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Abstract

We address the problem of static OD matrix estimation frororenél statistical viewpoint. We
adopt a novel Bayesian framework to develop a class of malkai€xplicitly cast trip configura-
tions in the study region as random variables. As a conseguetassical solutions from growth
factor, gravity, and maximum entropy models are identifeegdgecific estimators under the pro-
posed models. We show that each of these solutions usualbuacfor only a small fraction of
the posterior probability mass in the ensemble and we thetend that the uncertainty in the
inference should be propagated to later analyses or negéshodels. We also propose alterna-
tive, more robust estimators and devise Markov chain MoragoCsampling schemes to obtain
them and perform other types of inference. We present dexaaenples showcasing the proposed
models and approach and highlight how other sources of @atde incorporated in the model
and inference in a principled, non-heuristic way.
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1. Introduction

Consider a study region divided intozones where trips can occur between any pair of zones.
During a certain time period we observe the number of tapginated at zonei, O;, and the
number of tripsdestined to zonej, D;, fori, 5 = 1,...,n. Our objective is to estimate the number
of trips 7;; from each zoné€ to each zong—including intrazonal tripg;,—conditional on the

.....

matrix

Ty Ty - T,
T N )
Tnl Tn2 Tnn

and we are fixing a time window for the trip realizations, owolgem is usually referred to as
static OD matrix estimation. We note that the OD matriX/ has restrictions on its row and column
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margins,

Zﬂj:Oi, izl,...,n,
o (2)
Y T,=D; j=1,...n

=1

and thus the estimation is constrained. We also requiretifat O; = >°7_, D; = T for consis-
tency.

This problem has been studied for many decades. The firgilooindns to its solution adopted
a physical interpretation and assumgdaould be described by a gravitational law (Casey, 1955):
Ti; o O;D;d;?, whered;; is the distance between zoneand. This functional relation was later
generalized to include decreasing functions of traveliostgc;; between zones and j, called
“deterrence” functions:

Tij o< OiDjd(ciy)- 3)
Common choices faf include exponential linear functions of costs, suck@s;) = exp(—/Sc;;)
ord(c;;) = exp(—pfc;; — alogey).

These gravity models are synthetic models since they doweotporate previously observed
trip patterns. In contrast, growth factor models reg@ardhs possible future trip patterns and
incorporate previous observations in a doubly constrafoedhulation. Let the “seed” matrix
To = {tij}ij=1...n DE previous observations from the same or similar studypregdased on the
method proposed hy Furness (1965), we assume

T;; = A,0,B;Djt;;, (4)

whereA; andB; are “balancing factors” that are known up to a proportidgadonstant. Furness
method define§ by iteratively solving for the balancing factors to respeahstraints[(2) until
convergence.

Both gravity and growth factor models provide estimatesfidsased on heuristic, functional
arguments. Wilson (1970, 1974) defined a formulation baseshtropy maximization that would
unify both previous approaches. If

T!
a Hzg Tij!

is the number of “micro” states associated with “meso” sfatghen the trip configuration that
maximizesiV/, or equivalently

WA(T)

logW(T) —logT! ~ — Z (sz log T35 — Tz’j)u
2

subject to constraint§l(2) is a maximum entropy solutiomsfead oflog W we maximize

T..
log W/(T, 7o) = = (TJ log = — T)

irj *
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the solution would coincide with the one provided by the Bss1model. By adding an additional
cost constraint, such as

Z ¢;jTi; = Cr (5)
BJ

we obtain the same estimates from the gravity model w(ithy) = exp(—/fc;;).

We can make two important observations from the maximumoggitapproach. First, we
note that the functional expressions iy from the gravity and Furness models can actually be
regarded as closed form expressions that can be used tovigrabtain solutions to a mathemat-
ical program that maximizeleg W or log W’ subject to certain constraints. Second, since there
are many feasible configurations fpr we can define weights—in Wilson’s case giveniby—to
help us find the best trip configuration; it is, however, imjplirom this formulation that any other
trip pattern but the “optimal” is also possible, or even lk&o occur.

In this paper we propose a formulation for the OD matrix eation problem wherg™ is ex-
plicitly random. As we will show, this formulation corresponds to a Bayestatistical approach,
e.g. (Gelman et al., 2003). Even though our focus will be griaring the randomness associated
with the trip patterns instead of simply extracting a singip pattern through optimization, we
show that the maximum entropy solutions, including thesitad gravity and growth model so-
lutions, are identified with maximura posteriori (MAP) estimates under our setup. Besides this
unifying consequence, Bayesian methods also provide bthes of estimators and, more gener-
ally, are able to quantify the uncertainty in estimation &mg@gropagate it to posterior analyses in
a principled, integrated framework.

2. Proposed Model

First of all, let us say that the tripf are (O, D)-consistent, denoted byl € C(O, D), if T
satisfies equationkl(2). That is, we define

C(O,D) = {T: {T‘”} : Zﬁj =0, andZT‘ij = Dj}
j=1 i=1

As stated before, we regaffl asrandom; margin trips© and D are, however, treated as
observed data. In the fully Bayesian approach we pursue next, all infeesnare driven by the
posterior distribution on7 conditional on dat& andD as given by

P(O,D|T)P(T)
>+ P(O.D|T)P(T)
according to Bayes’ rule. The data conditio®&(D, D | 7) is termed thdikelihood, while P(7)

is theprior distribution.
Let us then consider the simple likelihood

P(T|10,D) =

P(O,D|T)=1I[T € C(O,D)] (6)



where!(-) is the indicator functionZ(A) = 1 if and only if A is true. By the definition of OD
consistency, the likelihood in equatidd (6) just states¢ tha margin trips satisfy equatioris (2),
that is, it is a simple indicator fqfO, D)-consistency.

The randomness in tripg comes initially from our belief, before observing any datahe
margins, of how the trips are distributed. This belief isdiyisubjective, but often arises from
experience on similar regions and zones; in the next seattodiscuss how to incorporate knowl-
edge gathered from small scale studies in the same regicgstablish a parallel to the maximum
entropy approach of the previous section, we assumeTittas a conditional multinomial prior
distribution given by7 | T'~ M N (T, p), that is,

T! 7
P(T|T> N Hz‘sz’j! HP»J

whereT’ is the total number of trips in the region apd= {p;;}; j_1, .., With p;; being the propor-
tion of trips between zoneésand;. Of course, we require th@m pi; = 1 andp;; are nonnegative.
The “hyper-prior” parametef’ has an improper non-informative distributi®i7’) o« 1, and so

the prior becomes

T=0

=~ T 5
-3 I (S -1) "
T=0 L1453 "W 45 i,7

The prior on7 resembles the number of micro statés defined by Wilson, but with the
proportions as extra parameters. The proportiprigave the important role of convening prior
information on thestructure of trip distribution in the study area. From a behavioralgperctive,
pi; corresponds to the probability of a trip in the system, outheftotal7" available, occurring
between zonesandj; we could, for example, borrowing from random decision tiyedefine a
multinomial logit model on each;; that depends on a set of covariaigsfor each OD pair such
as transport costs, time, and user preferences:

exp (xg )
bij = )
’ Zk,l:l » €XP(x18)

-----

where3 are known coefficients.

