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Abstract. We study positive measures that are solutions to an abstractoptimisa-
tion problem, which is a generalisation of a classical variational problem with a
constraint on information of a Kullback-Leibler type. The latter leads to solutions
that belong to a one parameter exponential family, and such measures have the
property of mutual absolutely continuity. Here we show thatthis property is re-
lated to strict convexity of a functional that is dual to the functional representing
information, and therefore mutual absolute continuity characterises other fami-
lies of optimal measures. This result plays an important role in problems of opti-
mal transitions between two sets: Mutual absolute continuity implies that optimal
transition kernels cannot be deterministic, unless information is unbounded. For
illustration, we construct an example where, unlike non-deterministic, any deter-
ministic kernel either has negatively infinite expected utility (unbounded expected
error) or communicates infinite information.

1 Introduction

Let X := ∪Cc(Ω) be the union of spaces of continuous functionsx : Ω →R with com-
pact support in a locally compact topological spaceΩ . Thus,X is a normed space
with the Chebyshev norm‖x‖∞ := supω |x(ω)|, and in fact it is an ordered commuta-
tive C∗-algebra with pointwise multiplication and ordering. The dual of X is the space
Y :=M (Ω) of Radon measures onΩ [7], which includesσ -additive and regular Borel
measures. Thus,Y is a Banach space with the norm‖ ·‖1, and in fact it is a module over
algebraX with pointwise multiplication. Given a fixed elementx∈ X, let {yβ}x ⊂Y be
a family indexed byβ ≥ 0, where eachyβ is defined as

yβ := eβ xy0 , y0 > 0 (1)

The elementsyβ correspond to positive one-parameter exponential Radon measures,
and normalised elementspβ := yβ/‖yβ‖1 are the corresponding exponential probability
measures. A similar construction can be made in the case whenX is a non-commutative
C∗-algebra, such as the algebra of compact Hermitian operators on a Hilbert space.
However, the exponential family can be defined in different ways, such asyβ := eβ x+lny0

or yβ := eβ x/2y0eβ x/2, which are not equal in the non-commutative case.
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The exponential family plays an important role in mathematical statistics, physics
and information theory. Many important probability distributions are members of this
family. In fact, the lower bound for the variance of the unbiased estimator of an un-
known parameter, defined by the Rao-Cramer inequality, is attained if and only if the
probability distribution is a member of the exponential family [9,19]. The Boltzmann
(or Gibbs) distribution is a member of this family, and it is known to maximise entropy
of a thermodynamical system under the constraint on energy [10]. A closely related
variational problem is minimisation of Kullback-Leibler distance [14] (negative rela-
tive entropy) of one probability measure from another subject to a constraint on the
expected value. These problems were studied in informationtheory [21,22,23], and it
was established that exponential distributions maximise the capacity of an information
channel. More recently, the exponential family has been studied in information geome-
try, and it was shown that the family is a Banach space with an Orlicz norm [18]. These
result have been generalised to quantum systems [6,24].

As will be shown later in this paper, most of the above properties are related to the
fact that exponential measures are optimal solutions to onespecific variational problem.
In this paper, we shall study a generalisation of this problem, which we shall refer
to asoptimisation with an information constraint. The abstract information constraint
will be defined using a closed functionalF : Y → R∪ {∞}, such that its valuesF(y)
are associated with the valuesI(y,y0) of some information resource (or distance) of
measurey relative toy0. A specific form of this functional will lead to a specific family
{yβ}x of optimal solutions, such as the exponential family (1) ifF(y) is associated with
the Kullback-Leibler information distance.

The main motivation to study this generalisation was the observation that measures
in the exponential family have a remarkable property of being mutually absolutely con-
tinuous. We remind that measurey1 is absolutely continuous with respect to measure
y2 if y2(E) = 0 impliesy1(E) = 0 for all E ∈ R(Ω) (here and elsewhereR denotes a
σ -algebra of subsets ofΩ ). Mutual absolute continuity is the case when the implication
holds in both directions. The main question we investigate in this paper is what other
families of optimal positive measures have the mutual absolute continuity property.

