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Abstract In this paper, a high accuracy and low-complexity 
fixed-point inverse discrete cosine transform (IDCT) based on 
AAN’s fast algorithm is proposed for the approximation of the 
real IDCT. The proposed transform can be implemented with 
16-bit multiplication and 24-bit addition operations. A common 
factor extraction algorithm is used to obtain a new set of real 
factors of IDCT whose integer approximations can be 
implemented with few arithmetic operations. A two-stage scale 
approach is proposed for constraining the dynamic range to a 
narrow range in scale part. The experimental results show that 
the proposed transform has significantly higher accuracy than 
the thresholds of IEEE1180-1190. The results of the proposed 
IDCT implemented into the decoder of MPEG-2 also show that 
the fixed-point IDCT achieves higher performance.  

Index Terms — Fixed-point IDCT, AAN’s fast algorithm, 
IEEE1180-1190. 

1. INTRODUCTION 

Discrete Cosine Transform (DCT) is used in video or image 
coding for decorrelating the spatial signals of pictures. It 
converts the spatial signals to the sparse transformed signals so 
that the transformed signals can be more efficiently compressed 
in following entropy coding. The inverse DCT (IDCT) is the 
inverse process of the DCT. It is used to reconstruct the spatial 
signals from the transformed signals. The ideal DCT/IDCT has 
the perfect reconstruction property. Theoretically, the ideal 
DCT/IDCT is defined as real number operations. Since the limit 
of signal processing technology, many early video or image 
coding standards (MPEG-1, MPEG-2, MPEG-4 part 2, H.263 
and JPEG) adopted the floating-point 8x8 DCT/IDCT to 
compress the videos or images directly. However, the floating-
point DCT/IDCT implementation is high-complexity, thus these 
standards allow the individual decoders to approximate the 
floating-point 8x8 IDCT in practical applications. The fixed-
point IDCT in decoder reduces the complexity of transform 
while involving in the error drift problem. Error drift problem is 
caused by the inexact decoded pictures between encoder and 
decoder. When these inexact decoded pictures are referred by 
inter-coding pictures, the errors may be accumulated. When 
there are no intra-refresh pictures in a long sequence of inter-
coding pictures, the increasing error accumulation may worsen 
the qualities of late decoded pictures severely, especially in 
quarter-sample precision motion compensation used in inter-
prediction of decoder. The degree of error drift is dependent on 
the accuracy of fixed-point IDCT. The higher accuracy is, the 
smaller error drift is. Thus, it is necessary to design a high-
accuracy fixed-point IDCT to reduce the error drifts of decoders. 
On dealing with error drift, the drift-free is our final goal, thus, 
accuracy is first considered in our fixed-point IDCT 
implementation. Under the precondition that small error drift can 

not worsen the decoded pictures, the complexity should be 
reduced as much as possible. Therefore, a trade-off between 
accuracy and complexity should be done in the implementation 
of fixed-point IDCT. 

Directly implementation of IDCT according to the IDCT 
definition needs a large number of arithmetic operations, thus 
many fast DCT/IDCT algorithms are proposed to accelerate 
DCT/IDCT, such as Chen’s [1], Loeffler’s [2] and AAN’s [3] 
fast algorithm. All these fast algorithms reduce the number of 
arithmetic operations greatly, thus are widely applied to the 
implementations of fixed-point IDCTs in decoders. Although the 
number operations of floating-point IDCT can be reduced based 
on these fast algorithms, the 64-bit floating-point operations are 
the other obstacle for its implementation. The fixed-point IDCT 
applied in decoder avoids the complicated floating-point 
operations. But, the high-accuracy integer IDCT is usually 
achieved at the cost of more complicated integer factors and 
wider dynamic range which increases the complexity of fixed-
point IDCT. In this paper, a high-accuracy fixed-point 8x8 IDCT 
based on AAN’s fast algorithm is proposed for reducing the 
error drifts and complexities of decoders. AAN’s IDCT is a scale 
transform which consists two parts, one is scale, and the other is 
co-transform. In the scale part, a two-stage scale approach is 
proposed to divide a scale factor with wide bit width into two 
scale factors with narrow bit widths so that the high-accuracy 
scale is implemented in narrow bit widths. In the co-transform 
part, the common factor extraction algorithm is used to obtain a 
set of real factors so that the integer factors approximated from 
these real factors are implemented with fewer arithmetic 
operations.  

The rest of this paper is organized as follows, in the section 
2, the basic architecture on which the proposed fixed-point 
IDCT based is first presented, and then the common factor 
extraction algorithm and the two-stage approach are described. 
In the section 3, the experimental results are shown. Finally, this 
paper is concluded in the section 4. 