While we are now assuming thatis known and thus fully specifi?(7") above, we can further
incorporate uncertainty by adding another level of randessrto the prior parameters to form a
hierarchical model; we postpone such considerations to(3eSg.



2.1. Estimation

The inference we wish to carry out is driven by our updatedebel 7 after observing and
D as summarized by the posterior distribution

PO, DIT)P(T)

>+ P(O.DIT)P(T)
I[T € C(O, D)P(T)

- Z%EC(OD P(7~d) ®
T' H PIIT € C(0,D)).

P(T'10,D) =

0.8

IL:;

One important consequencedfe C(O, D) in the posterior above is that the prior parameter

T implicitly satisfies
T=>T;=>» 0i=) Dy 9)
i,j i=1 j=1

that is,O andD are self-consistent through.
A common estimator in Bayesian statistics is the maxinayposteriori (MAP) estimator, the
posterior mode:

= argmax logP(T|O D)}

RS arg max
TeC(0,D)

= arg max T;; log pi; — log T;;!
TeC(0,D)

Ti;log pij — (155 log T _Tij)}

T,
= argmax { — Tijlog— =T | ¢-
TeC(0,D) { Z ( Dij j) }

7/7]

Note the similarity between the maximand dng 11" It is now straightforward to show that
Tz’j = A;0;B; D;pj,

where A; and B; are balancing factors. Thus, the MAP estimator is equivaieithe solution
obtained from the Furness method for the maximum entropwyditation. In fact, if we use a prior
seed matrixTy = {t;;} to setp;; = t;;/ >, ;t;;, the prior proportions, we recover the growth
factor solution.

To obtain gravity model solutions we just have to definbased on an entropy maximizing
principle: we wantp that maximizes the entropit(p) = — Zm pij log p;; possibly subject to
additional constraints op other thanzm. pi; = 1. Since entropy uniquely measures the amount
of uncertainty in a probability distribution, a maximum gy assignment is justified as the
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only unbiased assumption we can attain under a state ofipkriowledge of the system. As
Wilson (1970, pg. 10) points out, “the probability distritmn which maximizes entropy makes
the weakest assumption which is consistent with what is kriowf we then constraint on trip
costs by requiring a fixed mean cost in the region

> cypii =G, (10)

i3

we obtainp;; o< exp(—/pc;;), and hence a gravity model with a familiar exponential deteze
function.

Even though settingp as above provides the same solution, there is a subtle buriam
difference to the original maximum entropy formulationMflson’s model we constraint the trip
patterns using (5), effectively reducing the number of ifdastrip configurations, while in our
proposed model we only restrict the proportions uding (A0¢tefine the weights on trip patterns.
In other words, our feasible space is still only constraibgd?), but we set the proportions as
a structural guide for estimation since the shape of thegpiostdistribution on/” depends oip.

In this sense, we can think d@f (10) as a “soft” constraint. \Ae argue that such a formulation is
more natural since we can certainly have prior knowledgevefall transport expenditures in the
system while it seems artificial to establish a rigid coststaint on the whole study region.

Another good estimator is the posterior mean, defined as

T=E[T|0,D]=)_T-P(T|0,D).
7

The posterior mean is more robust than the posterior mode $iraverages the uncertainty on
trip patterns across all possibffe—weighted by their respective posterior probability mass—
opposed to simply picking the trip pattern with highest past probability. Moreover, since the
posterior mean is a linear combination of feasible tripgrats, it also satisfies the linear constraints
in (@). There is, however, one major difficulty in this venwee need to knowP (7 | O, D) for
eachT.

The main hurdle in evaluating the posterior Brin (8) is the normalizing factoZ (O, D) =
ZfeC(O’D) P(7). ComputingZ(®, D) requires summing over all possible pairwise trip assign-
ments that ar¢O, D)-consistent, a daunting task. Before addressing this @essue, we offer
some motivation in the next subsection.

2.2. Asimple example

Suppose that, for = 2 zones, we observe,, O,, Dy, D5, and wish to estimate the entrigs
in the OD matrix
Tll T12 Ol
T21 T22 02
D, D, \ T

with margins and total number of trigsdisplayed.




SinceT is consistent, we know th8t, = Oy — Ty, 1o = D1 — Ty andTyy = Oy — T =
Ti1 — (T — Oy — Dy) =Ty — A, where we sef\ =T — O, — D,. The posterior off is then a
posterior ori/7; due to these linear constraints:

T!

P(T1 | O, D) X o P11 P13 P31 D2’
Ty O1-Ti1, D1—Ti1 . Ti1i—A
e ST ST

X .
TH!(Ol — TH)!(Dl — TH)!(TH — A)'
Looking at [11) we can see thate C(O, D) is equivalent to requiring that

max{0, A} <T1; <min{Oy, D1},

and so the normalizing constant fér [11) is the sum of itstrlggnd side over the values 8f,
above. In practice, however, it is simpler to obtain postesamples ofl}; using aMetropolis-
Hastings algorithm (Hastings, 1970). The idea is to generate a Madkam by sampling from

a proposal distribution and then accepting or rejectinglchates based on an acceptance ratio;
after convergence, the realizations from the chain arentalsevalid samples from the “target”
distribution from which we initially wanted to sample. Thssa standard Monte Carlo technique;
more details can be found in, e.q., (Gilks etlal., 1995) andgid and Hoeting, 2005). To discuss
the details of the sampler algorithm we need first to presennaortant distribution.

Nested binomial distribution. We say that a random variable follows anested binomial distri-
bution with parametersl, B, C, D, pa, pg, pc, andpp such thatC, D > 0, max{A, B} <
min{C, D}, andpa, ps, pc, pp > 0, denoted by

X ~ Nest Bi n(A, B,C, D, pa,ps,pc, Pp)

if X has probability mass distributigamoportional to

r—A, x—B, C—x, D—x

' o Pa P Pc Pp
\I[<x7A7BucuD7pA7pB7pC7pD) - (.T-A)'(ZC—B)'(C—SC)'(D—SC)" (12)

for max{A, B} <z < min{C, D}.