The answer to this question is related to the properties of the information functional
F , and in fact to the properties of its dual functionalF∗. In this paper, we prove that
it is strict convexity ofF∗ that makes all optimal positive measures mutually abso-
lutely continuous. We argue also that strict convexity ofF∗, the dual of an information
functional, is a property that is natural in the context of optimisation problems. Mutual
absolute continuity becomes particularly interesting property for optimal measures, de-
fined on setΩ = A×B representing a composite system. In this case, the optimal fam-
ily defines Markov transition kernels between elements ofA andB that realise only
non-deterministic transitions; deterministic transitions are suboptimal if information,
understood broadly here, is bounded. We illustrate this result by constructing an ex-
ample, where any deterministic kernel either has a negatively infinite expected utility
(unbounded error) or communicates infinite information, but a non-deterministic kernel
can have both finite expected utility and finite information.

In the next section, we introduce the notation, define the generalised optimisation
problem and recall some basic relevant facts. Then we establish several properties of op-
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timal solutions to the problem and use them to prove the main result on mutual absolute
continuity of optimal positive measures. The proof is basedon standard techniques of
convex analysis, and it does not depend on commutativity. Therefore, the result applies
to a general, non-commutative setting. The last two sections of the paper are devoted to
optimal probability measures and optimal Markov transition kernels. For simplicity, we
study them in the classical (commutative) setting. The paper concludes by a discussion
of these results.

2 Preliminaries

Let X andY be complex linear spaces put in duality via bilinear form〈·, ·〉 : X×Y →C:

〈x,y〉= 0, ∀x∈ X ⇒ y= 0, 〈x,y〉= 0, ∀y∈Y ⇒ x= 0

The dual space of a locally convex spaceX will also be denoted byX′, and the dual of
a normed space(X,‖ · ‖) will be denoted byX∗. We denote byX♯ the algebraic dual
space ofX. The same notation applies to the dual spaces ofY.

The main results of this paper are derived using only the factthatX andY are or-
dered linear spaces in duality. However, in applications, these spaces can have richer
algebraic structures [5]. In particular, spaceX is usually closed with respect to an as-
sociative, but generally non-commutative binary operation · : X ×X → X (e.g. point-
wise multiplication or matrix multiplication) and involution as a selfinverse antilin-
ear map∗ : X → X reversing the multiplication order,(x∗z)∗ = z∗x, so thatX is a
∗-algebra with the positive coneX+ of x∗x generatingX. The dual spaceY is closed
under the transposed involution∗ : Y → Y, defined as〈x,y∗〉 = 〈x∗,y〉∗, has a positive
coneY+, dual ofX+, and it has identityy0 ∈ Y+ (also called the reference measure),
which is a strictly positive linear functional such that〈x∗x,y0〉 > 0 for all x 6= 0 ∈ X.
The ordering〈x,y〉 ≥ 0 is understood as Re〈x,y〉 ≥ 0 for 〈x,y〉 ∈ C. However, we shall
mostly deal with Hermitian elementsx = x∗ and y = y∗ such that〈x,y〉 ∈ R. If the
pairing 〈·, ·〉 has the property that for eachz ∈ X there exists a transposed element
z′ ∈ Y such that〈zx,y〉 = 〈x,z′y〉, thenY ⊃ X is a left (right) module with respect to
the transposed left (right) actiony 7→ z′y (y 7→ yz∗′∗) of X on Y such that(xz)′ = z′x′

and〈x,yz∗′∗〉 = 〈x∗,z∗′y∗〉∗ = 〈z∗x∗,y∗〉∗ = 〈xz,y〉. In many practical cases, the pairing
〈·, ·〉 is central(or tracial) so that the left and right transpositions act identically on y0:
z∗′y0 = y0z′∗ for all z∈ X. In this case, the elementy= z∗′y0 = y0z′∗ can be identified
with a complex conjugation ofz∈ X.

Below are three main examples of pairing ofX andY by a sum, an integral or trace:

〈x,y〉 := ∑
Ω

x(ω)y(ω) , 〈x,y〉 :=
∫

Ω
x(ω)dy(ω) , 〈x,y〉 := tr{xy} (2)

The main examples ofX are the commutativeC∗-algebra(∪Cc(Ω),‖·‖∞) of continuous
functions with compact support in a locally compact topological spaceΩ or the non-
commutativeC∗-algebra(Cc(H ),‖·‖∞) of compact Hermitian operators on a separable
Hilbert spaceH . The main examples ofY = X∗ are the Banach space(M (Ω),‖ · ‖1)
of Radon measures onΩ or its non-commutative generalisation(M (H ),‖ · ‖1).
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Let F : Y →R∪{∞} be a closed functional — sublevel sets{y : F(y)≤ λ} are non-
empty for some and closed in the weak topologyσ(Y,X) for eachλ < supF (defined in
this way,F is also lower-semicontinuous). In this paper, we shall study solutionsyβ ∈Y
to an optimisation problem defining the followingoptimal value function:

x(λ ) := sup{〈x,y〉 : F(y)≤ λ} (3)

