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Abstract

In this paper, we present a novel approach to classify texture collections. This approach does not require experts to provide annotated
training set. Given the image collection, we extract a set of invariant descriptors from each image. The descriptors of all images are vec-
tor-quantized to form ‘keypoints’. Then we represent the texture images by ‘bag-of-keypoints’ vectors. By analogy text classification, we
use Probabilistic Latent Semantic Indexing (PLSI) and Non-negative Matrix Factorization (NMF) to perform unsupervised classifica-
tion. The proposed approach is evaluated using the UIUC database which contains significant viewpoint and scale changes. We also
report the results for simultaneously classifying 111 texture categories using the Brodatz database. The performances of classifying
new images using the parameters learnt from the unannotated image collection are also presented. The experiment results clearly dem-
onstrate that the approach is robust to scale and viewpoint changes, and achieves good classification accuracy even without annotated

training set.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Texture analysis is an essential problem in computer
vision domain, and is extensively studied in the past two
decades. Many texture classification methods [1-6] have
been reported in literatures. Unfortunately, these methods
require some form of supervision. This may range from
using a registered stack of texture images [1], to provide
labels ascertaining textures’ classes in learning process
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[3,4]. However, for classifying a large image collection,
any auxiliary processing is costly and labor-intensive. Thus
this raises the question: Can we automatically discover the
patterns in a large texture image collection and classify the
images into groups without any supervision?

A number of recent studies have provided the possibility
to unsupervised classification. First, by analogy with text
classification, ‘bag-of-keypoints’ approach is proposed in
[12]. Tt is an extension of ‘bag-of-words’ approach. The
‘bag-of-keypoints’ approach quantizes the descriptors of
local invariant regions to form ‘keypoints’, and uses a his-
togram of the number of occurrences of ‘keypoints’ to rep-
resent an image. It is a oversimple approach because it
discards all spatial relationships between features. How-
ever, it achieves remarkable success in visual categorization
[10,11] and video retrieval [9]. This is partly because the
local invariant regions are not only powerful to effectively
to describe image contents [17,26], but also invariant under
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viewpoints and illumination changes. The discrimination of
local regions makes them play a similar role like ‘key
words’ in text. The dependence on features co-occurrences
makes ‘bag-of-keypoints’ approach well appropriate to tex-
ture analysis. A kind of texture is composed of some prim-
itive patterns (keypoints), which are repeated throughout
the texture. Different kinds of textures have different key-
points. This will make the keypoint distributions of differ-
ent textures discriminable. Thus texture images can be
classified based on their ‘bag-of-keypoints’ vectors. See
Fig. 1 for example. Each row represents one category. In
right panel, we show the average ‘bag-of-keypoints’ vec-
tors. Clearly, the ‘bag-of-keypoints’ vectors of T15 and
T20 are quite different.

Second, motivated by the success of unsupervised text
classification approaches, we exploit two models in unsu-
pervised text classification domain to perform unsupervised
texture image classification in this paper. The two models
are: the Probabilistic Latent Semantic Indexing (PLSI)
[13,14], and Non-negative Matrix Factorization (NMF)
[15,16]. Such models use latent space representation for
unsupervised classification. The latent space representation
can extract interpretable concepts within the co-occur-
rences matrix. The idea of applying text analysis methods
to vision categorization is not novel (e.g., [10]). Our contri-
bution lies in rigorously demonstrating that probabilistic
latent space model is well-suited to texture classification,
and this unsupervised model achieves comparable classifi-
cation performance with ‘state-of-art’ supervised approach.

Fig. 2 is a sketch of our unsupervised texture classifica-
tion approach. In Section 2, we review the PLSI and NMF
models. In Section 3, we describe the feature detection
methods and ‘bag-of-keypoints’ model. In Section 4, we
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ring unseen images. In Section 5, we summarize the paper
and draw some conclusions.