2. THE DESIGN OF FIXED-POINT 8X8 IDCT  

2.1. The architecture of fixed-point IDCT based on AAN’s 
fast algorithm 

AAN’s fast IDCT algorithm is a typical architecture which is 
widely adopted in low-complexity implementations. It is a scale 
transform. The merit of scale transform is that the complicated 
factors inside transform are removed to the scale part as the 
scale factors. As a result, the complexity of transform will be 
reduced. A main characteristic of AAN’s fast IDCT is that only 
4 different factors are left inside transform for necessary 
computation, and the implementation of these factors needs 5 
multiplications and 29 additions totally. There is one 
multiplication at most in each signal path which is effective for 
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parallel implementation [3]. The butterfly structure of AAN’s 
fast 8x8 IDCT with a small modification [4] is presented in Fig.1. 
The difference in the modified AAN’s IDCT is that 3 
multiplications in the odd part of the AAN’s IDCT are replaced 
by a simple plane rotation. The modified AAN’s IDCT has 3 
different factors and needs 6 multiplications and 28 additions in 
core-transform. The modified AAN’s IDCT has fewer data 
dependence than the original AAN’s IDCT. Thus, it is easier for 
implementation. The 8x8 input data are first scaled in the scale 
part. These data are usually scaled in 2-D space with an 8x8 
scale factors. After scale, the outputs of 8x8 scaled data are 
processed row-by-row then colum-by-colum in the core-
transform.  
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Fig.1. 1-D IDCT butterfly architecture of modified AAN’s fast 
algorithm.

 In the proposed fixed-point implementation of IDCT, the real 
factors are usually approximated in the form of an integer 
numerator divided by an integer denominator equivalent to the 
power of 2, i.e.  nDf 2 , where f is the real factor, D is the 

integer numerator and n is the non-negative integer. The form 

of nD 2 as the integer approximation of real factor is used as the 

integer factors of fixed-point IDCT. In this way, the real 
multiplication can be approximately replaced with integer 
multiplication and right-shift. According to nDf 2 , the integer 

numerator D can be obtained through multiplying the real factor 
f by 2n, and then rounding to the nearest integer, 

i.e. )2( froundD n . The approximation accuracy is depended 
on the value of n. The approximation is more accurate with the 
increment of n, while the dynamic range is also widened. Thus, 
the selection of n is a trade-off between accuracy and 
complexity.  

2.2. Common factor extraction algorithm 

A common factor extraction algorithm is used to obtain an 
optimal combination of factors for achieving a high-accuracy 
and low-complexity fixed-point IDCT. The 1-D core-transform 
is composed of even part and odd part. Two different factors 
and  are respectively used as the common factors of even part 
and odd part. With the common factor extraction, the new factor 
pairs are obtained as follows 

( 1, 1 , , ) = (1, cos /4, cos3 /4, sin3 /4) / ,  odd part

( 2, 2) = (1, cos /4) / ,                  even part (1)

The improved AAN’s IDCT is illustrated in Fig.2. The scale 
factor Ci in the improved IDCT is equivalent to the ci multiplied 
by corresponding common factor  or .
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Fig.2. 1D-IDCT factorization of modified AAN’s fast algorithm. 

The different common factor pairs of  and  will cause 
different transform results and complexities of fixed-point IDCT 
implementations. Through adjusting the values of  and , the 
IDCT with different accuracies and complexities can be obtained. 
In this paper, proper values of  and  are selected for the 
proposed fixed-point IDCT. According to the selected values of 
 and , a new set of real factors of IDCT are determined from 

(1). With the integer factors approximated from the new set of 
real factors, the proposed fixed-point IDCT can achieve high 
accuracy and low complexity simultaneously. The integer 
approximations of factors in proposed fixed-point IDCT are 
shown in Table 1.  

Table 1. Integer approximations of real factors  
REAL FACTORS IN IMPROVED IDCT INTEGER APPROXIMATION

1 1/ 17474/16384
1 cos( /4)/ 12356/16384 

cos(3 /4)/ 6687/16384 
sin(3 /4)/ 16144/16384 

2 1/ 17378/16384 
2 cos( /4)/ 12288/16384 

2.3. Two-stage scale approach 

Usually, the scale is executed once before the 2-D core-
transform. The 2-D scale factor Cij is the element of scale matrix 
S in position (i, j). Cij is computed from CiCj. The integer scale 
factors S in the proposed IDCT are the integer rounding of 217

times of real factors Cij, i.e. S = round(217 Cij). According to it, 
the 64 integer scale factors in scale matrix S are obtained and 
presented as 

16384 19552 28542 11075 16384 55679 11823 13064

19552 23333 34061 13217 19552 66446 14108 15590

28542 34061 49723 19294 28542 96998 20596 22759

11075 13217 19294 7487 11075 37638 7992 8831

16384 19552 28542 11075 16384 55679 11823 13064

5

S

5679 66446 96998 37638 55679 189221 40178 44397

11823 14108 20596 7992 11823 40178 8531 9427

13064 15590 22759 8831 13064 44397 9427 10417

(2)
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For guaranteeing the intermediate results of transform in 24-bit 
in following core-transform, the scaled input data are down-
scaled 7-bit. The process of scale is described as 

