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Abstract

We address the problem of static OD matrix estimation from a formal statistical viewpoint. We
adopt a novel Bayesian framework to develop a class of modelsthat explicitly cast trip configura-
tions in the study region as random variables. As a consequence, classical solutions from growth
factor, gravity, and maximum entropy models are identified to specific estimators under the pro-
posed models. We show that each of these solutions usually account for only a small fraction of
the posterior probability mass in the ensemble and we then contend that the uncertainty in the
inference should be propagated to later analyses or next-stage models. We also propose alterna-
tive, more robust estimators and devise Markov chain Monte Carlo sampling schemes to obtain
them and perform other types of inference. We present several examples showcasing the proposed
models and approach and highlight how other sources of data can be incorporated in the model
and inference in a principled, non-heuristic way.

Keywords: static OD matrix estimation, random matrix, constrained sampling

1. Introduction

Consider a study region divided inton zones where trips can occur between any pair of zones.
During a certain time period we observe the number of tripsoriginated at zonei, Oi, and the
number of tripsdestined to zonej, Dj , for i, j = 1, . . . , n. Our objective is to estimate the number
of trips Tij from each zonei to each zonej—including intrazonal tripsTii—conditional on the
O = {Oi}

n
i=1 andD = {Dj}

n
j=1. Since the tripsT = {Tij}i,j=1,...,n can be represented by the

matrix

M =








T11 T12 · · · T1n

T21 T22 · · · T2n
...

...
. . .

...
Tn1 Tn2 · · · Tnn







, (1)

and we are fixing a time window for the trip realizations, our problem is usually referred to as
static OD matrix estimation. We note that the OD matrixM has restrictions on its row and column
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margins,
n∑

j=1

Tij = Oi, i = 1, . . . , n,

n∑

i=1

Tij = Dj, j = 1, . . . , n.

(2)

and thus the estimation is constrained. We also require that
∑n

i=1Oi =
∑n

j=1Dj
.
= T for consis-

tency.
This problem has been studied for many decades. The first contributions to its solution adopted

a physical interpretation and assumedT could be described by a gravitational law (Casey, 1955):
Tij ∝ OiDjd

−2
ij , wheredij is the distance between zonesi andj. This functional relation was later

generalized to include decreasing functions of traveling costscij between zonesi andj, called
“deterrence” functions:

Tij ∝ OiDjd(cij). (3)

Common choices ford include exponential linear functions of costs, such asd(cij) = exp(−βcij)
or d(cij) = exp(−βcij − α log cij).

These gravity models are synthetic models since they do not incorporate previously observed
trip patterns. In contrast, growth factor models regardT as possible future trip patterns and
incorporate previous observations in a doubly constrainedformulation. Let the “seed” matrix
T0 = {tij}i,j=1,...,n be previous observations from the same or similar study region. Based on the
method proposed by Furness (1965), we assume

Tij = AiOiBjDjtij , (4)

whereAi andBj are “balancing factors” that are known up to a proportionality constant. Furness
method definesT by iteratively solving for the balancing factors to respectconstraints (2) until
convergence.

Both gravity and growth factor models provide estimates forT based on heuristic, functional
arguments. Wilson (1970, 1974) defined a formulation based on entropy maximization that would
unify both previous approaches. If

W (T ) =
T !

∏

i,j Tij !

is the number of “micro” states associated with “meso” stateT , then the trip configuration that
maximizesW , or equivalently

logW (T )− log T ! ≈ −
∑

i,j

(

Tij log Tij − Tij

)

,

subject to constraints (2) is a maximum entropy solution. Ifinstead oflogW we maximize

logW ′(T , T0) = −
∑

i,j

(

Tij log
Tij

tij
− Tij

)
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the solution would coincide with the one provided by the Furness model. By adding an additional
cost constraint, such as ∑

i,j

cijTij = CT (5)

we obtain the same estimates from the gravity model withd(cij) = exp(−βcij).
We can make two important observations from the maximum entropy approach. First, we

note that the functional expressions forTij from the gravity and Furness models can actually be
regarded as closed form expressions that can be used to iteratively obtain solutions to a mathemat-
ical program that maximizeslogW or logW ′ subject to certain constraints. Second, since there
are many feasible configurations forT , we can define weights—in Wilson’s case given byW—to
help us find the best trip configuration; it is, however, implicit from this formulation that any other
trip pattern but the “optimal” is also possible, or even likely, to occur.

In this paper we propose a formulation for the OD matrix estimation problem whereT is ex-
plicitly random. As we will show, this formulation corresponds to a Bayesianstatistical approach,
e.g. (Gelman et al., 2003). Even though our focus will be on exploring the randomness associated
with the trip patterns instead of simply extracting a singletrip pattern through optimization, we
show that the maximum entropy solutions, including the classical gravity and growth model so-
lutions, are identified with maximuma posteriori (MAP) estimates under our setup. Besides this
unifying consequence, Bayesian methods also provide othertypes of estimators and, more gener-
ally, are able to quantify the uncertainty in estimation andto propagate it to posterior analyses in
a principled, integrated framework.

2. Proposed Model

First of all, let us say that the tripsT are(O,D)-consistent, denoted byT ∈ C(O,D), if T
satisfies equations (2). That is, we define

C(O,D) =

{

T̃ = {T̃ij} :

n∑

j=1

T̃ij = Oi and
n∑

i=1

T̃ij = Dj

}

.

As stated before, we regardT as random; margin tripsO andD are, however, treated as
observed data. In the fully Bayesian approach we pursue next, all inferences are driven by the
posterior distribution onT conditional on dataO andD as given by

P(T |O,D) =
P(O,D | T )P(T )

∑

T̃ P(O,D | T̃ )P(T̃ )
,

according to Bayes’ rule. The data conditionalP(O,D | T ) is termed thelikelihood, whileP(T )
is theprior distribution.

Let us then consider the simple likelihood

P(O,D | T ) = I[T ∈ C(O,D)] (6)

3



whereI(·) is the indicator function:I(A) = 1 if and only if A is true. By the definition of OD
consistency, the likelihood in equation (6) just states that the margin trips satisfy equations (2),
that is, it is a simple indicator for(O,D)-consistency.

The randomness in tripsT comes initially from our belief, before observing any data in the
margins, of how the trips are distributed. This belief is hardly subjective, but often arises from
experience on similar regions and zones; in the next sectionwe discuss how to incorporate knowl-
edge gathered from small scale studies in the same region. Toestablish a parallel to the maximum
entropy approach of the previous section, we assume thatT has a conditional multinomial prior
distribution given byT | T ∼ MN(T,p), that is,

P(T | T ) =
T !

∏

i,j Tij !

∏

i,j

p
Tij

ij ,

whereT is the total number of trips in the region andp = {pij}i,j=1,...,n with pij being the propor-
tion of trips between zonesi andj. Of course, we require that

∑

i,j pij = 1 andpij are nonnegative.
The “hyper-prior” parameterT has an improper non-informative distributionP(T ) ∝ 1, and so
the prior becomes

P(T ) =

∞∑

T=0

P(T | T )P(T )

=

∞∑

T=0

T !
∏

i,j Tij!

