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Abstract. In this paper, we present a new feature extraction algorithm which 

can generate robust and reliable feature in a fingerprint system. This algorithm 

is referred to as weighted ASF (WASF). The feature in our algorithm is 

extracted based on a MPEG-7 descriptor-Audio Spectrum Flatness (ASF) and 

Human Auditory System (HAS). It also applies several effective filters to 

improve the feature robustness and uses another MPEG-7 descriptor: Audio 

Signature (AS) to reduce the feature dimension and increase the feature 

compactness. The smooth filter bank can efficiently resist the noise distortion in 

addition to some other common distortions such as sampling rate change and 

amplitude normalization, while the first order inverse filter can effectively resist 

the speed-change distortion with 90.1% discrimination for the 5% speed 

acceleration distortion. This algorithm is tested under several audio 

distortions: sampling rate change, noise addition, data compression and speed-

change and so on. For these distortions, the WASF algorithm can get 

discrimination more than 90%. The MFCC feature and another MPEG-7 

descriptor-Audio spectrum Centroid (ASC) are also considered. 

Keywords: Audio fingerprinting, weighted ASF, Audio Spectrum Flatness, 

filter bank, inverse filter. 

1   Introduction 

The increasing number of audio resources, especially in the network, and the intensity 

of Intelligent Property (IP) protection has increased the interest in techniques for 

automatic audio identification. There are two main approaches: watermarking and 

fingerprinting. In the last few years, the fingerprinting technique has brought much 

more attention. The audio fingerprinting technique can be used in many applications 

[1], such as file sharing services, broadcast monitoring and so on. In digital rights 

management (DRM) system [2], the fingerprinting technique is also urgently required 

for the protection of Intelligent Property of the owner of media rights. 

In general, a fingerprinting system needs to have the following properties: 

robustness, reliability, compactness and scalability. The robustness indicates that the 

fingerprinting system can resist various common audio distortions. The reliability 



indicates the fingerprinting system should give continuous right results over a wide 

variety of inputs. The compactness indicates the fingerprinting data should be small 

and need small storage. The scalability indicates the system can be not only run in 

large devices but also in resource-constrained devices. 

Recently, there are some researches on this topic. In [1], Haitsma and Kalker 

calculate the energy difference of the inter-frame and intra-frame and convert it to bit 

value and then use a sequence of bits to form an audio fingerprint. In [2], the square 

root of the mean energy across the time concatenating the standard deviation of the 

RMS power is used to form a fingerprint. The MPEG-7 audio descriptors-Audio 

Spectrum Flatness and Audio Signature are used to form the fingerprint in [3]. And in 

[4], a two-layer OPCA technique is used to generate the noise-resistant fingerprinting. 

In [5], the normalized spectral sub-band moments has been used to generate an 

efficient fingerprint. Computer vision and image process methods are also introduced 

into the audio process in [6] [7]. For these algorithms, they are mostly aimed to 

several distortions and don’t efficiently resist the speed-change distortion. The speed-

change distortion is referred to in [8]; it is based on the work of [1]. 

In this paper, we use the weighted MPEG-7 descriptor: Audio Spectrum Flatness [3] 

[9] to generate our audio feature because the perceptual feature computed using ASF 

can efficiently characterize the audios and be robust to a variety of audio distortions. 

Otherwise, we use many effective filters to reduce distortions, especially the noise 

and speed-change, and make use of two ear process functions in Human Auditory 

System (HAS) [10] to enhance the property of the audio data. In order to compact the 

fingerprint, we use MPEG-7 descriptor -Audio Signature. This descriptor can 

efficiently compact the data and maintain the feature robustness. 

The rest of this paper is organized as follows. After this introduction, section 2 

describes the proposed fingerprinting extraction algorithm in detail. Section 3 shows 

the experimental results. Finally, the conclusion of the work and the acknowledgment 

are given in section 4 and section 5 respectively. 

2   Proposed Audio Fingerprinting Algorithm 

In this section, we describe the fingerprinting extraction algorithm of this system. The 

framework is shown in Fig.1. This framework can be partitioned into three parts: 

front-process, feature computation and end-process. 

 

 

Fig.1- the framework of the feature extraction algorithm  



2.1 Front-Process 

This step contains pre-process, framing, time frequency transformation and data 

filtering. A stereo waveform should be converted into a mono waveform in the pre-

process phase because this proposed algorithm is aimed to the mono waveforms. In 

order to extract robust feature from the dynamic audio data, a framing window should 

be applied to the audio waveform to obtain relatively static audio clips. There are 

some optional windows, such as rectangular window, hanning window, hamming 

window and blackman window. In our algorithm, we select hamming window to 

frame the audio )
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each window frame such that 0≤i<N. 