(F[i][j]*S[i][j]) >>7 (3)

where F[i][j] denotes the input data in the position (i, j), and
S[i][j] denotes the integer scale factor in the corresponding 
position of scale matrixes S. The maximum integer factor in S is 
18-bit unsigned integer. Thus, it needs 18-bit unsigned 
multiplications in the scale, which is the complicated operation 
in both the hardware and the DSP implementations. For solving 
this problem, a two-stage scale approach is proposed for 
constraining the multiplications no more than 16-bit. This 
approach splits an 18-bit multiplication into two less than 16-bit 
multiplications. The process of two-stage scale is expressed as 

 (F[i][j]*S1[i][j]) + (F[i][j]*S2[i][j]>>7) (4)

where S1[i][j] and S2[i][j] denote the two scale factors in 
position  (i, j). S1 is the 11-bit unsigned integer scale matrix and 
S2 is the 7-bit signed integer scale matrix. The two scale 
matrixes are expressed as follows:   

128 153 223 87 128 435 92 102

153 182 266 103 153 519 110 122

223 266 388 151 223 758 161 178

87 103 151 58 87 294 62 69
1

128 153 223 87 128 435 92 102

435 519 758 294 435 1478 314 347

92 110 161 62 92 314 67 74

102 122 178 69 102 347 74 81

S (5)

0 -32 -2 -61 0 -1 47 8

-32 37 13 33 -32 14 28 -26

-2 13 59 -34 -2 -26 -12 -25

61 33 -34 63 -61 6 56 -1
2

0 -32 -2 -61 0 -1 47 8

-1 14 -26 6 -1 37 -14 -19

47 28 -12 56 47 -14 -45 -45

8 -26 -25 -1 8 -19 -45 49

S (6)

3. COMPLXITY ANALYSIS 

The multiplication-free operations of the integer factors in the 
core-transform of the proposed IDCT and their complexities are 
shown in Table 2. It needs to be explained that intermediate 
computing results of 6687/16384 can be reused in the 
computations of 16144/16384, thus the total complexity of  
6687/16384 and 16144/16384 is shown in Table 2. According to 
the Table 2, the complexity of 1-D core-transform is 28 + 3 + 3 
+ 3 + 1 + 2 x 4 = 46 additions and 2 + 3 + 2 + 1 + 2 x 5 = 18 
shifts, and the complexity of 2-D core-transform are 16 x 46 = 

736 additions and 16 x 18 = 288 shifts. Compared with the fast 
integer transform in MPEG-2 TM5 [5] which need 11 
multiplications and 29 additions in 1-D transform, the 
complexity of the multiplication-free implementation of the 
proposed IDCT is lower. 

The scale factors can be absorbed in the inverse quantization, 
which can not increase any complexity to inverse quantization. 
The scale may also be independently implemented through 
multiplying input data with corresponding scale factors. It needs 
to be performed only for non-zero coefficients. Therefore 
instead of executing 64 multiplications during the scaling stage, 
in a typical video decoding scenario it would be sufficient to 
execute only K multiplications which can be as small as 4 or 5 
[6]. Thus, the complexity of scale is 2K multiplications (K<=5). 
Since the integer factors in both core-transform and scale are 
properly scaled, the dynamic range in the proposed IDCT is 
constrained in 24-bit width. The bit width of the proposed IDCT 
is narrower than the 32-bit width of fast integer IDCT in TM5. 

Table 2.  Integer factors’ multiplication-free implementation and 
their complexities. 

4. EXPERIMENTAL RESULTS 

The proposed 8x8 fixed-point IDCT is tested on the 
requirements of IEEE1180-1190 [7]. The 100,000 and 1,000,000 
8x8 data blocks in five different integer intervals [-5, 5], [-256, 
255], [-300, 300], [-384, 383], [-512, 511] are input into both 64-
bit floating-point IDCT and proposed fixed-point IDCT. And 
their outputs are compared. The peak mean square errors (pmse), 
overall mean square errors (omse), peak mean errors (pme) and 
overall mean errors (ome) are used as the accuracy metrics to 
measure the accuracy of the proposed fixed-point IDCT. The test 
results in the metrics of IEEE1180-1190 are shown in Table 3. It 
is observed that the proposed IDCT achieves 10 times more than 
the thresholds of IEEE1180-1190 in omse. Moreover, the 
MPEG-2 TM5 is used as the test bench to test the practical error 
drift of decoder. The encoder of TM5 uses the 64-bit floating-
point DCT and IDCT, and the proposed fixed-point IDCT is 
implemented into the decoder of TM5. Two typical sequences 
foreman and mobile in CIF format are tested. 300 frames of each 
sequence are coded into a group of pictures (GOP). In the GOP, 
just the first picture is coded as intra picture and left pictures are 

