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Abstract—This paper presents a new context modeling technique 
for arithmetic coding of DCT coefficients in video compression.  A 
key feature of the new technique is the inclusion of all previously 
coded coefficient magnitudes in a DCT block in context modeling. 
This enables adaptive arithmetic coding to exploit the redundancy 
of the high-order Markov process in the DCT domain with a few 
conditioning states. In addition, a context weighting technique is 
used to further improve the coding efficiency. The complexity of 
the new arithmetic coding scheme is slightly lower than that of 
Context-based Adaptive Binary Arithmetic Coding (CABAC) of 
H.264. Moreover, the scheme is made compatible to the AVS 
baseline profile. It achieves on average 13% improvement in 
compression ratio over Context-based Two Dimension Variable 
Length Coding (C2DVLC) designed for the DCT domain, and a 
similar coding efficiency as the CABAC technique in H.264.  

I. INTRODUCTION 
Discrete cosine transform (DCT) has been widely used in many 

signal compression standards, such as JPEG, MPEG, and Audio Video 
Coding Standard (AVS) [1] in China. In the DCT domain, statistical and 
subjective redundancies of the signals can be better understood, 
exploited, and removed in most cases. However, it is the process of 
entropy coding of DCT coefficients rather than the DCT transform itself 
that actually achieves data compression. In DCT-based coding systems, 
the bulk of bit budget is spent on DCT coefficients. Consequently, how 
efficiently the DCT coefficients are entropy coded will ultimately 
determine the compression performance. Any entropy code of DCT 
coefficients, such as Huffman code or arithmetic code, has to be driven 
by an estimated probability distribution of the DCT coefficients. 
Statistically, DCT coefficients exhibit diverse behaviors in different 
types of scene contents and video formats.   Learning the local statistics 
based on contextual information is of great importance for higher coding 
efficiency. 

A well-known realization of adaptive entropy coding of video is 
Context-Based Adaptive Binary Arithmetic Coding (CABAC) [2] in 
H.264. In CABAC, a significance map is first encoded to indicate the 
positions of all significant coefficients inside a block of quantized DCT 
coefficients. Then the magnitudes of all non-zero coefficients (Level) 
are encoded in reverse scanning order. Specific context models are 
assigned to the significance map according to its position, while the 

contexts for Level magnitudes are classified according to the successive 
coefficients (in reverse scanning order). These contexts take full 
advantage of the localization property of DCT coefficient in a block and 
average bit-rate savings of 9~14% can be achieved in comparison to 
Context Based Variable Length Coding (CAVLC) [3]. Although 
CAVLC uses contexts to remove some of the inter-coefficients 
redundancy, it suffers from several shortcomings that limit further 
coding gains. For example, in CAVLC, the contexts are pre-defined 
from training statistics, and there is no adaptation mechanism to combat 
possible statistics mismatch. Furthermore, symbols of probabilities 
greater than 0.5 cannot be efficiently coded due to the intrinsic limit of 
1bit/symbol of Huffman code if without symbol blocking. 

In AVS-P2 baseline profile, the VLC-based entropy coding is 
adopted, called Context-based Two Dimension Variable Length Coding 
(C2DVLC) [4]. In C2DVLC, the coefficients are coded as (Level, Run) 
pairs in the reverse scan order until EOB (End of Block) occurs. The 
coding table switch of (Level, Run) pairs is made based on the 
maximum magnitude of previously coded coefficients. In February 
2006, AVS-P2 was approved to be the Chinese national 
recommendatory standard, and now AVS is working on the 
enhancement profile of AVS-P2 aiming to further improve coding 
efficiency. To this end, we reexamined the CABAC scheme in H.264 
and developed a novel, low-complexity context model for binary 
arithmetic coding of DCT coefficients. Since our technique is designed 
for AVS-P2 enhancement profile, the compatibility with the AVS 
baseline is required.  Additional requirements are simplicity and 
performance. The new entropy coding technique has been adopted by 
AVS-P2 enhancement profile and currently defined in CD [5]. In terms 
of the coding efficiency, it achieves similar or even a slightly better 
performance with the CABAC technique of H.264. Our technique 
differs from the H.264 version of CABAC in symbol binarization, 
context definition, context quantization, as well as context weighting.  