To sample fromX we devise the following Metropolis scheme. As proposal wepheran-
domwalk: given our actual position~") at iteration “time”t—1 in the chain, we set our candidate
x* a step to the lefty* = 2(~1) — 1 with probability0.5 or a step to the right;* = ¢! + 1 with
probability0.5.

If * < max{A, B} orz* > min{C, D} we immediately reject*—and setr = zt=1—
as it is out of bounds. Otherwise we accept—and thus set:) = z*—with probability
min{ R(z*~Y, z%), 1}, whereR(z*~1 2*) is the acceptance ratio:

\II(I’*7A,B, Ca DapAapBapCapD)
\P(x(t_l); Av B> Ca D,pA,pB,pC,pD) .

We say that we have executed a Metropstep at thet-th iteration if we propose a candidate
and then update®, the next realization in the chain, by accepting or rejectime candidate as
above. We denote this operationty = MS(2*"V; A, B,C, D, pa, ps, pc, pp). To sSummarize,
we can obtain samples froxi by doing:

R(:C,(tfl)7 .CC*) —
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Step 1. Start at some arbitrary initial”.
Step 2. Fort = 1,2, ... do (until convergence): execute a Metropolis step,

20 — Ms(x(t*”;A,B,C,D,pA,pB,pc,pD)a

that is,

Step 2.1. Sample candidaté: sampleU ~ U(0, 1) (from a standard uniform); it/ <
0.5 setz* = 2tV — 1, otherwise set* = z(*=1) + 1.

Step 2.2. Ifz* < max{A4, B} or z* > min{C, D} setz¥ = z(=1) (reject). Otherwise,
samplel/ ~ U(0,1): if U < min{R(z*~Y z*),1} then sett® = x* (accept),
else set:® = (=1 (reject).

As t grows the distribution of the sequenge®} converges to the targeted nested binomial
distribution. O

Now that we know what a nested binomial distribution is, and/ o sample from it, let us go
back to our simple example. Looking again[afl(11) we can nawegsize that

111 ~ Nest Bi n(0, A, Oy, Dy, p11, pa2, P12, P21)-
A numerical example should help us further gain intuitiortlo& problem.

Example 1. Let O; = 40, O, = 40, D; = 60, Dy = 20, p1; = 0.1, p1o = 0.2, po; = 0.3, and
poe = 0.4. It follows thatT = Oy + Oy = D; + Dy = 80 andA =T — Oy — Dy = 20, and so
Ty1 ~ Nest Bi n(0, 20, 40, 60,0.1,0.4,0.2,0.3). A histogram based of = 10,000 samples from
the random walk Metropolis algorithm for the above disttiba is pictured in Figurell.

Using the sample@ﬁ), o ,Tl(lG) we can produce point estimates gy if desired: the poste-

rior mean,
G

Ty =E[T1|0,D] ~ Z Y,

=1
and the posterior mode,

Ty = arg max P(Ty, =z | O, D).
z=max{0,A},...,min{O1,D1 }

Ty; can be obtained from estimates (7}, | ©, D), by Monte Carlo simulation,
G
P(Ty, = 2| O, D) Z I(TY = z) (13)

or from the Furness method. We obt&ip, = 28.43 andTn = 28.49, and so both the posterior
mean and posterior mode, estimated from our samples andedua the nearest feasible integer,
are~ 28. It is not uncommon for both estimates to coincide, esplgcrahen the distribution is
unimodal and close to symmetric, as in this case.

8



Density
0.10 0.15 0.20
| | ]
I

0.05
|
_______________________]_

0.00
L

20 25 30 35

Figure 1. Estimated posterior distribution6f; from 10,000 samples. Continuous line marks posterior mean esti-
mate; dashed line indicates Furness estimate.

We can also have an interval estimate instead of a point asinGiver) < o < 1, if we can
find T, andT; such that

Tr—1
P(Ty, <T.,|0,D) = Z P(11,10,D) < «a/2
T11=max{0,A}
and
min{O1,D1}
P(Ty >Ty|O, D)= >  P(T11]0,D) < a/2
T11=Ty+1
then the interval,, = [T}, Ty] is such thaP (73, € 1, | O, D) > 1 — «. We then calll,, a (conser-
vative, equal-tailed)00(1 — a))% credible interval—or simply Bayesian confidence interval—for
T1;. Using our estimates frorh (1L3) we have

1

Ql

G
> 125 < T < 32) = 0.96,
g=1

and s0[25, 32] is a95% credible interval fofl}y, that is, T}, € [25, 32] with at least95% posterior
probability.

Interestingly,P(7}; = 28| O, D) = 0.20; even for this simple example with a small number
of trips we can see that the probability of the most probatyedonfiguration corresponds to a
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small fraction of possible configurations. This effect ddawt come as a surprise: as the number
of zones and margins grow, so do the number of possible d¢ensisonfigurations, and so the
probability of any single trip configuration becomes everaken.

We have previously remarked on the structural role of thep@ronsp, serving as a guide
when searching for a representative trip pattern among #re/rmpossible feasible configurations.
We note, however, that there is no principled reason to éxpeose relation betwegnand actual
proportionsT /T since the latter is constrained by origin and destinatiorgina. As an example,
consider Figuré€l2, where we show the marginal posterioribigtons of 77, T, T51, andThs,,
along with expected “structural” number of trips givenBp. The discrepancies are clear once
we observe thalt'p,; + Tp1o = 24 < 40 = O, and similarly for the other margins; equivalently,
(Th1 + T12)/T = 0.5 > 0.3 = p11 + p1o for any (feasible) trip patterfi.

o
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Figure 2: Estimated posterior distributionsdffrom 10,000 samples. Squares mark expected structural trips.

2.3. Posterior sampler

Let us now extend the results from the last section to ourlprobin general, for, zones we
have the following OD matrix with margins displayed:

Tll T12 e Tln Ol
T21 T22 e T2n 02
TTﬂ Tn2 Tnn On
Dy D, D, | T
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We now proceed to eliminate the first- 1 entries in the last row and column by means of the
linear constraints in the margins:

n—1
Tnj:Dj_ZTijv j:l,...,n—l,
=1

1 (14)
Tn=0;—Y Ty, i=1....n—1
j=1
The corner entry},,, requires special handling:
n—1
I%n::()n_'jz:j%j
7j=1
n—1 n—1
=0n—) <Dj _ZTU>
j=1 i=1
n—1 n—1 (15)
=D Ty- (ZDJ—On>
i,j=1 j=1
n—1
= ZTij_(T_On_Dn)'
ij=1 X g

Ultimately, T,,, stems from the symmetry in equatidn (9).