∏

i,j

p
Tij

ij I

(
∑

i,j

Tij = T

)

=

(
∑

i,j Tij

)

!
∏

i,j Tij!

∏

i,j

p
Tij

ij .

(7)

The prior onT resembles the number of micro statesW defined by Wilson, but with the
proportions as extra parameters. The proportionsp have the important role of convening prior
information on thestructure of trip distribution in the study area. From a behavioral perspective,
pij corresponds to the probability of a trip in the system, out ofthe totalT available, occurring
between zonesi andj; we could, for example, borrowing from random decision theory, define a
multinomial logit model on eachpij that depends on a set of covariatesxij for each OD pair such
as transport costs, time, and user preferences:

pij =
exp(xT

ijβ)
∑

k,l=1,...,n exp(x
T
klβ)

,

whereβ are known coefficients.
While we are now assuming thatp is known and thus fully specifyP(T ) above, we can further

incorporate uncertainty by adding another level of randomness to the prior parameters to form a
hierarchical model; we postpone such considerations to Section 3.
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2.1. Estimation

The inference we wish to carry out is driven by our updated belief in T after observingO and
D as summarized by the posterior distribution

P(T |O,D) =
P(O,D | T )P(T )

∑

T̃ P(O,D | T̃ )P(T̃ )

=
I[T ∈ C(O,D)]P(T )
∑

T̃ ∈C(O,D) P(T̃ )

∝
T !

∏

i,j Tij !

∏

i,j

p
Tij

ij I[T ∈ C(O,D)].

(8)

One important consequence ofT ∈ C(O,D) in the posterior above is that the prior parameter
T implicitly satisfies

T =
∑

i,j

Tij =

n∑

i=1

Oi =

n∑

j=1

Dj , (9)

that is,O andD are self-consistent throughT .
A common estimator in Bayesian statistics is the maximuma posteriori (MAP) estimator, the

posterior mode:

T̂ = argmax
T

{

log P(T |O,D)
}

= argmax
T ∈C(O,D)

{
∑

i,j

Tij log pij − log Tij !

}

≈ argmax
T ∈C(O,D)

{
∑

i,j

Tij log pij − (Tij log Tij − Tij)

}

= argmax
T ∈C(O,D)

{

−
∑

i,j

(

Tij log
Tij

pij
− Tij

)}

.

Note the similarity between the maximand andlogW ′. It is now straightforward to show that

T̂ij = AiOiBjDjpij,

whereAi andBj are balancing factors. Thus, the MAP estimator is equivalent to the solution
obtained from the Furness method for the maximum entropy formulation. In fact, if we use a prior
seed matrixT0 = {tij} to setpij = tij/

∑

i,j tij , the prior proportions, we recover the growth
factor solution.

To obtain gravity model solutions we just have to definep based on an entropy maximizing
principle: we wantp that maximizes the entropyH(p) = −

∑

i,j pij log pij possibly subject to
additional constraints onp other than

∑

i,j pij = 1. Since entropy uniquely measures the amount
of uncertainty in a probability distribution, a maximum entropy assignment is justified as the
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only unbiased assumption we can attain under a state of partial knowledge of the system. As
Wilson (1970, pg. 10) points out, “the probability distribution which maximizes entropy makes
the weakest assumption which is consistent with what is known”. If we then constraint on trip
costs by requiring a fixed mean cost in the region

∑

i,j

cijpij = Cp, (10)

we obtainpij ∝ exp(−βcij), and hence a gravity model with a familiar exponential deterrence
function.

Even though settingp as above provides the same solution, there is a subtle but important
difference to the original maximum entropy formulation: inWilson’s model we constraint the trip
patterns using (5), effectively reducing the number of feasible trip configurations, while in our
proposed model we only restrict the proportions using (10) to redefine the weights on trip patterns.
In other words, our feasible space is still only constrainedby (2), but we set the proportions as
a structural guide for estimation since the shape of the posterior distribution onT depends onp.
In this sense, we can think of (10) as a “soft” constraint. We can argue that such a formulation is
more natural since we can certainly have prior knowledge of overall transport expenditures in the
system while it seems artificial to establish a rigid cost constraint on the whole study region.

Another good estimator is the posterior mean, defined as

T = E[T |O,D] =
∑

T̃

T̃ · P(T̃ | O,D).

The posterior mean is more robust than the posterior mode since it averages the uncertainty on
trip patterns across all possibleT —weighted by their respective posterior probability mass—as
opposed to simply picking the trip pattern with highest posterior probability. Moreover, since the
posterior mean is a linear combination of feasible trip patterns, it also satisfies the linear constraints
in (2). There is, however, one major difficulty in this venue:we need to knowP(T |O,D) for
eachT .

The main hurdle in evaluating the posterior onT in (8) is the normalizing factorZ(O,D)
.
=

∑

T̃ ∈C(O,D) P(T̃ ). ComputingZ(O,D) requires summing over all possible pairwise trip assign-
ments that are(O,D)-consistent, a daunting task. Before addressing this central issue, we offer
some motivation in the next subsection.

2.2. A simple example

Suppose that, forn = 2 zones, we observeO1, O2, D1, D2, and wish to estimate the entriesT
in the OD matrix

T11 T12 O1

T21 T22 O2

D1 D2 T

with margins and total number of tripsT displayed.
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SinceT is consistent, we know thatT12 = O1 − T11, T21 = D1 − T11 andT22 = O2 − T11 =
T11 − (T − O2 −D2) = T11 −∆, where we set∆

.
= T − O2 −D2. The posterior onT is then a

posterior onT11 due to these linear constraints:

P(T11 | O,D) ∝
T !

T11!T12!T21!T22!
pT11

11 pT12

12 pT21

21 pT22

22

∝
pT11

11 pO1−T11

12 pD1−T11

21 pT11−∆
22

T11!(O1 − T11)!(D1 − T11)!(T11 −∆)!
.

(11)

Looking at (11) we can see thatT ∈ C(O,D) is equivalent to requiring that

max{0,∆} ≤ T11 ≤ min{O1, D1},

and so the normalizing constant for (11) is the sum of its right-hand side over the values ofT11

above. In practice, however, it is simpler to obtain posterior samples ofT11 using aMetropolis-
Hastings algorithm (Hastings, 1970). The idea is to generate a Markovchain by sampling from
a proposal distribution and then accepting or rejecting candidates based on an acceptance ratio;
after convergence, the realizations from the chain are taken as valid samples from the “target”
distribution from which we initially wanted to sample. Thisis a standard Monte Carlo technique;
more details can be found in, e.g., (Gilks et al., 1995) and (Givens and Hoeting, 2005). To discuss
the details of the sampler algorithm we need first to present an important distribution.