This paper is organized as follows. In the next section, the new 
context-based adaptive arithmetic code of DCT coefficients is outlined. 
Section 3 describes the novel techniques and the underlying ideas of our 
entropy coding module in detail. Section 4 presents experimental results 
and performance comparison. Section 5 concludes.  
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II. OVERVIEW OF  NEW CONTEXT-BASED ENTROPY CODING 
MODULE 

In this section, we outline the proposed adaptive entropy 
coding scheme. The key elements will be individually discussed 
in the next section. 

For a given block with at least one non-zero coefficient, the 
transformed coefficients are first scanned into a sequence of (Level, 
Run) pairs where Level is the value of a non-zero quantized coefficient 
and Run indicates the number of successive zero coefficients before 
Level. Then each (Level, Run) instance is encoded in a reverse scan 
order sequentially until all the (Level, Run) pairs are coded. At last, the 
flag EOB (0, 0) is coded to indicate the end of block. For each pair, 
Level is coded first followed by Run. Both Level and Run are unary 
binarized into several bins. For the signed integer Level, it is presented 
by sign and unary bits of its magnitude (absLevel). For each bin of 
absLevel and Run, a product context is applied, which consists of a 
primary context and a secondary context. The primary context index is 
determined by the variable Lmax which denotes the maximal previously 
coded absLevel. Under each primary context, seven nested secondary 
contexts are defined according to the value of currently coded absLevel 
and the bin position of absLevel or Run. Besides, for the first bin of 
absLevel, another so-called accompanying context which utilizes the 
position of absLevel in coded order is designed for context weighting. It 
is quantized by the variable ReverseP. Fig. 1 shows the coding process 
of a (Level, Run) pair in reverse Zigzag scan order. For a non-coded 
(Level, Run) pair, the primary context index and the accompanying 
context index are first determined according to Lmax and ReverseP 
respectively. The secondary context index is first initialized to zero. 
Then, the first bin of absLevel is coded with the technique of context 
weighting using secondary context and accompanying context. If the 
first bin of absLevel equals to one, that is EOB, the coding process of 
current block is done. Otherwise, all other bins of absLevel are coded 
according to the secondary context index. The sign of Level is coded as 
follows with probability of 0.5. At last, each bin of Run is coded 
according to the corresponding secondary index. All these contexts are 
updated after one (Level, Run) instance has been coded. 

In summary, our proposed coder contains the following main 
technical points:  

• Coded syntax elements are (Level, Run) pairs and EOB 

• Coding in the reverse scan order 

• Unary binarization scheme  

• Context quantization according to previously coded Levels 

• Context weighting technique 

III. DETAIL DESCRIPTION OF  ENTROPY CODING MODULE 

A. Source alphabet and coding order  
The DCT coefficients of a block are first converted to (Level, Run) 

pairs in zigzag scan order which is the same as other DCT coefficient 
coding schemes. The source alphabet consists of all possible 
occurrences of these (Level, Run) pairs. The new entropy coding module 
is designed to maintain maximum compatibility with AVS-P2 baseline 
profile, and it works on the identical source alphabet (the same set of 
syntax elements before remapping) of the AVS-P2 baseline profile. 
Consequently, the proposed entropy coding module can be fit to the 

front end of the AVS-P2 system in exactly the same way as the current 
C2DVLC scheme. 

 

Figure 1.  Coding process of a (Level, Run) pair 

The proposed scheme relies on Level’s changing tendency to 
identify large probability variations and designs primary contexts for 
compression. Coding in the reverse scan order makes it easier to follow 
the tendency of Level variation, which has the same spirit as the 
C2DVLC technique. Besides, coding the Level-Run symbol sequence in 
the backward order conforms to AVS baseline architecture. Table I 
gives an example of DCT coefficients and its corresponding (Level, Run) 
pairs as well as the coding order for these pairs. The special symbol (0, 
0) signals the EOB information. 