To sample from the entries in tHe — 1)-by-(n — 1) upper submatrixS we adopt aGibbs
sampler (Geman and Geman, 1984); see also (Gilks et al.,|1995; Gammhsloeting, 2005). The
Gibbs sampler is a type of Metropolis-Hastings scheme, amiesalso sample by constructing a
Markov chain that converges to a target distribution. Tihgetedistribution is, however, multivari-
ate and the proposal distribution samples each variablei@ateafrom its conditional distribution
given the other remaining variables.

In our case, the conditional posterior distributions®a(&;; | 71;;, O, D), fori,j = 1,...,n —
terms inP(7 | O, D) that depend off;; are now related t@;,, and7,,; through equation$ (14) and
to T,,, through equatiori (15). Namely,

Tij o Tin, Tnj T,

Dij Pin Pnj Pnn"
Jzﬂjynljhjurhn!

N ij Pin nj Pnn

- TN 0y — Tl (Dy — Ti)(Tiy — Ay)V

P(T}; | Tiij), O, D)

(16)

Tij | Tiij), O, D ~ Nest Bi n(0, Aij, Osj, Dij, Dijs Dans Dins Pnj)- (17)
11



It is now straightforward to sample from the posterior forsince we know how to sample
from the nested binomial. The resulting hybrid samplingessl is commonly referred to as
Metropolis-within-Gibbs:

Step 1. Start at some arbitrary initial configuratipt) .
Step 2. Fort = 1,2, ... do (until convergence):
Step 2.1. Foi,j = 1,...,n — 1 do: samplel ~ Tj; |T[§§ Y 0,Din (I7) using a
Metropolis step

7—‘2(;) - Ms(ngtil)a 07 AZ]) Oija Dijapijapnnapinapnj)a
with A;;, O;;, andD;; defined as above.

Example 2. We end this section with an example taken from (Ortlzar arlth¥én, 2001, pg. 179).
The costq¢;; } between four zones are listed in Table 1, along with obseovigth and destination
margins.

Table 1: Trip costs between four zones with observed origid destination margins. Reproduced from
(Ortazar and Willusen, 2001, table 5.8).

Zone 1 2 3 4 0O;

1 3 11 18 22 400

2 12 3 13 19 460

3 15.5 13 5 7 400

4 24 18 8 5 702
D; 260 400 500 802 1962

Let us now assume thaf; o exp(—/fc;;) with 5 = 0.10. After running our Gibbs sampler
until assumed convergence, we take= 10,000 samples to perform posterior inference; the
marginal posterior distributions fdr;; in the uppe-by-3 matrix are summarized in Figuré 3.

The posterior meaff, estimated from our samples by

G
T=E[T|0,D] ~ Z (18)

is very similar to the Furness solution reported.in (Ortiaaat Willusen, 2001). We lisT along
with 95% credible intervals for each; in Tablel2. The confidence intervals are wider than in our
previous simple example due to the much higher number oiffieasonfigurations it (O, D). In
fact, we estimate from the posterior samples gt = 7 | O, D) ~ P(T = 7|0, D) ~ 2-107%.
Since the most probable trip pattern accounts for orit§;, of the posterior probability mass, we
can conclude that even the Furness solution has little stifjoon the data. Interval estimators
now become more attractive representatives of the postgpace of trip configurations given a
desired credibility level.

12
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Figure 3: Estimated posterior distributionsdffrom 10,000 samples.

Table 2: Posterior mean afd% credible intervals.

Zone 1 2 3
1 157.14 [147,169] 97.37 [85,110] 68.73 [56, 81] 76.75 [64 91]
2 58.70 [48, 68] 206.35 [190, 221] 101.27 [84,116] 93.69 [79,91]
3 24.16 [16, 33] 44.91 [33, 56] 138.32 [125,151] 192.61 [177,207]
4 20.00 [12,29] 51.37 [40, 64] 191.68 [172,211] 438.95 [418, 460]

An even better alternative is to use the whole posterioritigion to propagate the randomness
in 7" in our subsequent analyses. Consider, for instance, the regeonal cost

o(T) = eiTy/T,
i

and let us compare its posterior distribution, as induced byo the fixed value”,—the mean
prior regional cost—we set as a restriction[inl(10) to defin&inces = 0.1, C,, = 8.51. We can
now use our sampleg™), ..., T(%) from the Gibbs sampler to generate realizations

o(T) Z i T )T (19)

and estimateP(c(7) | O, D). Figure[4 shows a histogram based @ii79)}. The estimated
posterior mean cost iB[c¢(T)|O,D] = «(T) = 8.67, the posterior mode cost—the Furness
solution cost—isc(7) = 8.70, both higher tharC,,, while a95% credible interval forc(7) is
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8.46, 8.88], barely covering”,; moreover,

1

G
P(c(T)>C,|0,D) ~ = > I[e(TY) > Cy] =0.93.

Ql

That a great proportion of possible trip patterns is spandiore than previously expected strongly
suggests that a lower value f8rwould be more realistic given the restrictionsdrby O andD.

Density

8.4 8.6 8.8 9.0

Figure 4: Estimated posterior distribution of mean regi@ost from10,000 samples. Solid line indicates posterior
mean, dashed line marks prior mean, and dash-dotted linesmasterior mode cost.

We might also want to analyse the trip length distributioh) of the system: given a set
of K cost rangescy, ¢1], ..., (cx_1,ck|, where0 < ¢y < ¢; < -+ < ¢xg < oo, we bin the
proportion of tripsT}, /T with costs in thek-th range(c,_1, ;| for eachk = 1,..., K. We again
use our samples to generate an estimate for ach

T]ig) = Z ﬂgg)]{czj € (Ck—la Ck]} (20)
irj
Table[3 compares the mean posterior TLD with the prior TLDhgsaggregated range propor-

additional95%7credible intervals for each range. The discrepancy betvpe®n proportionsp
and posterior proportioris;; /7" is now more evident due to the structure in the TLD. In the next

section we will propose a principled way to narrow the gapveen these two regional features.
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Table 3: Mean posterior TLD and prior TLD from proportigns

Range (0, 4] (4,8] (8,12] (12,16] (16, 20] (20, 24]
E[T,/T| O, D] 0.18 0.49 0.08 0.09 0.11 0.05
Dk 0.26 0.38 0.11 0.13 0.08 0.04
g | | |
- L - I
c 7 - I n

0.0
L

0-4 4-8 8-12 12-16 16-20 20-24

Figure 5: Mean posterior TLD (bars) witts% credible intervals (whiskers), and prior TLD (squares).