1.1. Related texture classification works

Leung and Malik [1] are among the pioneers to recog-
nize textures subjected to viewpoint and lighting changes.
Their solution to the 3D structure of the surface is using
a registered stack of images. Filter responses over the reg-
istered stack of images are clustered. The cluster centers
represent the 3D textons. The histograms of textons are
used to classification. However their approach requires spe-
cially registered texture image sets. Cula et al. [2] and Var-
ma et al. [3] implement the 2D texton representation. The
2D textons can be generated from unregistered images
instead of registered stack of images. Although their
approach can recognize affine transformed textures, the
representation of their texture is not invariant under affine
changes. So Lazebnik et al. [4] propose to use local regions
to represent the content of images. Each region is repre-
sented by two descriptors. Descriptors of each texture
images are clustered to form its signature. They use
EMD to measure the similarity of two signatures. This
approach obtains high accuracy on the UIUC and Brodatz
database. However their method also needs auxiliary data
to specify the categories of images in the training set.

Table 1 gives the technique summary of our approach
and the other 2D texton-based approaches.

2. The unsupervised classification models

We begin with some notations and definitions for the
models in this section. Suppose we have n documents

give the unsupervised classification results on UIUC Data- D= {d,,...,d,} comprising words from a vocabulary
set and Brodatz Dataset. We also show the results of infer- W= {wi,...,w,,}. By counting words occurred in docu-
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Fig. 1. Keypoints distribution of two categories. The left panel shows the categories. The right panel shows the distributions of keypoints for the

categories.
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Fig. 2. The framework of our approach for unsupervised texture recognition.

Table 1

The main components of our approach and the other 2D texton-based approaches

Components Leung et al. [1], Cula et al. [2], Varma et al. [3]

Lazebnik et al. [4]

Our approach

Local region None: all pixels are used

Harris-affine regions & Laplace-affine

Harris-affine regions & Hessian-

regions affine regions
Descriptor Filter banks Spin image, RIFT SIFT
Textons Universal clustering for all classes Separate clustering for each images Universal clustering for all classes
construction
Representing Histograms Signatures ‘bag-of-keypoints’ vectors
Classification Nearest neighbor classification: supervised, Nearest neighbor classification: supervised, = PLSI, NMF: unsupervised, multi-
method two-class classification two-class classification class classification

ments and discarding the sequential information of words,
the collection of documents is capsulized in a m xn co-
occurrence matrix N, where N (w,d) represents the number
of occurrences of a word w in document d. The simplified
representation of documents is called ‘bag-of-words’
model.

2.1. The PLSI model

This model assumes a latent (hidden) class variable z;
associated with the occurrences of a word w; in a particular
document d;. The graphical model of PLSI is shown in
Fig. 3(a). The joint probability P(w;,d;) is defined by the
following: P(w;,d;) = P(d;)P(w;d;). The conditional proba-
bility of the observed variables P(w;|d)) is obtained by mar-
ginalization over the latent variable z.

P(wild;) = > P(wilzi)P(z|d)) (1)

the probability of word w; occurring in a particular latent
variable z;, where > .P(wi|z;) = 1. Eq. (1) equals to a ma-
trix decomposition as shown in Fig. 3(b).

The Expectation Maximization approach is used to fit
the model by maximizing the data loglikelihood.

JpLst = Z”(N(Wh d;)log P(w;,d;))
= Z N(d logP(d ) 2)
B SR S

(zxld))]

W,|Zk

where N(w;,d;) is the number of word w; in document d;,
and N(d;) = > ,N(w;,d;) is the document length.

Expectation-step: Posterior probabilities of the latent
variables P(z|w;,d;) are computed.

P(wilzi)P(z|d;)

where P(z;|d;) is the probability of latent variable z; occur- P(zi|wi,d)) = (3)
L _ 1. i U Y eP(wilZ)P(z )
ring in document d;, where ), P(z¢|d;) = 1; and P(w;|z;) is w o \Wil2p ) A2 14
a d, z,
Observed W
Latent 7varfables w[ = 1 H:
variables
P(zld)
Topic distributions
PWId) PWI2) per document
word distributions word distributions
per document per topic

Fig. 3. (a) The graphical illustration of PLSI model. (b) The factorization of P(w|d).
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Maximization-step: The parameters P(dj|z;) and P(w;|zx)
are updated.