TABLE I.  EXAMPLE OF CODING ORDER OF A TRANSFORMED BLOCK 

Scanning position 1 2 3 4 5 6 7 8 
Trans. Coefficient 

Level 9 -2 3 0 -2 0 0 -1 

Corresponding 
(Level,Run) pairs ( 9, 0 ), (-2, 0 ), ( 3, 0 ), (-2, 1 ), (-1, 2 ), ( 0, 0 ) 

Encoding order (-1, 2 ), (-2, 1 ), ( 3, 0 ), (-2, 0 ), ( 9, 0 ), ( 0, 0 ) 

B. Symbol binarization 
The symbol values of Level and Run are integers in a large range. 

Coding these values directly by an m-ary arithmetic code will have a 
high computational complexity. We adopt binary arithmetic code 
instead. The binarization of Level and Run values is performed as 
follows. 

• The signed integer Level is represented by sign (0/1: +/-) and 
the unary bits of its magnitude (absLevel). For instance, Level 
= -2 will be represented by four bits:  (1: -), 001. 
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• The positive integer Run is simply represented by unary bits. 
For example Run = 2 will be represented by three bits: 001. 

• Level is coded first followed by the Run. In this way, when 
coding a Run value, the Level information of current (Level, 
Run) pair is used for context modeling.  

C. Context formation and quantization 
We model the symbol sequence as a high-order Markov process, 

and compress it by context-based arithmetic coding. A key issue in 
context modeling of an input symbol sequence is how to balance the 
desire of using a high order model against the model cost. If the model 
order is not sufficiently high, it will not be able to capture all the 
statistical redundancy of the source sequence. But on the other hand, if 
the order of the model is too high, there will not be enough samples to 
accurately estimate the model parameters, causing context dilution 
problem. Our solution to this problem is a novel context quantization 
technique that generates only 35 coding states out of a very large causal 
context, as described below. 

To reduce the model cost, i.e., the number of coding states, the 
coding context is formed as a product of a primary context and a 
secondary context.   

1) Primary context 
The primary context is defined on the random variable Lmax that is 

the maximum magnitude of all previously coded Levels in the current 
block. That is 

            { }( [ ]) max [ 1], [ 2], , [0]Lmax C i C i C i C= − −              (1) 

where C[k] (k = 0~i) indicates the absolute value of the k-th Level in 
coding order. 

In essence, the variable Lmax acts as a context quantizer that maps 
all history of the current block up to the current symbol to an integer 
value. Lmax is initialized to zero at the beginning of a DCT block, and 
will be updated on the fly during sequential coding of the symbols 
((Level, Run) pairs). The dynamic range of context variable Lmax can 
still be too large. It is reduced by the quantization function into five 
primary contexts. The quantization function is defined as follows: 

         
( )

                           [0, 2]
    3                                 [3, 4]

4                                    Otherwise 
Lmax

Lmax Lmax
Lmaxχ

∈
= ∈



                     (2) 

In the previous example, the value of Lmax and primary context index 
changes as given in Table II. 

TABLE II.  UPDATING OF CONTEXT VARIABLE  LMAX OF THE EXAMPLE 
LEVEL-RUN  SEQUENCE 

 (-1,2) (-2,1) (3,0) (-2,0) (9,0) (0,0) 
Lmax 0 1 2 3 3 9 

Primary context 
index 0 1 2 3 3 4 

2) Secondary context 
Under each primary context, seven nested secondary contexts are 

used to code the binary decisions of Level and Run values. The seven 
secondary contexts are defined as shown in Table III. 

For the sign of Level, statistical analysis reveals that the distribution 
of transform coefficients is approximately symmetric with respect to 
zero, i.e., the sign bit averagely consumes one bit. Thus, the sign of 
Level is simply dumped (coded using probability 0.5 without any 
context modeling).  

TABLE III.  SECONDARY CONTEXT DEFINITION 

Bin of Level/Run Context type 
first bin of absLevel (i.e., the EOB symbol). 0 

second bin of absLevel, if exist. 1 
remaining bins of absLevel, if exist. 2 

first bin of Run if absLevel=1. 3 
remaining bins of Run when absLevel=1, if exist. 4 

first bin of Run when absLevel>1 5 
remaining bins of Run when absLevel>1, if exist. 6 

3) Context weighting 
Adaptive entropy coding can benefit from both the position and the 

magnitude of Level.  However, the contexts introduced so far are based 
on the magnitude of Level. In order to further improve compression 
performance, we introduce another context variable ReverseP that is the 
position of current non-zero DCT coefficient in the reverse scanning 
order. The variable ReverseP is initialized to zero. Based on ReverseP, a 
so-called accompanying context is introduced. For an 8x8 block the 
range of ReverseP is [0, 64], and it is uniformly quantized into 32 
accompanying contexts, [0, 31]. The context index increments are 
determined as follows: 

 ( [ ])   16 ( 5 )  ( 1) & 0x0f coeff ReverseP ReverseP ReversePχ = × >> + >>   (3) 

In the binary arithmetic coding of the Run and Level values, each 
accompanying context created by ReverseP will be combined with the 
same seven secondary contexts as in the case of primary contexts 
created by Lmax.  