We have tested several frame lengths and found that longer frame length can give 

more perceptual information but take more time. In our method, we set each frame 

length 90ms and inter-frame overlap rate 2/3. In this way, we can reduce the 

discontinuity of the data. Usually, the overlap rate should be set larger than 1/2 to get 

better continuity. Then, we apply the Discrete Cosine Transform for each frame to 

generate the frequency spectrum. After the transformation, a normalization process is 

needed; it is the combination of two methods as follows: 
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Where X(i, j) is the j
th

 sample data of the i
th

 frame,  and is the mean and standard 

deviation of the i
th

 frame respectively, min and max is the minimum and maximum 

data of Y(i, j). These two functions make the audio data from different audio clips in 

the same range [0, 1]. 

In order to reduce the noise distortion efficiently, whatever white noise or Gaussian 

noise, we use a smooth filter bank shown in Fig.2 to filter the data. This filter bank is 

composed of three smooth filters: a 3-point mean filter, a 5-point Gaussian filter and a 

3-point hamming filer.  

 

 
 

        Y(i, j)=X(i, j)·H1·H2·H3 (3) 

Fig.2-smooth filter bank 



From our experiment, we find this smooth filter bank is efficient to white and 

Gaussian noise in our weighted ASF algorithm. Fig.3 shows the result of an audio 

segment with 20% Gaussian noise addition distortion and processed by the smooth 

filter bank.  

 

        

(a)                                    (b) 

Fig.3-(a) segment with 20% Gaussian noise addition (b) audio after smooth filter bank 

process 

From Fig.3, we can see the segment with 20% Gaussian noise addition has been 

smoothed and the main perceptual property is maintained after the process of smooth 

filter bank. Of course, the more the number of the smooth filters in the filter bank, the 

smoother the audio frequency spectrum, but more local perceptual information will be 

weakened. Therefore, three smooth filters are enough. 

After the smooth filtering, we should apply the HAS ear functions. According to 

the HAS, the functions in the inner ear and middle ear are respectively shown as: 

i) Outer ear: 
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ii) Middle ear: 
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Where f is the frequency of each sample data in Hz. 

In addition, there is a scaling factor for each sample data: 
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Where K is the energy compensation coefficient and is relative to the window 

function used when framing the audio, Amax is the maximum amplitude of the sample 

data, Lp is set to 92db, and NF is the number of samples in a frame and )( cf  varies 

from 0.84 to 1. 

So for each sample data, we get a weight as follows:  

WS(f)=GLW(f) (7) 

 

If the sampling rate of an audio is 11.025 kHz, the weight curve of a clip with 0.09s 

length is shown in Fig.4: 

 

 

Fig.4-the weight curve generated by the HAS ear functions 

From the Fig.4, we can see the weight increases nonlinearly in the frequency range 

about 250Hz-2000Hz. This weighted operation can enhance the perceptual property 

of this sensitive frequency range. 

For the speed-change distortion, it causes misalignment both in the time domain 

and the frequency domain [8]. Common methods cannot efficiently resist this 

distortion. To resist the speed-change distortion, we should consider the distortions in 

the two domains. We find the all-zero first order inverse filter is efficient to this 

distortion in our algorithm and its z transformation is as follows: 

A(z)=1+a1z
-1 

(8) 

 

This inverse filter can flatten the frequency response and get a good effect on 

signal-to-quantization-noise ratio versus frequency [11]. In our experiment, we set the 



first-order coefficient a1 to 0.95. This function can get a good result for the speed-

change distortion.  

However, it can weaken the efficiency of the noise distortion process. Therefore, an 

additional operation should be applied to each audio frame to avoid the distortion 

possibly brought by the inverse filter. Prior to the use of inverse filter, we use a 

hamming-like window function to generate a weight function increased by degrees, 

which is represented below: 
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This function can reduce the influence of the data in the low frequency range and 

maintain the tone-like property of the processed data. It is a better choice to balance 

the performance of noise addition process against speed-change process and still get a 

good result both in the case of these two distortions.  

This process of the hamming-like window weight function and the inverse filter 

can bring about some noise to the resulting audio data, so a smooth filter bank should 

be applied to the audio data to reduce this distortion. In this smooth filter bank, we 

don’t use the mean filter but a hamming filter, and then this filter bank contains two 

3-point hamming filters. 

2.2 Feature Computation 

After the front-process, we begin to use the weighted ASF descriptor to compute the 

audio feature. To obtain a robust feature, we should get the most sensitive part of the 

frequency spectrum. In our experiment, we select the frequency range in 250 Hz-2000 

Hz to extract the audio feature. Then the frequency spectrum of each frame is 

partitioned into bands in a logarithmic spacing and these bands are not overlapped. 

The number of bands in each frame is defined as follows: 
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Where hiFre and loFre are the upper and lower frequency limits of each frame, 

respectively and octaveResolution represents the logarithmic frequency resolution 

with the recommended range of 1/16 to 8 octaves, and we set it 1/4 in our algorithm. 

In order to reduce the data and adapt the frequency resolution to “log” band, power 

spectrum coefficients above the frequency of 1 kHz are grouped and the average 

value is taken as a new value. The grouping is defined in the following way: between 

frequency 1 kHz and 2 kHz, two consecutive power spectrum coefficients are grouped.  