Nested binomial distribution. We say that a random variableX follows anested binomial distri-
bution with parametersA, B, C, D, pA, pB, pC , andpD such thatC,D > 0, max{A,B} ≤
min{C,D}, andpA, pB, pC, pD > 0, denoted by

X ∼ NestBin(A,B,C,D, pA, pB, pC , pD)

if X has probability mass distributionproportional to

Ψ(x;A,B,C,D, pA, pB, pC , pD) =
px−A
A px−B

B pC−x
C pD−x

D

(x−A)!(x−B)!(C − x)!(D − x)!
, (12)

for max{A,B} ≤ x ≤ min{C,D}.
To sample fromX we devise the following Metropolis scheme. As proposal we adopt aran-

dom walk: given our actual positionx(t−1) at iteration “time”t−1 in the chain, we set our candidate
x∗ a step to the left,x∗ = x(t−1)−1 with probability0.5 or a step to the right,x∗ = x(t−1)+1 with
probability0.5.

If x∗ < max{A,B} or x∗ > min{C,D} we immediately rejectx∗—and setx(t) = x(t−1)—
as it is out of bounds. Otherwise we acceptx∗—and thus setx(t) = x∗—with probability
min{R(x(t−1), x∗), 1}, whereR(x(t−1), x∗) is the acceptance ratio:

R(x(t−1), x∗) =
Ψ(x∗;A,B,C,D, pA, pB, pC , pD)

Ψ(x(t−1);A,B,C,D, pA, pB, pC, pD)
.

We say that we have executed a Metropolisstep at thet-th iteration if we propose a candidate
and then updatex(t), the next realization in the chain, by accepting or rejecting the candidate as
above. We denote this operation byx(t) = MS(x(t−1);A,B,C,D, pA, pB, pC, pD). To summarize,
we can obtain samples fromX by doing:

7



Step 1. Start at some arbitrary initialx(0).
Step 2. Fort = 1, 2, . . . do (until convergence): execute a Metropolis step,

x(t) = MS(x(t−1);A,B,C,D, pA, pB, pC , pD),

that is,
Step 2.1. Sample candidatex∗: sampleU ∼ U(0, 1) (from a standard uniform); ifU <

0.5 setx∗ = x(t−1) − 1, otherwise setx∗ = x(t−1) + 1.
Step 2.2. Ifx∗ < max{A,B} or x∗ > min{C,D} setx(t) = x(t−1) (reject). Otherwise,

sampleU ∼ U(0, 1): if U < min{R(x(t−1), x∗), 1} then setx(t) = x∗ (accept),
else setx(t) = x(t−1) (reject).

As t grows the distribution of the sequence{x(t)} converges to the targeted nested binomial
distribution.

Now that we know what a nested binomial distribution is, and how to sample from it, let us go
back to our simple example. Looking again at (11) we can now recognize that

T11 ∼ NestBin(0,∆, O1, D1, p11, p22, p12, p21).

A numerical example should help us further gain intuition onthe problem.

Example 1. Let O1 = 40, O2 = 40, D1 = 60, D2 = 20, p11 = 0.1, p12 = 0.2, p21 = 0.3, and
p22 = 0.4. It follows thatT = O1 + O2 = D1 +D2 = 80 and∆ = T − O2 − D2 = 20, and so
T11 ∼ NestBin(0, 20, 40, 60, 0.1, 0.4, 0.2, 0.3). A histogram based onG = 10,000 samples from
the random walk Metropolis algorithm for the above distribution is pictured in Figure 1.

Using the samplesT (1)
11 , . . . , T

(G)
11 we can produce point estimates forT11 if desired: the poste-

rior mean,

T 11 = E[T11 | O,D] ≈
1

G

G∑

g=1

T
(g)
11 ,

and the posterior mode,

T̂11 = argmax
x=max{0,∆},...,min{O1,D1}

P(T11 = x | O,D).

T̂11 can be obtained from estimates forP(T11 | O,D), by Monte Carlo simulation,

P(T11 = x | O,D) ≈
1

G

G∑

g=1

I(T
(g)
11 = x), (13)

or from the Furness method. We obtainT 11 = 28.43 andT̂11 = 28.49, and so both the posterior
mean and posterior mode, estimated from our samples and rounded to the nearest feasible integer,
are≈ 28. It is not uncommon for both estimates to coincide, especially when the distribution is
unimodal and close to symmetric, as in this case.

8



T11

D
en

si
ty

20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 1: Estimated posterior distribution ofT11 from 10,000 samples. Continuous line marks posterior mean esti-
mate; dashed line indicates Furness estimate.

We can also have an interval estimate instead of a point estimate. Given0 < α < 1, if we can
find TL andTU such that

P(T11 < TL | O,D) =

TL−1∑

T11=max{0,∆}

P(T11 | O,D) ≤ α/2

and

P(T11 > TU | O,D) =

min{O1,D1}∑

T11=TU+1

P(T11 | O,D) ≤ α/2,

then the intervalIα = [TL, TU ] is such thatP(T11 ∈ Iα | O,D) ≥ 1−α. We then callIα a (conser-
vative, equal-tailed)100(1− α)% credible interval—or simply Bayesian confidence interval—for
T11. Using our estimates from (13) we have

P(25 ≤ T11 ≤ 32 | O,D) ≈
1

G

G∑

g=1

I(25 ≤ T
(g)
11 ≤ 32) = 0.96,

and so[25, 32] is a95% credible interval forT11, that is,T11 ∈ [25, 32] with at least95% posterior
probability.

Interestingly,P(T11 = 28 | O,D) ≈ 0.20; even for this simple example with a small number
of trips we can see that the probability of the most probable trip configuration corresponds to a
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small fraction of possible configurations. This effect should not come as a surprise: as the number
of zones and margins grow, so do the number of possible consistent configurations, and so the
probability of any single trip configuration becomes even smaller.

We have previously remarked on the structural role of the proportionsp, serving as a guide
when searching for a representative trip pattern among the many possible feasible configurations.
We note, however, that there is no principled reason to expect a close relation betweenp and actual
proportionsT /T since the latter is constrained by origin and destination margins. As an example,
consider Figure 2, where we show the marginal posterior distributions ofT11, T12, T21, andT22,
along with expected “structural” number of trips given byTp. The discrepancies are clear once
we observe thatTp11 + Tp12 = 24 < 40 = O1 and similarly for the other margins; equivalently,
(T11 + T12)/T = 0.5 > 0.3 = p11 + p12 for any (feasible) trip patternT .

T11 T12 T21 T22

0
10

20
30

40

Figure 2: Estimated posterior distributions ofT from 10,000 samples. Squares mark expected structural trips.

2.3. Posterior sampler

Let us now extend the results from the last section to our problem. In general, forn zones we
have the following OD matrix with margins displayed:

T11 T12 · · · T1n O1

T21 T22 · · · T2n O2
...

...
. . .

...
...

Tn1 Tn2 · · · Tnn On

D1 D2 · · · Dn T

10



We now proceed to eliminate the firstn− 1 entries in the last row and column by means of the
linear constraints in the margins:

Tnj = Dj −
n−1∑

i=1

Tij, j = 1, . . . , n− 1,

Tin = Oi −

n−1∑

j=1

Tij , i = 1, . . . , n− 1.

