
Context-based Arithmetic Coding Reexamined for
DCT Video Compression

Li Zhang1, Xiaolin Wu2, Ning Zhang2,Wen Gao1,3, Qiang Wang3, and Debin Zhao1,3

1 Institute of Computing Technology, Chinese Academy of Sciences
Beijing, 100080, China

{zhanglili, wgao}@jdl.ac.cn
2Department of Electrical and Computer Engineering, McMaster University

Hamilton, Ontario, Canada L8S 4K1
xwu@mail.ece.mcmaster.ca, nzhang2@cogeco.ca

3Department of Computer Science and Technology, Harbin Institute of Technology
Harbin, 150001, China

{qwang, dbzhao}@jdl.ac.cn

Abstract—This paper presents a new context modeling technique
for arithmetic coding of DCT coefficients in video compression. A
key feature of the new technique is the inclusion of all previously
coded coefficient magnitudes in a DCT block in context modeling.
This enables adaptive arithmetic coding to exploit the redundancy
of the high-order Markov process in the DCT domain with a few
conditioning states. In addition, a context weighting technique is
used to further improve the coding efficiency. The complexity of
the new arithmetic coding scheme is slightly lower than that of
Context-based Adaptive Binary Arithmetic Coding (CABAC) of
H.264. Moreover, the scheme is made compatible to the AVS
baseline profile. It achieves on average 13% improvement in
compression ratio over Context-based Two Dimension Variable
Length Coding (C2DVLC) designed for the DCT domain, and a
similar coding efficiency as the CABAC technique in H.264.

I. INTRODUCTION
Discrete cosine transform (DCT) has been widely used in many

signal compression standards, such as JPEG, MPEG, and Audio Video
Coding Standard (AVS) [1] in China. In the DCT domain, statistical and
subjective redundancies of the signals can be better understood,
exploited, and removed in most cases. However, it is the process of
entropy coding of DCT coefficients rather than the DCT transform itself
that actually achieves data compression. In DCT-based coding systems,
the bulk of bit budget is spent on DCT coefficients. Consequently, how
efficiently the DCT coefficients are entropy coded will ultimately
determine the compression performance. Any entropy code of DCT
coefficients, such as Huffman code or arithmetic code, has to be driven
by an estimated probability distribution of the DCT coefficients.
Statistically, DCT coefficients exhibit diverse behaviors in different
types of scene contents and video formats. Learning the local statistics
based on contextual information is of great importance for higher coding
efficiency.

A well-known realization of adaptive entropy coding of video is
Context-Based Adaptive Binary Arithmetic Coding (CABAC) [2] in
H.264. In CABAC, a significance map is first encoded to indicate the
positions of all significant coefficients inside a block of quantized DCT
coefficients. Then the magnitudes of all non-zero coefficients (Level)
are encoded in reverse scanning order. Specific context models are
assigned to the significance map according to its position, while the

contexts for Level magnitudes are classified according to the successive
coefficients (in reverse scanning order). These contexts take full
advantage of the localization property of DCT coefficient in a block and
average bit-rate savings of 9~14% can be achieved in comparison to
Context Based Variable Length Coding (CAVLC) [3]. Although
CAVLC uses contexts to remove some of the inter-coefficients
redundancy, it suffers from several shortcomings that limit further
coding gains. For example, in CAVLC, the contexts are pre-defined
from training statistics, and there is no adaptation mechanism to combat
possible statistics mismatch. Furthermore, symbols of probabilities
greater than 0.5 cannot be efficiently coded due to the intrinsic limit of
1bit/symbol of Huffman code if without symbol blocking.

In AVS-P2 baseline profile, the VLC-based entropy coding is
adopted, called Context-based Two Dimension Variable Length Coding
(C2DVLC) [4]. In C2DVLC, the coefficients are coded as (Level, Run)
pairs in the reverse scan order until EOB (End of Block) occurs. The
coding table switch of (Level, Run) pairs is made based on the
maximum magnitude of previously coded coefficients. In February
2006, AVS-P2 was approved to be the Chinese national
recommendatory standard, and now AVS is working on the
enhancement profile of AVS-P2 aiming to further improve coding
efficiency. To this end, we reexamined the CABAC scheme in H.264
and developed a novel, low-complexity context model for binary
arithmetic coding of DCT coefficients. Since our technique is designed
for AVS-P2 enhancement profile, the compatibility with the AVS
baseline is required. Additional requirements are simplicity and
performance. The new entropy coding technique has been adopted by
AVS-P2 enhancement profile and currently defined in CD [5]. In terms
of the coding efficiency, it achieves similar or even a slightly better
performance with the CABAC technique of H.264. Our technique
differs from the H.264 version of CABAC in symbol binarization,
context definition, context quantization, as well as context weighting.