3. Extensionsto the Proposed Model

As we have seen in the last example in the previous sectiaor, leliefs might be deceptively
outdated or based on regions that are not similar to the mustady region. As a consequence,
the related posterior distribution might be wrongly biased scaled, affecting the estimation. In
addition, it is possible that during the process of eligitihe prior proportions we realize that the
trip structure in the region is uncertain as it might changend) the study time frame due to, for
example, seasonal effects.

A natural approach is then to adopt our same viewpoint wisipeet to trip patterns and try
to explicitly quantify the uncertainty by regarding the pootions themselves as random. Such
assumption adds another level of uncertainty to our modawnow becomehkierarchical: the
prior parameters off, p, are now also random variables. Under this updated modetamr
ples from the last section are now conditionalmrthat is,P(7 | O, D) become® (T |p, O, D).
Nevertheless, we can still proceed in the same way we have lefore if we integrate out the
uncertainty in the “nuisance” parameters, the proportitmsbtain the marginal posterior distri-
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bution on the tripsT,
P(T10.D)= [ P(T.p|O.D)dp. @)

It is noteworthy that similarly to the previous posterioridations,
P(T,p|0,D) x P(O,D|T,p)P(T,p) = P(O,D|T)P(T |p)P(p),

that is, we now simply conditioff onp (compare with the numerator inl(8)). The integrallinl(21)
can be hard to evaluate directly, but we can again resort totdGarlo methods to sample from
P(7 | O, D) and conduct the inference, as we will see shortly.

Even though a hierarchical model increases complexityast tvo main advantages. First,
we can now explain the uncertainty in trip pattern structwyespecifying a suitable probability
distribution forp. This way, lack of information about trip pattern behaviorghe study region
is reflected by more variability in the proportions, which,turn, results in more dispersed trip
pattern posterior distributions.

Secondly, we can better incorporate additional data tleatedated to the trip pattern structure.
For instance, if there is available preliminary d&ta—usually from a small scale study in the
same region or from a region with very similar structure—w&a seamlessly incorporate it in the
inference through the posteriBf7 | O, D, 7,). This last posterior distribution can be obtained by
adding the extra conditional fy in (21) and defining the likelihooB(7; | p) to derive

P(T,p|O,D,To) x P(O,D, To|T,p)P(T,p) =P(O,D|T)P(To|p)P(T |p)P(p). (22)

Note that we make the usual assumption thatnd7, are conditionally independent given

An alternative, common approach is to assume that the piopsip are unknown, us€,
to estimate them, and then adopt the obtained estimate awéfre the “true” value op; this
approach is calle@mpirical Bayes in the statistical literature, but is traditionally refedrto as
calibration in OD matrix estimation. Albeit being computationally silap this treatment has the
drawback of underestimating variance, that is, it does uity feflect the total uncertainty in the
inferencel(Kass and Steffey, 1989).

To better elucidate the proposed hierarchical models weeptdwo applications next.

3.1. Incorporating seed matrices

A good candidate for the hyper-prior distribution pns the multinomialconjugate distribu-
tion, the Dirichlet distributionp ~ Di r (7r), with mass function

) o Hpﬂ” "

We then have

Tij+mi;—1

P(T,p|O,D) me“ H mUT € 0(0, D)) = HPUTI[TEC(O,D)].

ij*

1,J
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The conjugacy stems from |7 ~ Di r (w + 7)) sinceP(p|T)  []; ]pZ””” from the last

expression; that is, the conditionalfon 7 has the same distribution family as the priormpnA
non-informative prior orp is attained by settings = (1,..., 1) which is equivalent tg having

a uniform distribution over al{p;;} € [0, 1] such tha® _, ; pi;; = 1. In this case, the expression
for P(7T,p| O, D, Ty) above is exactly the same &3 (8), but with the important idiffee of now
being a joint distribution sincp is random.

Suppose now that we have preliminary d&a= {t;;}:=1..., in the form of a seed matrix
of trip counts. In the classical approach discussed in ttrednction,7; is commonly used to
estimate the proportions as = ¢;;/To, whereT, = >, , ti, or to simply kick-start an estimation
procedure. This approach, however, effectively ignbressmnple sizd, sincep;; remains the
same if we observe times more counts;7,, even forx arbitrarily large; furthermore, similarly
to empirical Bayes, it yields lower posterior variancesfor

Following our discussion, here we offer a more principleg waincorporate the seed matrix
To by performing posterior inference oh through the distribution in[(22). We assume that,
similar to7, the seed counts follow a conditional multinomial disttiba, 7, ~ M N (T, p) with
flat prior P(7p) o< 1. Adopting the same Dirichlet distribution ferwe have

tij

pi' 7TZ]7
P(T.p|0.D.To) o [T 25 T4 T wi 1T € C(0.D)]

AN

Tij+tij+mij—1

<1 p”TI[T € C(0,D)),

(23)

andthup |7, To ~Dir (7w +T +Tp).

To sample fromP(7,p| O, D,T,) we adopt an extended Gibbs sampler with an extra step
that accommodates the new hierarchical level: we itergtiseample fromP (7 |p, O, D, Ty) =
P(7T | p, O, D) exactly how we were doing in the previous section, and saiinpte the condi-
tional DirichletP(p|7,0,D,Ty) = P(p|T,7To). If a seed matrix is not available, the second
step becomes simply sampling froRip | 7), still a Dirichlet distribution. The updated Gibbs
sampler is listed below.

Step 1. Start at some arbitrary initial configuratibi¥) and initial proportiong©)
Step 2. For = 1,2, ... do (until convergence):

Step2.1. Fot,j=1,....,n—1do: sampléfi(j?) ~ |T[§§ Y pt1 O, D from a nested
binomial using a Metropolis step,

1 1 1 1
T = MS(TI V0, A4, 0y, Dy pl™ ple D, pli D plby,

t—1 t—1
Tz(l )DZJ_D — Dkt T( ', and

. t—1
Aij:A—Zkl 1,.,n— 1k7ézl;é]T( g
Step 2.2. Samplp) ~ Di r (T +Ty+m) orp® ~ Di r (T +m) if Ty is notavailable.