(14)

The corner entryTnn requires special handling:

Tnn = On −

n−1∑

j=1

Tnj

= On −

n−1∑

j=1

(

Dj −

n−1∑

i=1

Tij

)

=
n−1∑

i,j=1

Tij −

(
n−1∑

j=1

Dj − On

)

=

n−1∑

i,j=1

Tij − (T −On −Dn)
︸ ︷︷ ︸

∆

.

(15)

Ultimately,Tnn stems from the symmetry in equation (9).
To sample from the entries in the(n − 1)-by-(n − 1) upper submatrixS we adopt aGibbs

sampler (Geman and Geman, 1984); see also (Gilks et al., 1995; Givensand Hoeting, 2005). The
Gibbs sampler is a type of Metropolis-Hastings scheme, and so we also sample by constructing a
Markov chain that converges to a target distribution. The target distribution is, however, multivari-
ate and the proposal distribution samples each variable at atime from its conditional distribution
given the other remaining variables.

In our case, the conditional posterior distributions areP(Tij | T[ij],O,D), for i, j = 1, . . . , n−
1, whereT[ij] denotes all the entries inT butTij , that is,T[ij]

.
= {Tkl}k,l=1,...,n−1,k 6=i,l 6=j. The only

terms inP(T |O,D) that depend onTij are now related toTin andTnj through equations (14) and
to Tnn through equation (15). Namely,

P(Tij | T[ij],O,D) ∝
p
Tij

ij pTin

in p
Tnj

nj pTnn
nn

Tij !Tin!Tnj !Tnn!

.
=

p
Tij

ij p
Oij−Tij

in p
Dij−Tij

nj p
Tij−∆ij
nn

Tij !(Oij − Tij)!(Dij − Tij)!(Tij −∆ij)!
,

(16)

where we defineOij
.
= Oi −

∑

l=1,...,n−1,l 6=j Til, Dij
.
= Dj −

∑

k=1,...,n−1,k 6=i Tkj, and∆ij
.
=

∆−
∑

k,l=1,...,n−1,k 6=i,l 6=j Tkl to simplify the expressions. Thus,

Tij | T[ij],O,D ∼ NestBin(0,∆ij, Oij, Dij, pij, pnn, pin, pnj). (17)
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It is now straightforward to sample from the posterior forT since we know how to sample
from the nested binomial. The resulting hybrid sampling scheme is commonly referred to as
Metropolis-within-Gibbs:

Step 1. Start at some arbitrary initial configurationT (0).
Step 2. Fort = 1, 2, . . . do (until convergence):

Step 2.1. Fori, j = 1, . . . , n − 1 do: sampleT (t)
ij ∼ Tij | T

(t−1)
[ij] ,O,D in (17) using a

Metropolis step,

T
(t)
ij = MS(T

(t−1)
ij ; 0,∆ij, Oij, Dij, pij, pnn, pin, pnj),

with ∆ij , Oij, andDij defined as above.

Example 2. We end this section with an example taken from (Ortúzar and Willusen, 2001, pg. 179).
The costs{cij} between four zones are listed in Table 1, along with observedorigin and destination
margins.

Table 1: Trip costs between four zones with observed origin and destination margins. Reproduced from
(Ortúzar and Willusen, 2001, table 5.8).
Zone 1 2 3 4 Oi

1 3 11 18 22 400
2 12 3 13 19 460
3 15.5 13 5 7 400
4 24 18 8 5 702
Dj 260 400 500 802 1962

Let us now assume thatpij ∝ exp(−βcij) with β = 0.10. After running our Gibbs sampler
until assumed convergence, we takeG = 10,000 samples to perform posterior inference; the
marginal posterior distributions forTij in the upper3-by-3 matrix are summarized in Figure 3.

The posterior meanT , estimated from our samples by

T = E[T |O,D] ≈
1

G

G∑

g=1

T (g) (18)

is very similar to the Furness solution reported in (Ortúzarand Willusen, 2001). We listT along
with 95% credible intervals for eachTij in Table 2. The confidence intervals are wider than in our
previous simple example due to the much higher number of feasible configurations inC(O,D). In
fact, we estimate from the posterior samples thatP(T = T |O,D) ≈ P(T = T̂ | O,D) ≈ 2·10−3.
Since the most probable trip pattern accounts for only0.2% of the posterior probability mass, we
can conclude that even the Furness solution has little support from the data. Interval estimators
now become more attractive representatives of the posterior space of trip configurations given a
desired credibility level.
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Figure 3: Estimated posterior distributions ofT from 10,000 samples.

Table 2: Posterior mean and95% credible intervals.
Zone 1 2 3 4

1 157.14 [147, 169] 97.37 [85, 110] 68.73 [56, 81] 76.75 [64, 91]
2 58.70 [48, 68] 206.35 [190, 221] 101.27 [84, 116] 93.69 [79, 91]
3 24.16 [16, 33] 44.91 [33, 56] 138.32 [125, 151] 192.61 [177, 207]
4 20.00 [12, 29] 51.37 [40, 64] 191.68 [172, 211] 438.95 [418, 460]

An even better alternative is to use the whole posterior distribution to propagate the randomness
in T in our subsequent analyses. Consider, for instance, the mean regional cost

c(T ) =
∑

i,j

cijTij/T,

and let us compare its posterior distribution, as induced byT , to the fixed valueCp—the mean
prior regional cost—we set as a restriction in (10) to defineβ. Sinceβ = 0.1, Cp = 8.51. We can
now use our samplesT (1), . . . , T (G) from the Gibbs sampler to generate realizations

c(T (g)) =
∑

i,j

cijT
(g)
ij /T (19)

and estimateP(c(T ) | O,D). Figure 4 shows a histogram based on{c(T (g))}. The estimated
posterior mean cost isE[c(T ) | O,D] = c(T ) = 8.67, the posterior mode cost—the Furness
solution cost—isc(T̂ ) = 8.70, both higher thanCp, while a 95% credible interval forc(T ) is
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[8.46, 8.88], barely coveringCp; moreover,

P
(
c(T ) ≥ Cp | O,D

)
≈

1

G

G∑

g=1

I
[
c(T (g)) ≥ Cp

]
= 0.93.

That a great proportion of possible trip patterns is spending more than previously expected strongly
suggests that a lower value forβ would be more realistic given the restrictions onT by O andD.
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Figure 4: Estimated posterior distribution of mean regional cost from10,000 samples. Solid line indicates posterior
mean, dashed line marks prior mean, and dash-dotted line marks posterior mode cost.