N (i, d)P(zilwi d))
P(wilzy) = Zi’jN(Wi’a d‘)P(Zk|Wf'7 df) ¥
P(zild;) = ZN(W”N()d-)(Z”thj) i

Alternating the E and M step approaches a local maximum
of the loglikelihood [14].

2.2. The NMF model

Given a positive m X n matrix N, NMF model finds a
low rank approximation of N by factoring N into a non-
negative m X k matrix U and a non-negative k X n matrix
VT, such that N~ UV”. k is the reduced rank. Fig. 4 is
the graphical illustration of this factorization. Usually the
choice of k is application and data dependent, and much
smaller than n. Each element u;; of matrix U is the proba-
bility of word w; associated with a particular latent variable
z; and each element v;; of matrix V indicates the probability
of document d; associated with latent variable z;.

The optimal choice of matrices U and V are those non-
negative matrices that minimize the following objective
function:

JNME = Z Njjlog——7— UVT)

This is a typical constraint optimization problem. This
optimization problem is solved using the multiplicative up-
date rules:

Va N,
V‘ J 2l Ui ,
Jk ZiU,-k Z[ (UVT)U k

Ui Ny
Ui — V ik
Z Vi Z (UVT)i/ ’

5+ UV, (6)

(7)

Under the above updating rules, U and ¥ remain nonneg-
ative and the object function Jywmr is non-increasing [16].

2.3. The baseline model

We implement a clustering algorithm as our baseline
method. The algorithm uses the k-means to cluster ‘bag-
of-keypoint’ vectors. The images whose ‘bag-of-keypoint’
vectors have the same cluster label are classified into a
category.

kxn

mxn = |mxk

Fig. 4. The graphical illustration of NMF model.

3. Feature detection and textons construction

Recent researches show that local invariant region
detectors get notable success in many computer vision
domains, such as image matching [18,21,27], image retrie-
val [19,26], object recognition [17], and video retrieval
[22]. Compared with global features, local features are
robust to clutter, occlusions and spatial variations. We
use two types of local regions in our implementation. The
first is based on the Harris-Affine detector that is described
n [19]. The second is constructed using the Hessian-Affine
detector [20]. The regions detected by Hessian-Affine detec-
tor are similar to those detected by a Laplacian-Affine
detector of Lindeberg and Garding [23]. Both detectors
have the following three steps:

(1) Spatial coordinate localization: [19] relies on a multi-
scale Harris corner detector to localize position of
local regions in spatial, while [20] relies on multi-
scale Hessian blob detector.

(2) Automatic scale selection: both detectors select the
characteristic scale at which a normalized Laplacian
function attains a local maximum.

(3) Affine adaption process: This process is based on
isotropy of the second moment matrix of the local
region. This step makes the regions invariant under
the affine transformations. More details about the
affine adaption can be found in [23].

We use the binaries available at http://www.robots.ox.
ac.uk/~vgg/research/affine/. Both types of regions are rep-
resented by ellipses. The regions extracted by the two detec-
tors are totally different. The Harris detector extracts
regions which have significant intensity changes, while the
Hessian detector finds blobs of uniform intensity. So they
are complementary detectors. This phenomenon is also
reported in [4].

Each region is represented by a 128-dimension SIFT
descriptor [17]. The SIFT descriptor is scale and affine
invariant by incorporating the previous estimated scale
and affine parameters of the local region, and is rotation
invariant by computing relative to the dominant orienta-
tion of the region.

Given the collection of SIFT descriptors from each
image of all categories, we quantize them into ‘keypoints’
by K-means clustering algorithm. We provide two exam-
ples of ‘keypoints’ in Fig. 5. Both ‘keypoints’ are extracted
from UIUC database. In each case, we show 9 instances of
this ‘keypoint’. The instances are the elliptical regions in
the center of each image. Note in each case the contents
of elliptical regions are very similar, while the shapes of
elliptical regions exhibit rotation and scale variation.

The number of cluster K is an important parameter. We
test the performance of classifying UIUC database with
different number of K. The results are shown in Fig. 6.
The mean classification rate at K= 1000 only increases
slightly against the mean classification rate at K= 500.
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(a) T20

(b) T24

Fig. 5. Examples of two ‘keypoints’ extracted from UIUC database. (a) A ‘keypoint’ of fabric (T20). (b) A ‘keypoint’ of corduroy (T24).
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Fig. 6. Number of textons vs. performance.