Complexity Integer 
approximation 

Multiplication-free 
operations 

addition shift 

17474/16384
x1 = i + (i>> 4), 
x2 = -i – x1, 
o   = x1 – (x2 >> 9); 

3 2 

12356/16384 
x1 = i – (i >> 2), 
x2 = i – (i >> 4), 
o   = x1 + (x2 >> 8); 

3 3 

6687/16384 
x1 = (i>>  5), 
x2 = (i >> 1) – x1, 
o   = i – (x2 >> 5); 

16144/16384 x3 = x2 – (o >> 4), 
o  = x3 + (x1>>5 ); 

4 5 

17378/16384 
x1 = (i >> 9), 
x2 = i + x1, 
x3 = i + (x2 >> 4), 
o   = x3 – x1; 

3 2 

12288/16384 o   = i – (i  >> 2); 1 1 
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coded as inter pictures. The Quantization Scale (QS) is fixed to 1 
for testing the maximum error drift in the extreme condition. The 
drift PSNR between the reconstructed picture in encoder and the 
corresponding decoded picture in decoder is employed as the 
error drift criterion. The drift PSNRs of decoded pictures 
produced by the TM5 decoders with three different IDCTs are 
shown in Fig.3. It can be observed that the drift PSNR curves of 
proposed IDCT are closer to the drift PSNR curves of floating-
point IDCT than these of fast integer IDCT in TM5, which 
indicates that fewer drifts occur between ideal floating-point 
IDCT and proposed fixed-point IDCT.  

Table 3. Results of fixed-point IDCT on the metrics of 
IEEE1180-1190. 

Q – the number of input blocks; 
L, H – input data range [L, H]; 
S – the sign of input data. 

5. CONCLUSION 

In this paper, an 8x8 fixed-point IDCT based on modified 
AAN’s fast algorithm is proposed. A set of new factors for 
proposed fixed-point IDCT is obtained with the common factor 
extraction algorithm, and the two-stage scale approach is used to 
constrain the multiplication operations within no more than 16-
bit. The proposed fixed-point IDCT not only is easily 
implemented in decoder but also reduces error drifts of decoders. 
The experimental results show that the proposed IDCT can 
achieve a higher accuracy and lower complexity than the 
existing fast integer IDCT in TM5.  
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Fig.3. Drift PSNRs of pictures decoded by floating-point IDCT, 
proposed IDCT and TM5’s fast integer IDCT. 

Q L, H S pmse 
(<0.06)  

omse 
(<0.02) 

pme 
(<0.015) 

ome 
(<0.0015) 

104 5, 5 + 5.90e-003 2.35e-003 5.90e-003 1.73e-004 
104 5, 5 - 6.00e-003 2.28e-003 6.00e-003 -7.81e-006 
104 256, 255 + 7.00e-003 2.75e-003 7.00e-003 3.59e-005 
104 256, 255 - 9.00e-003 2.91e-003 9.00e-003 4.06e-005 
104 300, 300 + 5.80e-003 2.46e-003 5.80e-003 -7.81e-005 
104 300, 300 - 7.50e-003 2.44e-003 7.50e-003 3.59e-005 
104 384, 383 + 5.10e-003 2.13e-003 5.10e-003 3.44e-005 
104 384, 383 - 5.30e-003 2.15e-003 5.30e-003 -6.88e-005 
104 512, 511 + 4.40e-003 1.86e-003 4.20e-003 -1.23e-004 
104 512, 511 - 3.70e-003 1.85e-003 3.70e-003 1.45e-004 
106 5, 5 + 6.09e-003 2.31e-003 6.09e-003 4.17e-005 
106 5, 5 - 6.14e-003 2.31e-003 6.14e-003 3.79e-005 
106 256, 255 + 7.49e-003 2.80e-003 7.49e-003 -2.83e-006 
106 256, 255 - 7.34e-003 2.80e-003 7.34e-003 2.77e-006 
106 300, 300 + 6.37e-003 2.53e-003 6.36e-003 1.01e-005 
106 300, 300 - 6.39e-003 2.53e-003 6.38e-003 2.66e-007 
106 384, 383 + 4.97e-003 2.18e-003 4.96e-003 -7.03e-006 
106 384, 383 - 5.01e-003 2.17e-003 4.99e-003 -2.88e-006 
106 512, 511 + 3.83e-003 1.92e-003 3.77e-003 9.06e-007 
106 512, 511 - 3.63e-003 1.92e-003 3.60e-003 3.88e-006 
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