We might also want to analyse the trip length distribution (TLD) of the system: given a set
of K cost ranges(c0, c1], . . . , (cK−1, cK ], where0 ≤ c0 < c1 < · · · < cK < ∞, we bin the
proportion of tripsTk/T with costs in thek-th range(ck−1, ck] for eachk = 1, . . . , K. We again
use our samples to generate an estimate for eachTk:

T
(g)
k =

∑

i,j

T
(g)
ij I

{
cij ∈ (ck−1, ck]

}
. (20)

Table 3 compares the mean posterior TLD with the prior TLD using aggregated range propor-
tions{pk}k=1,...,K , wherepk =

∑

i,j pijI
{
cij ∈ (ck−1, ck]

}
. Figure 5 represents both TLD with

additional95% credible intervals for each range. The discrepancy betweenprior proportionsp
and posterior proportionsTij/T is now more evident due to the structure in the TLD. In the next
section we will propose a principled way to narrow the gap between these two regional features.
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Table 3: Mean posterior TLD and prior TLD from proportionsp.
Range (0, 4] (4, 8] (8, 12] (12, 16] (16, 20] (20, 24]

E[Tk/T | O,D] 0.18 0.49 0.08 0.09 0.11 0.05
pk 0.26 0.38 0.11 0.13 0.08 0.04

0−4 4−8 8−12 12−16 16−20 20−24

0.
0
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0.
3

0.
4

0.
5

Figure 5: Mean posterior TLD (bars) with95% credible intervals (whiskers), and prior TLD (squares).

3. Extensions to the Proposed Model

As we have seen in the last example in the previous section, prior beliefs might be deceptively
outdated or based on regions that are not similar to the current study region. As a consequence,
the related posterior distribution might be wrongly biasedand scaled, affecting the estimation. In
addition, it is possible that during the process of eliciting the prior proportions we realize that the
trip structure in the region is uncertain as it might change during the study time frame due to, for
example, seasonal effects.

A natural approach is then to adopt our same viewpoint with respect to trip patterns and try
to explicitly quantify the uncertainty by regarding the proportions themselves as random. Such
assumption adds another level of uncertainty to our model, which now becomeshierarchical: the
prior parameters onT , p, are now also random variables. Under this updated model oursam-
ples from the last section are now conditional onp, that is,P(T |O,D) becomesP(T |p,O,D).
Nevertheless, we can still proceed in the same way we have done before if we integrate out the
uncertainty in the “nuisance” parameters, the proportions, to obtain the marginal posterior distri-
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bution on the tripsT ,

P(T |O,D) =

∫

P(T ,p | O,D)dp. (21)

It is noteworthy that similarly to the previous posterior derivations,

P(T ,p | O,D) ∝ P(O,D | T ,p)P(T ,p) = P(O,D | T )P(T |p)P(p),

that is, we now simply conditionT onp (compare with the numerator in (8)). The integral in (21)
can be hard to evaluate directly, but we can again resort to Monte Carlo methods to sample from
P(T |O,D) and conduct the inference, as we will see shortly.

Even though a hierarchical model increases complexity, it has two main advantages. First,
we can now explain the uncertainty in trip pattern structureby specifying a suitable probability
distribution forp. This way, lack of information about trip pattern behaviorsin the study region
is reflected by more variability in the proportions, which, in turn, results in more dispersed trip
pattern posterior distributions.

Secondly, we can better incorporate additional data that are related to the trip pattern structure.
For instance, if there is available preliminary dataT0—usually from a small scale study in the
same region or from a region with very similar structure—we can seamlessly incorporate it in the
inference through the posteriorP(T |O,D, T0). This last posterior distribution can be obtained by
adding the extra conditional onT0 in (21) and defining the likelihoodP(T0 |p) to derive

P(T ,p | O,D, T0) ∝ P(O,D, T0 | T ,p)P(T ,p) = P(O,D | T )P(T0 |p)P(T |p)P(p). (22)

Note that we make the usual assumption thatT andT0 are conditionally independent givenp.
An alternative, common approach is to assume that the proportionsp are unknown, useT0

to estimate them, and then adopt the obtained estimate as if it were the “true” value ofp; this
approach is calledempirical Bayes in the statistical literature, but is traditionally referred to as
calibration in OD matrix estimation. Albeit being computationally simpler, this treatment has the
drawback of underestimating variance, that is, it does not fully reflect the total uncertainty in the
inference (Kass and Steffey, 1989).

To better elucidate the proposed hierarchical models we present two applications next.

3.1. Incorporating seed matrices

A good candidate for the hyper-prior distribution onp is the multinomialconjugate distribu-
tion, the Dirichlet distribution,p ∼ Dir(π), with mass function

P(p) ∝
∏

i,j

p
πij−1
ij .

We then have

P(T ,p | O,D) ∝
∏

i,j

p
Tij

ij

Tij !

∏

i,j

p
πij−1
ij I[T ∈ C(O,D)] =

∏

i,j

p
Tij+πij−1
ij

Tij !
I[T ∈ C(O,D)].
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The conjugacy stems fromp | T ∼ Dir(π + T ) sinceP(p | T ) ∝
∏

i,j p
Tij+πij−1
ij from the last

expression; that is, the conditional ofp onT has the same distribution family as the prior onp. A
non-informative prior onp is attained by settingπ = (1, . . . , 1) which is equivalent top having
a uniform distribution over all{pij} ∈ [0, 1]n

2

such that
∑

i,j pij = 1. In this case, the expression
for P(T ,p | O,D, T0) above is exactly the same as (8), but with the important difference of now
being a joint distribution sincep is random.

Suppose now that we have preliminary dataT0 = {tij}i,j=1,...,n in the form of a seed matrix
of trip counts. In the classical approach discussed in the introduction,T0 is commonly used to
estimate the proportions asp̂ij = tij/T0, whereT0 =

∑

k,l tkl, or to simply kick-start an estimation
procedure. This approach, however, effectively ignores the sample sizeT0 sincep̂ij remains the
same if we observeκ times more counts,κT0, even forκ arbitrarily large; furthermore, similarly
to empirical Bayes, it yields lower posterior variances forT .

Following our discussion, here we offer a more principled way to incorporate the seed matrix
T0 by performing posterior inference onT through the distribution in (22). We assume that,
similar toT , the seed counts follow a conditional multinomial distribution,T0 ∼ MN(T0,p) with
flat priorP(T0) ∝ 1. Adopting the same Dirichlet distribution forp we have

P(T ,p | O,D, T0) ∝
∏

i,j

p
Tij

ij

Tij !

∏

i,j

p
tij
ij

tij !

∏

i,j

p
πij−1
ij I[T ∈ C(O,D)]

∝
∏

i,j

p
Tij+tij+πij−1
ij

Tij !
I[T ∈ C(O,D)],

(23)

and thusp | T , T0 ∼ Dir(π + T + T0).
To sample fromP(T ,p | O,D, T0) we adopt an extended Gibbs sampler with an extra step

that accommodates the new hierarchical level: we iteratively sample fromP(T |p,O,D, T0) =
P(T |p,O,D) exactly how we were doing in the previous section, and samplefrom the condi-
tional DirichletP(p | T ,O,D, T0) = P(p | T , T0). If a seed matrix is not available, the second
step becomes simply sampling fromP(p | T ), still a Dirichlet distribution. The updated Gibbs
sampler is listed below.