..... n—1,k#i
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To perform inference on the marginal postedf7 | O, D, 7,) we just need to use the real-
izations from the Gibbs sampler; the posterior mean, faamse, is readily available frorn_(118).
MAP estimates, however, are harder to obtain since we neeahtpute the integral ih.(21). One
alternative is to use the joint posterior mode,

Tec(©,p) | pel0,1]"*:%, ; pij=1

T = argmax{ max P(T>P|O>D>76)}>

but then the estimate might be biased since it is conditiondhe optimal value gb. In the same
vein, we could first “calibrate” by setting some specjficsay the marginal posterior mean

G
_ 1
g=1

and then produce

~

7 = argmax P(T | 5,0, D, Ty). (24)
TeC(0O,D)

It can be shown that the first estimat@F, can be obtained by an extended Furness method that
iteratively solves fop while fitting the balancing factors by setting

5o Ty + tij +mij — 1
Zk,l:l o Ly + tg + T — 1’

.....

but we will not pursue it here. Instead, for comparison Withwe will use the MAP estimatof
conditional on the more robupt A numerical example is helpful at this point.

Example 3. Consider the seed matrifg and margin® andD taken from|(Orttzar and Willusen,
2001, pg. 169) in Tablel4, and let us assume a non-informatiee for the proportionsp ~
Dir(l,...,1).

Table 4: Prior trip counts between four zones with observagiroand destination margins. Reproduced from
(Ortdzar and Willusen, 2001, table 5.6).

Zone 1 2 3 4 O;

1 5 50 100 200 400

2 50 5 100 300 460

3 50 100 5 100 400

4 100 200 250 20 702
D 260 400 500 802 1962

.

The posterior mean arid% credible intervals as estimated frai, 000 samples after assumed
convergence are listed in Table 5. Figure 6 illustrates stiemated marginal posterior distributions
for 7 (except for the last row and column.) The variance in theiBistions is higher than in our
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Table 5: Marginal posterior mean afd% credible intervals.

Zone 1 2 3 4
1 5.87 [1,14] 47.82 [29,63] 99.09 [73,117] 247.22 [226,270]
2 46.56 [29, 65] 4.92 [0, 12] 85.92 [65,115] 322.60 [295, 346]
3 70.99 [44,91] 122.36 [101, 146] 8.53 [2,20] 198.12 [170,223]
4 136.59 [114,163] 224.89 [201, 246] 306.46 [282,332] 34.07 [19, 52]

previous example since, as we have previously stated, tpogrons are random and contribute
as an extra source of uncertainty in the estimation.

The Furness solutiofi’, conditional orp, is pictured in Figurélé as square markers. As we
can see, the Furness estimate does not differ much from #terpmr mear. Still conditioning
on p, we can show thaP(7 |p, O, D, T;) ~ 0.014, while P(T | P, 0, D, T;) ~ 0.015. The
higher representativeness of both estimates when compatedample 2 is explained by a more
informative prior on the proportions: in this case the prior provides information on each OD pair
proportion as opposed to the single parameter gticapturing a cost impedance. Although the
proportions are random, the additional information predty7, attenuates the variability arising
from the randomness ip. As a matter of fact, note that’, ;¢;; = 1635, close to the number of
observations iry, T' = 1962. However, we can still maintain that these particular sohg have
low probability and are, therefore, not good represergatof the whole trip pattern ensemble.

150
|

. 1
R B T
T + 4
i B £ :
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Figure 6: Estimated marginal posterior distributionsjofrom 10,000 samples; squares mark conditional Furness
solution.

Another more direct consequenceffbeing almost as informative §Sis that the variability
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in p is small, at least relative t@, as can be seen in Figure 7. This figure shows the estimated
marginal posterior distribution gé from our samples. Figuig 7 also displays estimated posterio
mean trip proportion&[7 /T | O, D, Ty] in square markers; as we can see, the proporioase

in good agreement with the trip proportiofi§’T. The dashed line represents the prior mean

proportion
T 1

ELpzj] = Zk7l77kl = Ev 1] = 17"'7”7
for comparison.
] i
= i
1 =
! Ly
E .
! . E
3 - ' Loy
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Figure 7: Estimated marginal posterior distributiongpotquares mark posterior mean trip proportions, dashed line
marks prior mean.

3.2. Incorporating prior trip length distributions

Seed matrices provide information on each OD pair in theesysind thus derive more accurate
trip pattern inferences. More often than not, however, wendbhave preliminary datd, at
this level of detail at our disposal. In some ca§gsontains censored observations; we might
observe trips in a survey, but these trips are known only te lteame from a certain origin, or
to a destination, or to have had some specific travel cost.insteince, recalling the trip length
distribution (TLD) from Example 2, we might only discrimitesa trip in our survey by specifying
its cost “bin”, that is, within which range its cost falls.

Assume that we know the OD trip cosfs;;} and consider, as before, thé cost ranges
(co,c1], .., (cx_1,cx]. Our preliminary counts now fall int&” possible stratdf, = {¢1,...,tx},
depending on their transport costs: we obseérveips with costs between, and ¢, ¢ trips
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spending between ang andc,, and so on. If we again define range proportions aggregated by
costpy = {pr}r=1..x, Wherep, = >, -pi;I{c; € (ck-1,c;]}, we can then analogously set
To|lp ~ MN(Tp, po) with P(T) o 1 as the preliminary data likelihood. We note thmatis a
function ofp.

We can assume the same Dirichlet distribution for the prio@as,p ~ Di r (), but since

(2%
(Tplop%ocﬂp” f—’f,]‘[ " T € C(0, D)

k7,
1,j

and eaclyp, is a sum ofp;; for all pairsi and; with cost in thek-th bin, we lose the conjugacy.
Another approach, in case we are more informed about thesshgproportions, is to opt for a
Dirichlet prior onpy; but then we again lack conjugacy. Regardless, we can btdlio a Gibbs
sampler that is very similar to the scheme shown in the pus/subsection; we just need to sub-
stitute the direct Dirichlet sampling step, Step 2.2, bytaeoMetropolis step. Next, we provide
an updated sampling scheme in a simpler context.