This paper is organized as follows. In the next section, the new
context-based adaptive arithmetic code of DCT coefficients is outlined.
Section 3 describes the novel techniques and the underlying ideas of our
entropy coding module in detail. Section 4 presents experimental results
and performance comparison. Section 5 concludes.

Supported by National Natural Science Foundation Research Program of
China (No. 60672088), the Research Fund for the Doctoral Program of Higher
Education (No.20060213014) and Special Foundation of President of The
Chinese Academy of Sciences (No. 20064020 and No. 20066120).

31471-4244-0921-7/07 $25.00 © 2007 IEEE.

II. OVERVIEW OF NEW CONTEXT-BASED ENTROPY CODING
MODULE

In this section, we outline the proposed adaptive entropy
coding scheme. The key elements will be individually discussed
in the next section.

For a given block with at least one non-zero coefficient, the
transformed coefficients are first scanned into a sequence of (Level,
Run) pairs where Level is the value of a non-zero quantized coefficient
and Run indicates the number of successive zero coefficients before
Level. Then each (Level, Run) instance is encoded in a reverse scan
order sequentially until all the (Level, Run) pairs are coded. At last, the
flag EOB (0, 0) is coded to indicate the end of block. For each pair,
Level is coded first followed by Run. Both Level and Run are unary
binarized into several bins. For the signed integer Level, it is presented
by sign and unary bits of its magnitude (absLevel). For each bin of
absLevel and Run, a product context is applied, which consists of a
primary context and a secondary context. The primary context index is
determined by the variable Lmax which denotes the maximal previously
coded absLevel. Under each primary context, seven nested secondary
contexts are defined according to the value of currently coded absLevel
and the bin position of absLevel or Run. Besides, for the first bin of
absLevel, another so-called accompanying context which utilizes the
position of absLevel in coded order is designed for context weighting. It
is quantized by the variable ReverseP. Fig. 1 shows the coding process
of a (Level, Run) pair in reverse Zigzag scan order. For a non-coded
(Level, Run) pair, the primary context index and the accompanying
context index are first determined according to Lmax and ReverseP
respectively. The secondary context index is first initialized to zero.
Then, the first bin of absLevel is coded with the technique of context
weighting using secondary context and accompanying context. If the
first bin of absLevel equals to one, that is EOB, the coding process of
current block is done. Otherwise, all other bins of absLevel are coded
according to the secondary context index. The sign of Level is coded as
follows with probability of 0.5. At last, each bin of Run is coded
according to the corresponding secondary index. All these contexts are
updated after one (Level, Run) instance has been coded.

In summary, our proposed coder contains the following main
technical points:

• Coded syntax elements are (Level, Run) pairs and EOB

• Coding in the reverse scan order

• Unary binarization scheme

• Context quantization according to previously coded Levels

• Context weighting technique

III. DETAIL DESCRIPTION OF ENTROPY CODING MODULE

A. Source alphabet and coding order
The DCT coefficients of a block are first converted to (Level, Run)

pairs in zigzag scan order which is the same as other DCT coefficient
coding schemes. The source alphabet consists of all possible
occurrences of these (Level, Run) pairs. The new entropy coding module
is designed to maintain maximum compatibility with AVS-P2 baseline
profile, and it works on the identical source alphabet (the same set of
syntax elements before remapping) of the AVS-P2 baseline profile.
Consequently, the proposed entropy coding module can be fit to the

front end of the AVS-P2 system in exactly the same way as the current
C2DVLC scheme.

Figure 1. Coding process of a (Level, Run) pair

The proposed scheme relies on Level’s changing tendency to
identify large probability variations and designs primary contexts for
compression. Coding in the reverse scan order makes it easier to follow
the tendency of Level variation, which has the same spirit as the
C2DVLC technique. Besides, coding the Level-Run symbol sequence in
the backward order conforms to AVS baseline architecture. Table I
gives an example of DCT coefficients and its corresponding (Level, Run)
pairs as well as the coding order for these pairs. The special symbol (0,
0) signals the EOB information.