Step 1. Start at some arbitrary initial configurationT (0) and initial proportionsp(0).
Step 2. Fort = 1, 2, . . . do (until convergence):

Step 2.1. Fori, j = 1, . . . , n−1 do: sampleT (t)
ij ∼ Tij | T

(t−1)
[ij] ,p(t−1),O,D from a nested

binomial using a Metropolis step,

T
(t)
ij = MS(T

(t−1)
ij ; 0,∆ij, Oij, Dij, p

(t−1)
ij , p(t−1)

nn , p
(t−1)
in , p

(t−1)
nj ),

with Oij
.
= Oi −

∑

l=1,...,n−1,l 6=j T
(t−1)
il , Dij

.
= Dj −

∑

k=1,...,n−1,k 6=i T
(t−1)
kj , and

∆ij
.
= ∆−

∑

k,l=1,...,n−1,k 6=i,l 6=j T
(t−1)
kl .

Step 2.2. Samplep(t) ∼ Dir(T (t)+T0+π) orp(t) ∼ Dir(T (t)+π) if T0 is not available.
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To perform inference on the marginal posteriorP(T |O,D, T0) we just need to use the real-
izations from the Gibbs sampler; the posterior mean, for instance, is readily available from (18).
MAP estimates, however, are harder to obtain since we need tocompute the integral in (21). One
alternative is to use the joint posterior mode,

T̃ = argmax
T ∈C(O,D)

{

max
p∈[0,1]n2 :

∑
i,j pij=1

P(T ,p | O,D, T0)

}

,

but then the estimate might be biased since it is conditionalon the optimal value ofp. In the same
vein, we could first “calibrate” by setting some specificp, say the marginal posterior mean

p = E[p | O,D, T0] ≈
1

G

G∑

g=1

p(g),

and then produce
T̂ = argmax

T ∈C(O,D)

P(T |p,O,D, T0). (24)

It can be shown that the first estimator,T̃ , can be obtained by an extended Furness method that
iteratively solves forp while fitting the balancing factors by setting

p̃ij =
T̃ij + tij + πij − 1

∑

k,l=1,...,n T̃kl + tkl + πkl − 1
,

but we will not pursue it here. Instead, for comparison withT , we will use the MAP estimator̂T
conditional on the more robustp. A numerical example is helpful at this point.

Example 3. Consider the seed matrixT0 and marginsO andD taken from (Ortúzar and Willusen,
2001, pg. 169) in Table 4, and let us assume a non-informativeprior for the proportions,p ∼
Dir(1, . . . , 1).

Table 4: Prior trip counts between four zones with observed origin and destination margins. Reproduced from
(Ortúzar and Willusen, 2001, table 5.6).
Zone 1 2 3 4 Oi

1 5 50 100 200 400
2 50 5 100 300 460
3 50 100 5 100 400
4 100 200 250 20 702
Dj 260 400 500 802 1962

The posterior mean and95% credible intervals as estimated from10,000 samples after assumed
convergence are listed in Table 5. Figure 6 illustrates the estimated marginal posterior distributions
for T (except for the last row and column.) The variance in the distributions is higher than in our
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Table 5: Marginal posterior mean and95% credible intervals.
Zone 1 2 3 4

1 5.87 [1, 14] 47.82 [29, 63] 99.09 [73, 117] 247.22 [226, 270]
2 46.56 [29, 65] 4.92 [0, 12] 85.92 [65, 115] 322.60 [295, 346]
3 70.99 [44, 91] 122.36 [101, 146] 8.53 [2, 20] 198.12 [170, 223]
4 136.59 [114, 163] 224.89 [201, 246] 306.46 [282, 332] 34.07 [19, 52]

previous example since, as we have previously stated, the proportions are random and contribute
as an extra source of uncertainty in the estimation.

The Furness solution̂T , conditional onp, is pictured in Figure 6 as square markers. As we
can see, the Furness estimate does not differ much from the posterior meanT . Still conditioning
on p, we can show thatP(T |p,O,D, T0) ≈ 0.014, while P(T̂ |p,O,D, T0) ≈ 0.015. The
higher representativeness of both estimates when comparedto Example 2 is explained by a more
informative prior on the proportionsp: in this case the prior provides information on each OD pair
proportion as opposed to the single parameter priorβ capturing a cost impedance. Although the
proportions are random, the additional information provided byT0 attenuates the variability arising
from the randomness inp. As a matter of fact, note that

∑

i,j tij = 1635, close to the number of
observations inT , T = 1962. However, we can still maintain that these particular solutions have
low probability and are, therefore, not good representatives of the whole trip pattern ensemble.
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Figure 6: Estimated marginal posterior distributions ofT from 10,000 samples; squares mark conditional Furness
solution.

Another more direct consequence ofT0 being almost as informative asT is that the variability

19



in p is small, at least relative toT , as can be seen in Figure 7. This figure shows the estimated
marginal posterior distribution ofp from our samples. Figure 7 also displays estimated posterior
mean trip proportionsE[T /T | O,D, T0] in square markers; as we can see, the proportionsp are
in good agreement with the trip proportionsT /T . The dashed line represents the prior mean
proportion

E[pij ] =
πij

∑

k,l πkl

=
1

n2
, i, j = 1, . . . , n,

for comparison.
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Figure 7: Estimated marginal posterior distributions ofp; squares mark posterior mean trip proportions, dashed line
marks prior mean.

3.2. Incorporating prior trip length distributions

Seed matrices provide information on each OD pair in the system and thus derive more accurate
trip pattern inferences. More often than not, however, we donot have preliminary dataT0 at
this level of detail at our disposal. In some casesT0 contains censored observations; we might
observe trips in a survey, but these trips are known only to have come from a certain origin, or
to a destination, or to have had some specific travel cost. Forinstance, recalling the trip length
distribution (TLD) from Example 2, we might only discriminate a trip in our survey by specifying
its cost “bin”, that is, within which range its cost falls.

Assume that we know the OD trip costs{cij} and consider, as before, theK cost ranges
(c0, c1], . . . , (cK−1, cK ]. Our preliminary counts now fall intoK possible strata,T0 = {t1, . . . , tK},
depending on their transport costs: we observet1 trips with costs betweenc0 and c1, t2 trips
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spending between andc1 andc2, and so on. If we again define range proportions aggregated by
costp0 = {pk}k=1 ...,K , wherepk =

∑

i,j pijI{cij ∈ (ck−1, ck]}, we can then analogously set
T0 |p ∼ MN(T0,p0) with P(T0) ∝ 1 as the preliminary data likelihood. We note thatp0 is a
function ofp.

We can assume the same Dirichlet distribution for the proportions,p ∼ Dir(π), but since

P(T ,p | O,D, T0) ∝
∏

i,j

p
Tij

ij

Tij!

∏

k

ptkk
tk!

∏

i,j

p
πij−1
ij I[T ∈ C(O,D)]

and eachpk is a sum ofpij for all pairsi andj with cost in thek-th bin, we lose the conjugacy.
Another approach, in case we are more informed about the censored proportions, is to opt for a
Dirichlet prior onp0; but then we again lack conjugacy. Regardless, we can still obtain a Gibbs
sampler that is very similar to the scheme shown in the previous subsection; we just need to sub-
stitute the direct Dirichlet sampling step, Step 2.2, by another Metropolis step. Next, we provide
an updated sampling scheme in a simpler context.