Suppose that the proportions follow a gravity model withoc exp(—£c¢;;), as in the previous
section, but now we makg random to drive the uncertainty ip. Moreover, we settle on a
Dirichlet prior onpy, po(3) ~ Di r (7), wherer = {m,...,7mx}. In what follows we explicitly
represent the dependency of the proportiong dor clarity; we also note that now

x Zexp(—ﬁcl-j)[{cl-j € (cp—1,cxl}-
0,

The joint posterior is thus given by

P(T, 3| O,D,T) HP”T, Hp’“ Hp ()" I[T € C(O,D)]

~ pr Ti H P8 L I[T € C(0, D). (25)
<I>(5;7776)
From (25) we deduce that settimg= {1, ..., 1} for a non-informative Dirichlet prior is equiva-

lent to having a flat improper prior for the cost deterrerte]) o 1.

The Gibbs sampler has two iterative steps: we alternatedegtwampling frony” conditional
on the impedancg and all the dataP(7 | 3, O, D, Ty), and sampling fronp conditional on trip
patterns7 and margins and preliminary dat&(g | 7, O, D, T,). We already know, since Sec-
tion[2, how to sample fror®(7 | 8, O, D, Ty) = P(T | p(B), O, D) using random walk Metropo-
lis steps for the conditional nested binomial. To samplenfi®(5 |7, O, D, T,) we construct
another random walk Metropolis step.

First, let us define the normalizing factafg(3) = >, ; exp(—fci;)I{ci; € (ck-1, ]} and
Z(B) = >, exp(—Peij) = Zk Zi(B), so thatp;; = exp(—pBci;)/Z(B) andpy, = Zi(8)/Z(B).
Also, recall thal" — > Tijy To =y tr,and definély = 57, (¢ +m — 1) = To+ >, mp — K.
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The function®(5; T, 7o) in the joint posterior(25) then simplifies to

ex Bceij Z, ]
* T =11 ( i )> 11 <z<(§>)>

i?j

= exp { =B Ty + > (tr +m — 1)log Zy(B) — (TJrTo*)lOgZ(ﬁ)}-
ij k

As proposal distribution, let us select a normal distribntcentered at the current realization of
£ in the chain with small variance®. To gets® at thet-th iteration we then sample a candidate
B* ~ N(pY o?) and accept or reject it based on the acceptance ratio

P(ﬁ*‘T,O,D,%) B (I)(B*;T(t—l)’%(tfl))

= ) 26
P(BUIT,0.D,Ty)  a(pn, 70 7)) =

R3O, 5) =

The final, updated Gibbs sampler is listed below.

Step 1. Start at some arbitrary initial configuratibfY) and initial impedancg(©).
Step 2. Fott = 1,2, ... do (until convergence):
Step 2.1. Foi,j = 1,...,n — 1 do: samplel} ~ |T[§j Y p(pt),0,D from a
nested binomial using a Metropolis step,

T(t MS( -, ;0, AZjaOlijZjaplj(ﬁ(t b ) pnn(ﬁ(t b ) pm(ﬁ(t b ) pn](ﬁ(t 2 ))>

(-1 - (t-1)
with Ow =0i =D et 1,14j Tzz Dij =Dj =3 no1ksi Lx; - and

.....

aaaa

Step 2.2. Sample candldazﬁé ~ N(ﬁ( ) 0?) and sets) = p* (accept) with prob-
ability min{1, R(3*Y, 8*)} WhereR(-) is the ratio in [26); otherwise, set
O = g1 (reject.)

Example 2, revisited. Under the same setting of Example 2, but now witmandom, let us
initially set # = {1,...,1}, that is, a non-informative prior oi. We run a Gibbs sampler
with proposal variance? = 10~* until convergence and také = 10,000 samples for posterior
inference.

Our estimate fop,

B=E[3|0, D]~ GZB<9>—0031

is much lower than the assumed value in Examplg 2=(0.1), which corroborates with our pre-
vious remark about a more realistic value for the cost impedaSuch lower values are expected
since the inference is solely driven by the observed datatlaunsl better represents the margin
constraints. The estimat®d% credible interval fors is large,[0.009, 0.056], reflecting the high
degree of uncertainty that arises from trying to capturesthectural trip proportions using a single
parameter.
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The effect of a random in trip patterns can be appreciated in the estimated mdngasaerior
distributions for7 pictured in Figuré8. We draw attention to the increasedagpvenen compared
to the distributions in Figurgl 3. We also observe that then&ss solution, conditional af and
represented by squares, is similar to the posterior mi¢an O, D].
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Figure 8: Estimated marginal posterior distributionsfofrom hierarchical model with non-informative prior gh
Squares mark conditional Furness solution.

The higher variability irf/” is reproduced by wider credible intervals in the trip lendjgtribu-
tion, as shown in Figurid 9: each bar represents the estimagtdrior mean df}, /T for each cost
range, the squares pinpoint the posterior meap. 0%), while the dotted line corresponds to the
prior meanl /K. As can be seen, the dependence of the proportions on a paglmeter makes
the distribution orp not flexible enough to follow/ closely. We note again the higher variability
in the posterior TLD as assessed by the wig@igl credible intervals (whiskers) when compared
to Figure®.

Suppose now that we observe preliminary datérom (Ortdzar and Willusen, 2001, pg. 186)
in Table[6. Keeping the flat prior afiando? = 10—, we perform posterior inference frot,000
samples taken from the Gibbs sampler after convergence.

Table 6: Preliminary TLD. Data reproduced from (Ortuzar &vilusen, 2001, table 5.14).

Range (0,4] (4,8] (8,12] (12, 16] (16, 20] (20, 24]
i 365 962 160 150 230 95
tr/ T 0.19 0.49 0.08 0.08 0.12 0.05

Figure[10 pictures the estimated marginal posterior tstion of 5. The preliminary TLD
23



0.4

0.3
. —

0.2
|
—

: i
,,,,,, .

. T

| —|_ L T

o J_ T _+_
1

o |

o

0-4 4-8 8-12 12-16 16-20 20-24

Figure 9: Mean posterior TLD (bars) wit% credible intervals (whiskers), and mean posterior TLD prtipns
(squares). The dotted line marks the prior mdali’.

counts are very informativdy = T' = 1962, and greatly affect the inference: our updated estimate
for the cost deterrence is a higher= E[3| O, D, To] = 0.086, closer to the originab = 0.1 in
Example 2, and the5% credible interval fors is much tighter[0.086, 0.093].

The posterior inference on trip patterns is summarized tyela, showing posterior meah
and marginab5% credible intervals, and Figufelll. The marginal distritmsi have increased
variability when compared to Example 2 due to the randommmetige proportions, as expected.
The variance is, however, not much higher since the premifLD is very informative. The
conditional Furness solutioh, shown in square marks in Figure 11, is very similar to thegrisr
mean. The estimated posterior probabilities of theseisolsiareP (7 | 3,0, D, Ty) = 1.3 - 1073
andP(7‘|B, O,D,Ty) = 1.5-1073, slightly smaller than in Example 2.