TABLE I. EXAMPLE OF CODING ORDER OF A TRANSFORMED BLOCK

Scanning position 1 2 3 4 5 6 7 8
Trans. Coefficient

Level 9 -2 3 0 -2 0 0 -1

Corresponding
(Level,Run) pairs (9, 0), (-2, 0), (3, 0), (-2, 1), (-1, 2), (0, 0)

Encoding order (-1, 2), (-2, 1), (3, 0), (-2, 0), (9, 0), (0, 0)

B. Symbol binarization
The symbol values of Level and Run are integers in a large range.

Coding these values directly by an m-ary arithmetic code will have a
high computational complexity. We adopt binary arithmetic code
instead. The binarization of Level and Run values is performed as
follows.

• The signed integer Level is represented by sign (0/1: +/-) and
the unary bits of its magnitude (absLevel). For instance, Level
= -2 will be represented by four bits: (1: -), 001.

3148

• The positive integer Run is simply represented by unary bits.
For example Run = 2 will be represented by three bits: 001.

• Level is coded first followed by the Run. In this way, when
coding a Run value, the Level information of current (Level,
Run) pair is used for context modeling.

C. Context formation and quantization
We model the symbol sequence as a high-order Markov process,

and compress it by context-based arithmetic coding. A key issue in
context modeling of an input symbol sequence is how to balance the
desire of using a high order model against the model cost. If the model
order is not sufficiently high, it will not be able to capture all the
statistical redundancy of the source sequence. But on the other hand, if
the order of the model is too high, there will not be enough samples to
accurately estimate the model parameters, causing context dilution
problem. Our solution to this problem is a novel context quantization
technique that generates only 35 coding states out of a very large causal
context, as described below.

To reduce the model cost, i.e., the number of coding states, the
coding context is formed as a product of a primary context and a
secondary context.

1) Primary context
The primary context is defined on the random variable Lmax that is

the maximum magnitude of all previously coded Levels in the current
block. That is

 { }([]) max [1], [2], , [0]Lmax C i C i C i C= − − (1)

where C[k] (k = 0~i) indicates the absolute value of the k-th Level in
coding order.

In essence, the variable Lmax acts as a context quantizer that maps
all history of the current block up to the current symbol to an integer
value. Lmax is initialized to zero at the beginning of a DCT block, and
will be updated on the fly during sequential coding of the symbols
((Level, Run) pairs). The dynamic range of context variable Lmax can
still be too large. It is reduced by the quantization function into five
primary contexts. The quantization function is defined as follows:

()

 [0, 2]
 3 [3, 4]

4 Otherwise
Lmax

Lmax Lmax
Lmaxχ

∈
= ∈



 (2)

In the previous example, the value of Lmax and primary context index
changes as given in Table II.

TABLE II. UPDATING OF CONTEXT VARIABLE LMAX OF THE EXAMPLE
LEVEL-RUN SEQUENCE

 (-1,2) (-2,1) (3,0) (-2,0) (9,0) (0,0)
Lmax 0 1 2 3 3 9

Primary context
index 0 1 2 3 3 4

2) Secondary context
Under each primary context, seven nested secondary contexts are

used to code the binary decisions of Level and Run values. The seven
secondary contexts are defined as shown in Table III.

For the sign of Level, statistical analysis reveals that the distribution
of transform coefficients is approximately symmetric with respect to
zero, i.e., the sign bit averagely consumes one bit. Thus, the sign of
Level is simply dumped (coded using probability 0.5 without any
context modeling).

TABLE III. SECONDARY CONTEXT DEFINITION

Bin of Level/Run Context type
first bin of absLevel (i.e., the EOB symbol). 0

second bin of absLevel, if exist. 1
remaining bins of absLevel, if exist. 2

first bin of Run if absLevel=1. 3
remaining bins of Run when absLevel=1, if exist. 4

first bin of Run when absLevel>1 5
remaining bins of Run when absLevel>1, if exist. 6

3) Context weighting
Adaptive entropy coding can benefit from both the position and the

magnitude of Level. However, the contexts introduced so far are based
on the magnitude of Level. In order to further improve compression
performance, we introduce another context variable ReverseP that is the
position of current non-zero DCT coefficient in the reverse scanning
order. The variable ReverseP is initialized to zero. Based on ReverseP, a
so-called accompanying context is introduced. For an 8x8 block the
range of ReverseP is [0, 64], and it is uniformly quantized into 32
accompanying contexts, [0, 31]. The context index increments are
determined as follows:

 ([]) 16 (5) (1) & 0x0f coeff ReverseP ReverseP ReversePχ = × >> + >> (3)

In the binary arithmetic coding of the Run and Level values, each
accompanying context created by ReverseP will be combined with the
same seven secondary contexts as in the case of primary contexts
created by Lmax.