Then we use the weighted ASF descriptor to compute the features for each 

frequency band. The weighted flatness measure is defined as the ratio of the 



geometric and the arithmetic mean of the weighted power spectrum coefficients and 

shown below: 
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wi is the weight of each power spectrum coefficient. In our experiment, we set 

this weight as follows: 
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In this way, we get a weighted ASF feature vector for each audio 

frame ],,.........,[ 1,1,0,  Niiii wasfwasfwasfWASF , where i is the index of a frame and 

N is the band number of the frame i. 

2.3 End-Process 

The feature generated from one frame is not enough to identify a whole audio clip, so 

M feature vectors generated from the part 2.2 are integrated to compose a feature 

block for identifying an audio clip. In our algorithm, we set M to 198 which is about 

6- second length. Then we get a WASF matrix: 
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For the feature matrix WASF, we subtract the mean of each row im (0≤i<M) to 

make the mean of each frame feature zero in order to maintain the consistency of each 

frame feature. 

For these M frames, the resulting feature is huge. In order to reduce the data, 

dimension reduction technique should be applied. We consider the MPEG-7 

descriptor: Audio Signature. This descriptor uses a scaling factor to condense the 

audio date. According to [9], this condensation will not weaken the perceptual 

property of the audio data. This scaling factor is also called decimation factor df. In 



our experiment, we set this decimation factor 24. Then in the WASF feature matrix, 

the number of blocks in the time axis is  dfmb / , m is the number of frames. Then 

we can get a feature matrix with the dimension as b×N. Let S be the resulting feature 

matrix, then the arithmetic mean of each block is calculated as the new element in 

matrix S and denoted by: 
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Where k is the row index of matrix S. 

In the end, a normalization process with function (2) will be applied to S, and then 

we obtain the final resulting feature which is denoted as fingerprint. 

3   Experimental Results 

To evaluate the performance of the proposed algorithm, we prepared 203 music 

audios, containing pop, rock, piano, flute, country music and so on. These source 

audios are all parameterized with 11025 Hz sampling rate, mono and 16 bits/sample. 

For each source audio, we make several distortions respectively as follows: 

(a) 2s silence addition, (b) 80% amplitude normalization, 

(c) sampling rate 22050Hz, (d) sampling rate 32000Hz, (e) sampling rate 44100Hz,  

(f) mp3 compactness, (g) 20% white noise addition,  

(h) 25% Gaussian noise addition, (i) 20% Gaussian noise addition,  

(j) 5% speed acceleration, (k) free distortion. 
In our experiment, we get a 6-second clip beginning from the location of 10s in 

each audio as our test clip. In this way, we get 2233 test clips and 203 source clips in 

all. 

In addition to the weighted ASF algorithm, we also test the following algorithms: 

(1) Audio Spectrum Centroid  

(2) MFCC 

We use the Euclidean distance to match the two comparing features. We set the 

fingerprint of the source clip and a distorted clip as S and D respectively, and then the 

distance between two frames from the source and distorted clips respectively is 

defined as: 
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Where n is the number of frames and i is the row index of the fingerprint matrix. Then 



the distance of S and D is defined as: 
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The experiment result is shown in Table.1. 

Table.1-Experiment results 

Methods 

 

Distortion 

ASC 

(%) 

MFCC 

  (%) 

WASF 

(%) 

(a) 90.1 100 100 

(b) 100 100 100 

(c) 93.4 100 100 

(d) 95.6 100 100 

(e) 99.0 100 98.0 

(f) 88.7 98.5 91.6 

(g) 99.5 98.5 99.5 

(h) 98.5 99.0 99.5 

(i) 97.0 96.6 97.5 

(j) 43.3 46.3 90.1 

(k) 100 100 100 

 
From Table.1, we can see the weighted ASF descriptor has good performance to 

various distortions. Especially, the WASF algorithm has 90.1% discrimination to 

speed-change distortion while the other two algorithms have a lower discrimination 

less than 50%. It also has 97.5% discrimination to 20% Gaussian noise addition 

distortion and 99.5% discrimination to 20% white noise addition and 25% Gaussian 

noise addition. In addition to these distortions, the proposed algorithm has very high 

recognition rate. Of course, the discrimination of the mp3 compression distortion of 

weighted ASF is a little lower than that of the MFCC algorithm. On the whole, 

however, the WASF method can efficiently resist a variety of distortions. 

4   Conclusion 

For a good fingerprinting system, the extracted feature should be robust to various 

distortions and have a good reliability property. In this paper, the proposed algorithm 

weighted ASF is aimed for this purpose. From the experiment results, we can see that 

the proposed algorithm has over 90% discrimination rate to the ten distortions. 

Contrary to other algorithms, this proposed algorithm has better performance to many 

distortions than that of other algorithms. The next work we will do is to apply much 



more test clips. The size of the resulting fingerprint is another issue we should pay 

attention to. 
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