Table 7: Marginal posterior mean afd% credible intervals.

Zone 1 2 3 4
1 141.34 [128,155] 101.49 [87,118] 71.11 [57,85] 86.07 [71,103]
2 63.87 [52,76] 184.96 [168,204] 106.10 [89, 120] 105.07 [90,122]
3 28.47 [20, 37] 51.32 [39,63] 131.06 [116, 146] 189.14 [172,205]
4 26.31 [17,37] 62.23 [48,77] 191.73 [174,209] 421.72 [400, 444]

Since < 0.1 with high posterior probability, we should expect the syst® spend more
when compared to the scenario in Example 2. Figure 12 dispheyposterior distribution of trip
costse(7), as estimated from_(19). The posterior mean regional &St = E[c¢(T) | O, D, To|
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Figure 10: Estimated marginal posterior for impedafideom 10,000 samples. Line marks posterior mean.
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Figure 11: Estimated marginal posterior distributions Jorfrom hierarchical model. Squares mark conditional
Furness solution.
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is 9.12, with a95% credible interval of8.81, 9.45], higher than before. The posterior mode cost

¢(T) is 9.09, close toc(T), as expected since the estimates are similar. The propartist
Cp(B) = >_; ; cijpiz(B) in (10) inherits the randomness frofnits estimated posterior meah95,

is lower thanc(7"), which can also be attributed to the rigidnesgin

2.0
|

1.0

0.5

0.0

8.6 8.8 9.0 9.2 9.4 9.6

Figure 12: Estimated posterior distribution of mean reglaost. Solid line indicates posterior mean, dashed line
marks posterior mean proportion cost, and dash-dottecdraris posterior mode cost.

Finally, we can also see the effect®f in reducing the inferential uncertainty in the posterior
TLD at Figure[13B, as illustrated by the tight¢5% credible intervals. We still see the discrep-
ancy between the posterior TLD—whose mé#fi; /T | O, D, 7| is represented by bars—and
the posterior proportion TLD—whose meBfp.(5) | O, D, To] is identified by squares. We note,
however, that the posterior mean TLD is close to the priormBaD, ¢, /T, represented by di-
amonds and listed in Table 6, sin@gis highly informative and thus influential. The two mean
posterior TLD are listed in Tabl€g 8.

Table 8: Posterior mean trip length distributions base@ @andp.

Range (0,4] (4,8] (8,12] (12, 16] (16, 20] (20, 24]
E[T./T|,0,D, T 0.17 0.48 0.08 0.09 0.12 0.06
Elpr(8)|,0,D, T 0.24 0.36 0.12 0.14 0.10 0.04
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Figure 13: Posterior mean TLD (bars) wift5% credible intervals (whiskers), posterior mean proporfidiD
(squares), and prior mean TLD (diamonds).

4. Discussion

Static origin-destination matrix estimation has beeniti@uhally regarded as an optimization
problem. Here we cast OD matrix estimation as a formal sieaisnference problem and adopt
a Bayesian approach where trip patterns are consideredman&urthermore, we make model
assumptions on the parameters describing the probabisitsitlition on trip patterns—trip pro-
portions that govern the structure of trip distribution—eaposed to the classical assumptions on
particular objective functions. The use of trip proporsdrees us from requiring seemingly artifi-
cial constraints on trip configurations, provides morelgasterpretable results, and allows us to
better incorporate other sources of data in a principledwigtyin a Bayesian framework.

By electing specific functional forms for the trip proporigs—as based on the entropy maxi-
mizing principle, for example—we are able to recover cleassolutions as MAP estimators and
thus inherit the justifications and rich history behind ttiatial approaches. Yet, perhaps the main
benefit of our proposed approach is to better charactereernhertainty in the solutions and, in
general, in trip distribution. As we have showed in many egl@s, it is common for any point
estimate—such as the Furness solution or posterior meamcagiure only a small fraction of
possible trip configurations given the large number of aliives. Point estimators, when seen
as ensemble summarizers, can be useful for preliminarypigrpurposes and gaining insight on
the trip distribution in the study region; they can, howewsr poor substitutes of the full poste-
rior distribution in further analyses as they can dramédtiaasnderestimate the variability in trip
patterns.
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Preliminary data is traditionally used to calibrate speqifarameters of the trip distribution
model, such as cost deterrence. Nonetheless, fixing an alptata fitting value for the parameter
can further underestimate variance in the inference. Irfulyr Bayesian approach we explicitly
acknowledge the uncertainty in the parameters by also rgdkiam random: we set a hyper-prior
distribution on trip proportions to build a hierarchical deb. As a consequence, and in contrast
with a traditional approach, more informative preliminalgta—for example, high counts in a
seed matrix—yield more precise inference on trip configanstas we are able to more accurately
characterize trip proportions.

The adoption of a Bayesian framework carries many otherfiemet covered here: besides
point and interval inference, we are also able to test hygsah by explicitly comparing models
through Bayes factors; moreover, Bayesian methods canrbeefuexplored to perform model
validation through posterior predictive checks. In sumyntdre flexibility of Bayesian statistics is
particularly helpful and really comes to bear when explgiigh-dimensional spaces such as the
ensemble of feasible trip configurations.

There is, however, a price to pay for such modeling powerghéi computational costs, and
thus the procedures discussed here still need to be momycksamined in this respect. Specif-
ically, the increased complexity in generating and analysiip configuration samples instead of
simply obtaining the most likely trip assignment needs tabsessed as the proposed routines are
tried in real-world datasets comprising large systems.urfeutlirections would also include the
development of more efficient sampling schemes throughamgat algorithms—abetter proposal
densities, for example—and faster implementations thafldvexplore, for instance, parallel ver-
sions of the proposed procedures.

Finally, it should be noted that the models proposed hereseare as basis for an integrated
higher level model that incorporates other traffic mode$iteps; as an example, the effect of con-
gested networks could be considered in OD matrix estimatiaur model would jointly consider
trip distribution and route assignment. As it is common iry&san modeling, we would then be
able to propagate the uncertainty across steps while peirigrmarginal inference on any aspect
of the higher model conditional on data from all steps. Femrtiore, other types of data could also
be considered to obtain more refined models with, for ingglntk count data and camera sensors
or temporal variation for dynamic OD matrix estimation.
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