Thus, we choose K=1500 in the following K-means
algorithm.

4. Experiment results

We present results from two experiments. In the first, we
explore the ability of our approach to automatically dis-
cover visual categories presented in a collection of totally
unlabeled images. We carry out this experiment on UIUC
database (25 classes, 40 images per class) and Brodatz data-
base (111 classes, 9 images per class). Then we explore the
performance of classifying unseen images with learned
visual categories. Three performance measures are used
to evaluate our approach.

The confusion matrix:

_HIeeld;: fU) =i}
7 L) ®)

L; is the set of images which belong to category j, and f{1})
is the class label which obtains the highest classifier score
by the multi-class classifier for image /.

The mean classification rate:

N
2 lLICy )
- N
>lL]
The rank statistics:
Zi_\’: |[k6Lj3f(.1k>€Sij‘
Ri _ j=1 IZ;] (10)

N

These are the percentages that the correct label is in the first
i class labels. N is the number of categories, S;; is the set of
labels which get i maximum classifier scores for category j.

4.1. Visual category discovery

In the following, we carry out experiments on two dat-
abases. In each case, the images of K categories are mixed
together forming a test image set. The methods described in
Section 2 are fitted to the test image set for the number of
visual patterns, K. We can infer the number of visual pat-
terns using the nonparametric Bayesian method [24]. In
the case of PLSI, model computes the probability coeffi-
cients P(z,|d;) for each image d;. The decision of an image
d; is made to the category label k that obtains the maximum
P(z;|d;). While, in the case of NMF, matrix V is used to
determine the label of each image. For an image d}, assign
it to category k, if k = arg max;V;.

4.1.1. Dataset 1: UIUC database

The UIUC database is a texture database containing
1000 images in 25 classes. Each class has 40 images. The
whole database is publicly available at http://www-cvr.
ai.uiuc.edu/ponce_grp/. It is a challenging database, not
only because of significant viewpoint changes and scale
variations in each class, but also because it contains images
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with nonplanar surface, significant nonrigid deformations,
and inhomogeneous texture patterns. Fig. 7 shows exam-
ples of four categories TO1, T10, T20 and T23 from the
UIUC database.

We extract about 1.2 M regions from the UTUC data-
base. The median number of regions extracted per image
is 1205 (545 for Harris Affine region, 660 for Hessian Affine
region). We carry out a set of experiments with increasing
number of classes. The numbers of classes used in these
experiments are 3, 8§ and 25. We summarize the results in
Table 2.

(1) Three texture classes (T23-T25). Although the three

2

~

classes all are fabric textures, this is a relatively easy
experiment with only 3 classes. Both PLSI and NMF
models perform perfectly well with 100% correct rec-
ognition rate. The baseline model only obtains 54.1%
correct recognition rate. This low rate reveals that
Euclidean distance may not be a good similarity
measure in the ‘bag-of-keypoints’ model.

Eight texture classes (T18-T25). Here we add five
classes (fabric, wall paper, fur and two carpets). As
the number of classes becomes bigger, the classifica-
tion experiment becomes more challenging. How-
ever, both PLSI and NMF model perform very
well with 5 misclassified images and 2 misclassified

images, respectively. Table 3 shows the performance
of NMF in confusion matrix formation.

(3) Twenty five texture classes (T1-T25). In this experi-
ment, we use all the 25 classes in the UTUC database.
The whole UTUC database are combined together. It
is a really challenging experiment. Again PLSI and

Table 2
The overall classification results of UIUC database

Categories Lazebnik [4] PLSI NMF Baseline method

T23-T25 0.9589 1.00 1.00 0.541
T18-T25 0.9370 0.984 0.994 0.618
T1-T25 0.9261 0.830 0.804 0.531
Table 3

Confusion matrix of NMF model for 8§ classes, K = 500
True classes— TI8 TI19 T20 T21 T22 T23 T24 T25

T18 40 0 0 0 0 0 0 0
T19 0 40 0 0 0 0 0 0
T20 0 0 40 0 0 0 0 0
T21 0 0 0 39 0 0 0 0
T22 0 0 0 0 40 1 0 0
T23 0 0 0 0 0 39 0 0
T24 0 0 0 1 0 0 40 0
T25 0 0 0 0 0 0 0 40

Fig. 7. Textures from the UIUC database.
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PLSI model. The mean classification rate is 83.0%.