Now when coding each binary decision, we can have two
conditional probability estimates: one in the product context derived
from Lmax and the other from ReverseP. Then an interesting question is
if we can make use of both position and Level without increasing the
model cost and get a shorter codelength? The answer is yes. The created
two kinds of contexts above are defined as:

1C Lmax= and 2C ReverseP= . Let 1(|)p x c and 2(|)p x c be the
estimated conditional probabilities and w be the weighting factor, then
the weighted probability of the current DCT coefficient x is assigned as
follows:

 1 2 1 2(|) (|) (1) (|)p x c c w p x c w p x c∪ = × + − × (4)

Since 1(|)p x c and 2(|)p x c are probability measures on x given

1c and 2c , 1 2(|)p x c c∪ that is a weighted sum of

3149

1(|)p x c and 2(|)p x c is also a probability measure on x. Thus, a
weighted probability distribution of the two estimated distributions is
used to drive the arithmetic coder. In our scheme, the equal weighting
scheme is used (w = 0.5), which is found to produce very good
compression results.

The context weighting technique is most effective when being
applied to code the EOB symbol. The coding gain on other source
symbols is usually less than 0.5%. So for low complexity we only use
the context weighting technique on the EOB context, i.e., context 0.

IV. EXPERIMENTAL RESULTS
This section reports the coding performance of the proposed scheme.

Some typical progressive and interlaced sequences are tested as listed in
Table IV. Rm61a platform, which is developed by AVS working group
as AVS-P2 reference software, is used. For comparison purposes, the
contexts designed for residuals in CABAC are transplanted from JM98
released by JVT [6]. The sequences and common conditions of AVS
testing used here are illustrated in [7]. For fair comparison the
experiments are done with the same binary arithmetic coding engine.

Two sets of experiments have been conducted. The first set of
simulations are performed using progressive and interlaced sequences
such that the sequences are coded in IBBP order with only the first
frame coded as I frame. And the average gain for all sequences relative
to C2DVLC is shown in Fig.2 (a). Fig.2 (b) shows the average gain for
CIF sequences for pure I-frame coding. As can be seen from Fig.2, our
scheme shows comparable coding gains with the CABAC technique.
And it achieves a gain on average 13% over C2DVLC.

TABLE IV. TEST SEQUENCES

 Resolution Name

CIF 352ⅹ288 Paris, Tempete, News
HD(Progressive) 1280ⅹ720 Crew, Harbour

704ⅹ576 Bus_interview
Interlace sequence

1920ⅹ1080 Fireworks

V. CONCLUSION
We proposed a new context-based entropy coding technique for

DCT coefficients. Extensive experiments have shown that the new
technique achieves an average gain of 13% over C2DVLC designed for
the DCT domain. And it is competitive against CABAC. The efficiency
improvements come from two aspects: one is the novel context
quantization method that allows characterization of high-order Markov
processes without suffering from context dilution problem, and the other
is the context weighting technique that can merge multiple context
models into one to further improve compression performance. Moreover,
this scheme maintains maximum compatibility with AVS-P2 baseline.
At the same time, the complexity of the new technique is slightly lower
than that of CABAC of H.264. The main reason for the reduction is that
the new method codes all DCT coefficients of a block in one pass rather
than in two passes as in H.264.

REFERENCES
[1] Avs workgroup, ftp://159.226.42.57/public/ avs_doc/ avs_fcd_video /avs_f

cd1.0.zip, 2006.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard”.
IEEE Trans. on Circuits and Systems for Video Technology, Vol. 13, Issue.
7, pp.620-636, 2003.

[3] G.Bjontegaard and K. Lillevold, “Context-Adaptive VLC Coding of
Coefficients”, Fairfax, VA, May 2002, JVT-C028.

[4] Qiang Wang, Debin Zhao, Wen Gao, “Context-Based 2D VLC Entropy
Coder in AVS Video Coding Standard”, Journal of Computer Science and
Technology, vol.21, no..3, pp. 315-322, May 2006.

[5] Fan Liang, ftp://159.226.42.57/public/avs_doc/0606_Huangshan/avs/
N1920.doc, June 2006.

[6] http://ftp3.itu.ch/av-arch/jvt-site/reference_software/jm98.zip.
[7] Avs workgroup,ftp://159.226.42.57/public/avs_doc/0409_Suzhou/avs/

N1111.doc, 2004.

(a)

(b)

Figure 2. Average bit-rate reduction relative to C2DVLC(in percent) over
quantization parameter:(a)IBBP structure;(b)Intra frame coding

3150

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