Now when coding each binary decision, we can have two 
conditional probability estimates: one in the product context derived 
from Lmax and the other from ReverseP. Then an interesting question is 
if we can make use of both position and Level without increasing the 
model cost and get a shorter codelength? The answer is yes. The created 
two kinds of contexts above are defined as: 

1C Lmax= and 2C ReverseP= . Let 1( | )p x c and 2( | )p x c be the 
estimated conditional probabilities and w be the weighting factor, then 
the weighted probability of the current DCT coefficient x is assigned as 
follows: 

        1 2 1 2( | ) ( | ) (1 ) ( | )p x c c w p x c w p x c∪ = × + − ×       (4) 

Since 1( | )p x c and 2( | )p x c are probability measures on x given 

1c and 2c , 1 2( | )p x c c∪  that is a weighted sum of 
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1( | )p x c and 2( | )p x c is also a probability measure on x. Thus, a 
weighted probability distribution of the two estimated distributions is 
used to drive the arithmetic coder. In our scheme, the equal weighting 
scheme is used (w = 0.5), which is found to produce very good 
compression results. 

The context weighting technique is most effective when being 
applied to code the EOB symbol. The coding gain on other source 
symbols is usually less than 0.5%. So for low complexity we only use 
the context weighting technique on the EOB context, i.e., context 0.    

IV. EXPERIMENTAL RESULTS 
This section reports the coding performance of the proposed scheme. 

Some typical progressive and interlaced sequences are tested as listed in 
Table IV.  Rm61a platform, which is developed by AVS working group 
as AVS-P2 reference software, is used. For comparison purposes, the 
contexts designed for residuals in CABAC are transplanted from JM98 
released by JVT [6]. The sequences and common conditions of AVS 
testing used here are illustrated in [7]. For fair comparison the 
experiments are done with the same binary arithmetic coding engine. 

Two sets of experiments have been conducted. The first set of 
simulations are performed using progressive and interlaced sequences 
such that the sequences are coded in IBBP order with only the first 
frame coded as I frame. And the average gain for all sequences relative 
to C2DVLC is shown in Fig.2 (a). Fig.2 (b) shows the average gain for 
CIF sequences for pure I-frame coding. As can be seen from Fig.2, our 
scheme shows comparable coding gains with the CABAC technique. 
And it achieves a gain on average 13% over C2DVLC. 

TABLE IV.  TEST SEQUENCES 

 Resolution Name 

CIF 352ⅹ288 Paris, Tempete, News 
HD(Progressive) 1280ⅹ720 Crew, Harbour 

704ⅹ576 Bus_interview 
Interlace sequence 

1920ⅹ1080 Fireworks 

V. CONCLUSION 
We proposed a new context-based entropy coding technique for 

DCT coefficients. Extensive experiments have shown that the new 
technique achieves an average gain of 13% over C2DVLC designed for 
the DCT domain. And it is competitive against CABAC. The efficiency 
improvements come from two aspects: one is the novel context 
quantization method that allows characterization of high-order Markov 
processes without suffering from context dilution problem, and the other 
is the context weighting technique that can merge multiple context 
models into one to further improve compression performance. Moreover, 
this scheme maintains maximum compatibility with AVS-P2 baseline. 
At the same time, the complexity of the new technique is slightly lower 
than that of CABAC of H.264. The main reason for the reduction is that 
the new method codes all DCT coefficients of a block in one pass rather 
than in two passes as in H.264. 
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(a) 

 

(b) 

Figure 2.  Average bit-rate reduction relative to C2DVLC(in percent) over 
quantization parameter:(a)IBBP structure;(b)Intra frame coding 
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