NMF model exhibit a very similar performance.

Fig. 8(b) is the rank statistics of the classification

Fig. 8(a) is an overview of the performance of the
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Fig. 8. (a) Confusion matrix of PLSI model on UIUC database, black = 1 and white = 0. (b) Rank statistics of the confusion matrix.
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Fig. 9. Textures from the Brodatz database.
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results. Using the first three best choices, the mean
classification result increases to 92.6%.

Observing Fig. 8(a) carefully, we find that most of clas-
ses are classified with high accuracy. However the class T22
is totally misclassified. Most of the T22 are classified as
TO7. This is partly because the extracted features of T07
and T22 are quite similar.

4.1.2. Dataset 2: Brodatz database

The Brodatz database is a well known texture database.
It is derived from the Brodatz Album [7] which contains
111 images. It is formed by dividing each image of Brodatz
Album into nine nonoverlapping 215 x 215 images [4,8,25].
Thus the Brodatz database consists of 999 images. The
number of categories in the Brodatz database is quite larger
than that in the previous section, while each category has a
relatively small number of instances. This makes it more
challenging. Fig. 9 shows examples of four categories
D35, D64, D74 and D99 from the Brodatz database.

We extract about 770 K regions from the Brodatz data-
base. The median number of regions extracted per image is
771 (345 for Harris Affine region, 426 for Hessian Affine
region). In this experiment, we use all the 111 classes in
the Brodatz database. The results are summarized in Table
4. As the previous section, the PLSI and NMF model
achieves similar classification rate.

Fig. 10(a) is an overview of the performance of the PLSI
model. The mean classification rate is 64.46%. Fig. 10 (b) is
the rank statistics of the classification results. Using the
first three best choices, the mean classification result
increases to 72.97%.

4.1.3. Experiment results analysis

PLSI and NMF seem to be quite different clustering
techniques. NMF decomposes a matrix N into a product
of non-negative matrix UV, and uses a multiplicative

10} ™
20} “‘x‘
o

40 S

50 s

60 - -

70 -

80 Y

90 . ~ .
100} . ~

Learnt Categories
s

10 20 30 40 50 60 70 80 90 100 110
True Category

(a) Confusion matrix

update rule to minimize the KL divergence
Jnmr = KL(N|UV). PLSI is a model base clustering tech-
nique. PLSI models the joint probability matrix as arising
from a mixture model with K latent classes, and uses EM
algorithm to maximize loglikelihood Jp; s;. However, there
are some fundamental relationship between NMF and
PLSI. Firstly, compare Fig. 3 (b) with Fig. 4, we can see
that they are quite similar. This similarity might not seem
surprising. PLSI factorizes the joint probability matrix

[P(wisd)] 1y = [P(Wf|zk/)]1><1([P(,Zk|dj)P(dj)]K><J = UpxVikws
Probability matrices U and V' are obviously non-negative.
So PLSI corresponds to a nonnegative matrix factoriza-
tion. Secondly, Ding et al. in [28] propose that the objective
function of PLSI is identical to the objective function of
NMF, maxJprg <= minJyyvr. And they conclude that
NMF and PLSI are equivalent in this sense.

Our experiment results validate the conclusion of [28]
that NMF and PLSI are equivalent in theory. From those
results in the Tables 2 and 4, we can see that across all the
datasets we used, the classification performance of PLSI
and NMF are consistently indistinguishable in the case of
multi-classes unsupervised texture classification. As there
is no benefit in choosing NMF model over PLSI model,
we now select PLSI model for following experiments.