Suppose that the proportions follow a gravity model withpij ∝ exp(−βcij), as in the previous
section, but now we makeβ random to drive the uncertainty inp. Moreover, we settle on a
Dirichlet prior onp0, p0(β) ∼ Dir(π), whereπ = {π1, . . . , πK}. In what follows we explicitly
represent the dependency of the proportions onβ for clarity; we also note that now

pk(β) ∝
∑

i,j

exp(−βcij)I{cij ∈ (ck−1, ck]}.

The joint posterior is thus given by

P(T , β | O,D, T0) ∝
∏

i,j

pij(β)
Tij

Tij !

∏

k

pk(β)
tk

tk!

∏

k

pk(β)
πk−1I[T ∈ C(O,D)]

∝
∏

i,j

pij(β)
Tij

∏

k

pk(β)
tk+πk−1

︸ ︷︷ ︸

Φ(β;T ,T0)

I[T ∈ C(O,D)]. (25)

From (25) we deduce that settingπ = {1, . . . , 1} for a non-informative Dirichlet prior is equiva-
lent to having a flat improper prior for the cost deterrence,P(β) ∝ 1.

The Gibbs sampler has two iterative steps: we alternate between sampling fromT conditional
on the impedanceβ and all the data,P(T | β,O,D, T0), and sampling fromβ conditional on trip
patternsT and margins and preliminary data,P(β | T ,O,D, T0). We already know, since Sec-
tion 2, how to sample fromP(T | β,O,D, T0) = P(T |p(β),O,D) using random walk Metropo-
lis steps for the conditional nested binomial. To sample from P(β | T ,O,D, T0) we construct
another random walk Metropolis step.

First, let us define the normalizing factorsZk(β) =
∑

i,j exp(−βcij)I{cij ∈ (ck−1, ck]} and
Z(β) =

∑

i,j exp(−βcij) =
∑

k Zk(β), so thatpij = exp(−βcij)/Z(β) andpk = Zk(β)/Z(β).
Also, recall thatT =

∑

i,j Tij, T0 =
∑

k tk, and defineT ∗
0 =

∑

k(tk+πk−1) = T0+
∑

k πk−K.
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The functionΦ(β; T , T0) in the joint posterior (25) then simplifies to

Φ(β; T , T0) =
∏

i,j

(

exp(−βcij)

Z(β)

)Tij
∏

k

(

Zk(β)

Z(β)

)tk+πk−1

= exp

{

− β
∑

i,j

cijTij +
∑

k

(tk + πk − 1) logZk(β)− (T + T ∗
0 ) logZ(β)

}

.

As proposal distribution, let us select a normal distribution centered at the current realization of
β in the chain with small varianceσ2. To getβ(t) at thet-th iteration we then sample a candidate
β∗ ∼ N(β(t−1), σ2) and accept or reject it based on the acceptance ratio

R(β(t−1), β∗) =
P(β∗ | T ,O,D, T0)

P(β(t) | T ,O,D, T0)
=

Φ(β∗; T (t−1), T
(t−1)
0 )

Φ(β(t−1); T (t−1), T
(t−1)
0 )

. (26)

The final, updated Gibbs sampler is listed below.

Step 1. Start at some arbitrary initial configurationT (0) and initial impedanceβ(0).
Step 2. Fort = 1, 2, . . . do (until convergence):

Step 2.1. Fori, j = 1, . . . , n − 1 do: sampleT (t)
ij ∼ Tij | T

(t−1)
[ij] ,p(β(t−1)),O,D from a

nested binomial using a Metropolis step,

T
(t)
ij = MS(T

(t−1)
ij ; 0,∆ij, Oij, Dij, pij(β

(t−1)), pnn(β
(t−1)), pin(β

(t−1)), pnj(β
(t−1))),

with Oij
.
= Oi −

∑

l=1,...,n−1,l 6=j T
(t−1)
il , Dij

.
= Dj −

∑

k=1,...,n−1,k 6=i T
(t−1)
kj , and

∆ij
.
= ∆−

∑

k,l=1,...,n−1,k 6=i,l 6=j T
(t−1)
kl .

Step 2.2. Sample candidateβ∗ ∼ N(β(t−1), σ2) and setβ(t) = β∗ (accept) with prob-
ability min{1, R(β(t−1), β∗)} whereR(·) is the ratio in (26); otherwise, set
β(t) = β(t−1) (reject.)

Example 2, revisited. Under the same setting of Example 2, but now withβ random, let us
initially set π = {1, . . . , 1}, that is, a non-informative prior onβ. We run a Gibbs sampler
with proposal varianceσ2 = 10−4 until convergence and takeG = 10,000 samples for posterior
inference.

Our estimate forβ,

β = E[β | O,D] ≈
1

G

G∑

g=1

β(g) = 0.031,

is much lower than the assumed value in Example 2 (β = 0.1), which corroborates with our pre-
vious remark about a more realistic value for the cost impedance. Such lower values are expected
since the inference is solely driven by the observed data andthus better represents the margin
constraints. The estimated95% credible interval forβ is large,[0.009, 0.056], reflecting the high
degree of uncertainty that arises from trying to capture thestructural trip proportions using a single
parameter.
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The effect of a randomβ in trip patterns can be appreciated in the estimated marginal posterior
distributions forT pictured in Figure 8. We draw attention to the increased spread when compared
to the distributions in Figure 3. We also observe that the Furness solution, conditional onβ and
represented by squares, is similar to the posterior meanE[T |O,D].
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Figure 8: Estimated marginal posterior distributions forT from hierarchical model with non-informative prior onβ.
Squares mark conditional Furness solution.

The higher variability inT is reproduced by wider credible intervals in the trip lengthdistribu-
tion, as shown in Figure 9: each bar represents the estimatedposterior mean ofTk/T for each cost
range, the squares pinpoint the posterior mean ofpk(β), while the dotted line corresponds to the
prior mean1/K. As can be seen, the dependence of the proportions on a singleparameter makes
the distribution onp not flexible enough to followT closely. We note again the higher variability
in the posterior TLD as assessed by the wider95% credible intervals (whiskers) when compared
to Figure 5.

Suppose now that we observe preliminary dataT0 from (Ortúzar and Willusen, 2001, pg. 186)
in Table 6. Keeping the flat prior onβ andσ2 = 10−4, we perform posterior inference from10,000
samples taken from the Gibbs sampler after convergence.

Table 6: Preliminary TLD. Data reproduced from (Ortúzar andWillusen, 2001, table 5.14).
Range (0, 4] (4, 8] (8, 12] (12, 16] (16, 20] (20, 24]
tk 365 962 160 150 230 95

tk/T0 0.19 0.49 0.08 0.08 0.12 0.05

Figure 10 pictures the estimated marginal posterior distribution ofβ. The preliminary TLD
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Figure 9: Mean posterior TLD (bars) with95% credible intervals (whiskers), and mean posterior TLD proportions
(squares). The dotted line marks the prior mean,1/K.

counts are very informative,T0 = T = 1962, and greatly affect the inference: our updated estimate
for the cost deterrence is a higherβ = E[β | O,D, T0] = 0.086, closer to the originalβ = 0.1 in
Example 2, and the95% credible interval forβ is much tighter,[0.086, 0.093].

