and vertical axes are r and S̃(r, 1)/S(r, 1), respectively.

total sales per unit time caused by selecting top rN items in the ranking instead of selecting top
rN items in the sales rate can be measured in terms of their ratio S̃(r, 1)/S(r, 1). Fig. 4 shows this
ratio as a function of r for 0.01 ≦ r ≦ 0.9, calculated using (28). As a value of b we adopted the
values in (14) and (15). The ratio is below 1.6 and insensitive to r in this range. For r near 1, the
ratio approaches 1, and the use of ranking data is good. (Unlike the case b > 1 in Section 4.2.1,
the ratio remains strictly greater than 1 as r → 0.)

Returning to the problem of unrealistic infinity, a simple modification for our approach would
be to introduce a cut off. Taking logarithms of (7) we have

log wi = −1

b
log i +

1

b
log N + log a, i = 1, 2, · · · , N. (30)

This formula shows that plotting the sales rates wi against i on a log–log graph, the points will
fall on a single line. (This suggests a reason why Pareto distribution is also called log-linear
distribution and that the exponent −1/b is called the Pareto slope parameter.) When one assumes
Pareto distributions in social and economic studies, the argument would be in reverse direction;
one probably first observes data aligned close to a single line on a log–log graph, and then arrive
at a idealized theoretical model (30) or (7). The line actually ends in realistic situations, and (30)
denotes the tail end by wN = a and the head end by w1 = aN1/b. We let N → ∞ in our formulation
and as a result lost the head end, which causes trouble in average sales rate for b < 1. A simple
remedy is therefore to introduce a cut-off parameter γ > 0 or n0 = γN , and assume a modified
Pareto distribution,

log wi = log a − 1

b
log

i + n0

N + n0
, i = 1, 2, · · · , N, (31)

or extend (7) as

wi = a

(

N + n0

i + n0

)1/b

, i = 1, 2, 3, · · · , N. (32)
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γ = 0 or n0 = 0 is the original Pareto distribution. We assume Pareto distribution to be basically
applicable, so we assume γ ≪ 1 (1 ≪ n0 ≪ N).

Using (32) in the left hand side of (22), we have

lim
N→∞

1

N
S(r1, r2) =

ab

1 − b
(1 + γ)

(

(
1 + γ

r1 + γ
)(1−b)/b − (

1 + γ

r2 + γ
)(1−b)/b

)

. (33)

If γ = n0/N = 0 we reproduce (24). We can safely let r1 → 0 in (33) and find

S(0, r) ≃ Nab

1 − b
(1 + γ)

(

(
1 + γ

γ
)(1−b)/b − (

1 + γ

r + γ
)(1−b)/b

)

. (34)

In particular,

Stot = S(0, 1) ≃ Nab

1 − b
(1 + γ)

(

(1 +
1

γ
)(1−b)/b − 1

)

≃ Nab

1 − b
γ−(1−b)/b. (35)

(The left hand side is obtained by taking leading term in γ ≪ 1.) Note that we cannot let γ → 0
for Stot.

Other quantities can also be derived if we replace (7) by (32). Following the argument below
(7), we have, in place of (6),

dλ

dw
(w) =















0, w > aN1/b(1 + γ−1)1/b,
bab(1 + γ)

wb+1
, a < w < aN1/b(1 + γ−1)1/b,

0, w < a.

(36)

Substituting (36) in (2) we have, in place of (9),

yC(t) = 1 − b(at)b(1 + γ)Γ(−b, at) + b(at)b(1 + γ)Γ(−b, atN1/b(1 + γ−1)1/b). (37)

We note that we can take γ → 0 limit in (37) and reproduce (9). In other words, the effect of γ is
small for the evolution of ranking yC(t), if γ is small. In Section 3 we assumed the original Pareto
distribution, and performed a fit to (11) which is equal to (9). That this works implies that γ is
actually small and that (9) is a good approximation to (37). In fact, as noted at the beginning
of this subsection Section 4.2.2, the effect of ‘greatest hits’ on the ranking is that they keep the
top positions constantly. The ranking data at Amazon websites are updated only once per hour,
and since there are many books which sell more than one per hour, we never observe ranking 1 by
tracing (as we do) a book which sells only once per months. For such observations it is intuitively
clear that taking N → ∞ causes no singularities regardless of the value of b.