4.2. Inference of new images

For classifying an unseen image d,., the conditional
distribution over learned topics has to be computed. In
the case of PLSI, the ‘folding-in’ query method proposed

Table 4
The overall classification results of Brodatz database
Categories PLSI NMF Baseline method
DI1-DI111 0.6446 0.6137 0.4965
0.85

0.851

0.8f

0.75¢

0.7

0.65

Average Perf. for Rank Statistics Test

5 10 15 20 25 30 35 40 45 50 55 60
Number of Categories
(b) Rank statistics

Fig. 10. (a) Confusion matrix of PLSI model on Brodatz database, black = 1 and white = 0. (b) Rank statistics of the confusion matrix.
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Table 5

Detail classification results of UIUC database

Class PLSI-1 PLSI-3
TO1 0.850 0.950
T02 0.450 1.000
TO3 0.750 1.000
T04 0.850 1.000
TOS5 1.000 1.000
T06 0.950 1.000
T07 1.000 1.000
TO8 0.850 1.000
TO09 0.650 1.000
T10 0.900 1.000
T11 0.900 0.950
TI12 0.950 1.000
T13 0.700 0.850
T14 0.450 0.800
T15 0.950 1.000
T16 1.000 1.000
T17 0.600 0.950
TI18 0.100 0.850
T19 0.600 1.000
T20 0.950 1.000
T21 1.000 1.000
T22 0.000 0.000
T23 0.950 1.000
T24 0.900 1.000
T25 1.000 1.000
Mean 0.772 0.934

Column 1: class labels of UIUC database. Column 2: classification
accuracy of PLSI-1, which using the label which obtains highest P(z;|d\cst)-
Column 3: classification accuracy of PLSI-3, which using class labels
which obtain top three P(zx|dest)-

in [13] is used to compute the topic mixing coefficients
P(z|dyes). The method maximizes the likelihood of image
diesy With respect to learned P(w|z). This is obtained by a

10

MNurnber of classes
e T i M e U s e iy

el o e el e e e L

0 0.2 0.4 0.6 0.8 1

Classification rate

(a) PLSI-1

similar version of the EM algorithm used in learning,
where only P(z;|d.s) are adapted in each M-step. The fac-
tors P(w|z) are kept fixed.

We use the UTUC database to perform this test. Each
category of UIUC database is randomly split into two sep-
arate sets of images, one for learning and the other for test-
ing. Each set has 20 images. The learning sets of all
categories are mixed together. The PLSI model fits the
mixed learning sets with 25 categories. When asked to clas-
sify one test image de;, the method described above is used
to ‘folding-in’. We use two models to measure the classifi-
cation performance. The first is PLSI-1 model, which
returns the class with highest classification score P(z;|dest)-
The second is PLSI-3 model, which returns three classes
which get top three P(z;|dies;). The details of classification
performance is presented in Table 5. The classification rate
of PLSI-1 model is 77.2%. The classification rate of PLSI-3
increases to 93.4%. The most significant changes are the
class T18(from 0.1 to 0.85), the class T02(from 0.45 to
1.0) and class T09(from 0.65 to 1.0). This reveals that most
of the time, the correct class label is the first class label or in
the top three possible class labels that PLSI model returns.
The results show our method can successfully infer unseen
images using learned topics.

Fig. 11 shows the histograms of classification rates for
all 25 classes. Fig. 11(a) is the results using PLSI-1 model,
and Fig. 11(b) is the results using PLSI-3 model. The histo-
grams reveal most of textures are classified very well. In
PLSI-1 model, 5 textures have 100% classification rate,
13 textures have classification rate at least 90%. While for
PLSI-3 model, the results are improved significantly. 18
textures have 100% classification rate, 21 textures (more
than eighty percent of all textures) have classification rate
at least 95%.
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Fig. 11. Histogram of classification rates for PLSI-1 model and PLSI-3 model.
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5. Conclusion

In this paper, we have demonstrated that it is possible to
discover texture categories from a set of unlabeled images
in an unsupervised manner. Furthermore, we successfully
infer unseen images using discovered categories. Our
approach has been evaluated on a 25 categories database.
It is well demonstrated our approach is robust to signifi-
cant scale and viewpoint changes, and it achieves good
classification accuracy in the same time. We also evaluate
our approach on the Brodatz database, which has 111 tex-
ture classes. To our knowledge this is the largest number of
texture categories that have ever been subjected to unsuper-
vised experiments. Our approach obtains accepted classifi-
cation results.
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