The posterior inference on trip patterns is summarized by Table 7, showing posterior meanT
and marginal95% credible intervals, and Figure 11. The marginal distributions have increased
variability when compared to Example 2 due to the randomnessin the proportions, as expected.
The variance is, however, not much higher since the preliminary TLD is very informative. The
conditional Furness solution̂T , shown in square marks in Figure 11, is very similar to the posterior
mean. The estimated posterior probabilities of these solutions areP(T | β,O,D, T0) = 1.3 · 10−3

andP(T̂ | β,O,D, T0) = 1.5 · 10−3, slightly smaller than in Example 2.

Table 7: Marginal posterior mean and95% credible intervals.
Zone 1 2 3 4

1 141.34 [128, 155] 101.49 [87, 118] 71.11 [57, 85] 86.07 [71, 103]
2 63.87 [52, 76] 184.96 [168, 204] 106.10 [89, 120] 105.07 [90, 122]
3 28.47 [20, 37] 51.32 [39, 63] 131.06 [116, 146] 189.14 [172, 205]
4 26.31 [17, 37] 62.23 [48, 77] 191.73 [174, 209] 421.72 [400, 444]

Sinceβ < 0.1 with high posterior probability, we should expect the system to spend more
when compared to the scenario in Example 2. Figure 12 displays the posterior distribution of trip
costsc(T ), as estimated from (19). The posterior mean regional costc(T ) = E[c(T ) | O,D, T0]
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Figure 10: Estimated marginal posterior for impedanceβ from 10,000 samples. Line marks posterior mean.
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Figure 11: Estimated marginal posterior distributions forT from hierarchical model. Squares mark conditional
Furness solution.
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is 9.12, with a 95% credible interval of[8.81, 9.45], higher than before. The posterior mode cost
c(T̂ ) is 9.09, close toc(T ), as expected since the estimates are similar. The proportion cost
Cp(β) =

∑

i,j cijpij(β) in (10) inherits the randomness fromβ; its estimated posterior mean,8.95,

is lower thanc(T ), which can also be attributed to the rigidness inp.
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Figure 12: Estimated posterior distribution of mean regional cost. Solid line indicates posterior mean, dashed line
marks posterior mean proportion cost, and dash-dotted linemarks posterior mode cost.

Finally, we can also see the effect ofT0 in reducing the inferential uncertainty in the posterior
TLD at Figure 13, as illustrated by the tighter95% credible intervals. We still see the discrep-
ancy between the posterior TLD—whose meanE[Tk/T | O,D, T0] is represented by bars—and
the posterior proportion TLD—whose meanE[pk(β) | O,D, T0] is identified by squares. We note,
however, that the posterior mean TLD is close to the prior mean TLD, tk/T0, represented by di-
amonds and listed in Table 6, sinceT0 is highly informative and thus influential. The two mean
posterior TLD are listed in Table 8.

Table 8: Posterior mean trip length distributions based onT andp.
Range (0, 4] (4, 8] (8, 12] (12, 16] (16, 20] (20, 24]

E[Tk/T |,O,D, T0] 0.17 0.48 0.08 0.09 0.12 0.06
E[pk(β) |,O,D, T0] 0.24 0.36 0.12 0.14 0.10 0.04
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Figure 13: Posterior mean TLD (bars) with95% credible intervals (whiskers), posterior mean proportionTLD
(squares), and prior mean TLD (diamonds).

4. Discussion

Static origin-destination matrix estimation has been traditionally regarded as an optimization
problem. Here we cast OD matrix estimation as a formal statistical inference problem and adopt
a Bayesian approach where trip patterns are considered random. Furthermore, we make model
assumptions on the parameters describing the probability distribution on trip patterns—trip pro-
portions that govern the structure of trip distribution—asopposed to the classical assumptions on
particular objective functions. The use of trip proportions frees us from requiring seemingly artifi-
cial constraints on trip configurations, provides more easily interpretable results, and allows us to
better incorporate other sources of data in a principled waywithin a Bayesian framework.

By electing specific functional forms for the trip proportions—as based on the entropy maxi-
mizing principle, for example—we are able to recover classical solutions as MAP estimators and
thus inherit the justifications and rich history behind traditional approaches. Yet, perhaps the main
benefit of our proposed approach is to better characterize the uncertainty in the solutions and, in
general, in trip distribution. As we have showed in many examples, it is common for any point
estimate—such as the Furness solution or posterior mean—tocapture only a small fraction of
possible trip configurations given the large number of alternatives. Point estimators, when seen
as ensemble summarizers, can be useful for preliminary planning purposes and gaining insight on
the trip distribution in the study region; they can, however, be poor substitutes of the full poste-
rior distribution in further analyses as they can dramatically underestimate the variability in trip
patterns.
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Preliminary data is traditionally used to calibrate specific parameters of the trip distribution
model, such as cost deterrence. Nonetheless, fixing an optimal data fitting value for the parameter
can further underestimate variance in the inference. In ourfully Bayesian approach we explicitly
acknowledge the uncertainty in the parameters by also making them random: we set a hyper-prior
distribution on trip proportions to build a hierarchical model. As a consequence, and in contrast
with a traditional approach, more informative preliminarydata—for example, high counts in a
seed matrix—yield more precise inference on trip configurations as we are able to more accurately
characterize trip proportions.

The adoption of a Bayesian framework carries many other benefits not covered here: besides
point and interval inference, we are also able to test hypotheses by explicitly comparing models
through Bayes factors; moreover, Bayesian methods can be further explored to perform model
validation through posterior predictive checks. In summary, the flexibility of Bayesian statistics is
particularly helpful and really comes to bear when exploring high-dimensional spaces such as the
ensemble of feasible trip configurations.

There is, however, a price to pay for such modeling power in higher computational costs, and
thus the procedures discussed here still need to be more closely examined in this respect. Specif-
ically, the increased complexity in generating and analysing trip configuration samples instead of
simply obtaining the most likely trip assignment needs to beassessed as the proposed routines are
tried in real-world datasets comprising large systems. Future directions would also include the
development of more efficient sampling schemes through improved algorithms—better proposal
densities, for example—and faster implementations that would explore, for instance, parallel ver-
sions of the proposed procedures.

Finally, it should be noted that the models proposed here canserve as basis for an integrated
higher level model that incorporates other traffic modelingsteps; as an example, the effect of con-
gested networks could be considered in OD matrix estimationif our model would jointly consider
trip distribution and route assignment. As it is common in Bayesian modeling, we would then be
able to propagate the uncertainty across steps while performing marginal inference on any aspect
of the higher model conditional on data from all steps. Furthermore, other types of data could also
be considered to obtain more refined models with, for instance, link count data and camera sensors
or temporal variation for dynamic OD matrix estimation.
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