Reversing this argument, we see that since small difference in γ does not affect the evolution
of ranking yC(t), we cannot estimate the value of γ from yC(t). The dependence on γ of the total
sales Stot in (35) cannot be removed, hence for b < 1, we cannot estimate the total sales of the
online store from the ranking data. Our method is effective in studying the tail structures, but is
weak at great hits for b < 1. Standard methods, such as estimating from press reports about top
hits, should be combined, if the online store is not willing to disclose the total sales.

Returning to (35), we see that for b < 1 the total sales Stot could be very large (if the cut-off
parameter γ is very small) while (25) implies that S(r, 1), the contribution from the tail side, is
constant in γ, hence the ratio S(r, 1)/Stot could be very small. This is in contrast to the case
b > 1 discussed in Section 4.2.1, where the ratio is significantly away from 0. In this sense, the
contribution to the sales from the long tail would be modest in general, and the impact of long
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tail business on economy would be also modest, if b < 1. Our calculations for Amazon.co.jp in
Section 3 supports b < 1, in spite of the Amazon group’s reputation for their long tail business.
We are however aware that when we talk about possibility of long tail business, there are other
aspects than the contribution to the total sales or the direct economic impact of long tails. For
example, the phrase ‘the leading retail store’ is a highly effective advertisement, and being number
one, would be quoted by mass media, thereby drastically reduce advertisement cost. We therefore
will not be amazed if an online bookstore takes a strategy to advertise their long tail business
model, but is hesitant about disclosing its actual sales achievement, and makes profit largely from
advance orders of ‘great hits’ such as Harry Potter series.

4.3 Conclusions.

In this paper, we gave a mathematical framework of a new method to obtain the distribution
of sales rates of a very large number of items sold at an internet retail site which disclose sales
rankings of their items. We gave explicit formulas for practical applications and an example of a fit
to the actual data obtained from Amazon.co.jp. The method is based on new mathematical results
[K.&T. Hattori, 2008a, K.&T. Hattori, 2008b] on a infinite particle limit of the stochastic ranking
process, and is theoretically new and quantitatively accurate.

The method is suitable especially for quantitative studies of the long tail structure of online
retails, which has been expanding commercially with the advance in computer networks and web
technologies. Calculation algorithm of the ranking numbers is very simple (simplest is the best,
from the theoretical side), and will be relatively easy to implement online. Hence our theory
could serve as an efficient and inexpensive method for disclosure policies and regulation purposes,
as well as for providing the online store business a method of prompt analysis of long tail sales
structure. (We have heard from a book publisher that Amazon.co.jp are not willing to open their
sales results. The publisher was amazed to know that we could estimate Amazon’s sales structure
from their rankings.) With a possible future increase in online long tail business, the role of our
theory in the business disclosure policies may increase its significance.

Since the result is based on mathematical results, it is in principle applicable to general situations
such as retail stores with POS systems, blog page view rankings, or the title listings of the web
pages in the collected web bulletin boards. In fact, we collected a preliminary data from 2ch.net,
one of the largest collected web bulletin boards in Japan, performed a fit to (13), and obtained a
value b = 0.6145 for the Pareto exponent, which is close to (14). See [K.&T. Hattori, 2008b] for
details. In the 2ch.net title listing page, the titles are ordered by ‘the last written threads at the
top’ principle, which matches the definition of the stochastic ranking process in Section 2.

The method would be useful for marketing purposes as well as studies in social activities in
general, thus we consider it worthwhile to disclose the method for free use in practical situations.
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