We definex(λ ) = −∞ if λ < inf F. It is clear from the definition thatx(λ ) is isotone.
SetC := {y : F(y)≤ λ} is the set of feasible solutions, and if it is non-empty, thenx(λ )
coincides with its support functionsC(x) := sup{〈x,y〉 : y∈C}.

Functionx(λ ) has the following inverse

x−1(υ) := inf{F(y) : 〈x,y〉 ≥ υ} (4)

In addition tox(λ ) and its inversex−1(λ ), we shall consider also the following func-
tions:

x(λ ) := inf{〈x,y〉 : F(y)≤ λ} (5)

x−1(υ) := inf{F(y) : 〈x,y〉 ≤ υ} (6)

Observe thatx(λ ) = −(−x)(λ ) = −sup{−〈x,y〉 : F(y) ≤ λ} is an antitone function,
andx(λ ) = ∞ if λ < inf F .

We use function (3) to represent generally optimisation problems with a constraint
on information, and its inverse function (4) to represent generally optimisation prob-
lems with a utility constraint. Indeed, consider the caseX = (∪Cc(Ω),‖ · ‖∞) andY =
(M (Ω),‖ · ‖1). Then probability measures on Borelσ -algebraR(Ω) are positive ele-
mentsp∈ M (Ω) with ‖p‖1 = 1. We shall refer to the set of all probability measures

P(Ω) := {y∈ M (Ω) : y> 0, ‖y‖1 = 1}

asstatistical manifoldby analogy with information geometry [1,8,18]. In the classi-
cal probability theory (X is a commutative algebra), setP is a Choquet simplex —
a compact convex set such that everyp ∈ P is uniquely represented by the extreme
pointsδ ∈ ∂P [17]. Here,∂P denotes the boundary ofP, and we shall denote by
extP ⊆ ∂P the set of all extreme points ofP. Thus, in the classical probability the-
ory, we can identify extP with Ω .

In the non-classical probability (X is non-commutative), a similar construction can
be made. For example, ifX = (Cc(H ),‖ · ‖∞) andY = (M (H ),‖ · ‖1), then quan-
tum probability measures, representing states, are positive elementsp∈ M (H ) with
‖p‖1 = 1, and thequantum statistical manifoldis

P(H ) := {y∈ M (H ) : y> 0, ‖y‖1 = 1}

The quantum statistical manifold is also compact and convex, but it is not a simplex.
This is because representations byδ ∈ extP are not unique. This fundamental dif-
ference of quantum probability is the consequence of non-commutativity. However, our
results will apply to both classical and non-classical case, which have many similarities.
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Observe that the expected valueEp{x} of a classical random variablex : Ω → R

is a linear functionalp(x) = 〈x, p〉, p ∈ P. Note that often we can considerx as an
element of spaceY′, dual ofY, andEp{x} as a linear functionalx(p) = 〈x, p〉, wherep
is varied over some subset ofP, as in function (3). In quantum physics, operatorx∈Y′

is often called anobservable, and the linear functionalEp{x} = 〈x, p〉 takes values in
the spectrumσ(x), which is real, ifx is Hermitian.

If x∈ X is a classical utility functionx : Ω → R, then maximisation of linear func-
tional x(p) = 〈x, p〉 is the problem of maximisation of the expected utility. We remind
that given apreference relation. on Ω (a total pre-order), autility function is a pre-
order embeddingx : (Ω .)→ (R,≤): ω1 . ω2 if and only if x(ω1) ≤ x(ω2). A non-
classical utility operator is defined similarly using pre-order on its eigenstates (see [4]).
It is well-known that the expected utilityEp{x} (linear functional〈x,y〉) is the only
functional that makes statistical manifoldP (linear spaceY) totally pre-ordered, and
such that(P,.)⊂ (Y,.) is compatible with the linear structure ofY and is an Archi-
median pre-order [16].

It is clear from the above that the optimal value function (3)corresponds to optimi-
sation under uncertainty over the set of probability measuresP∩C, whereC is defined
by the constraintF(y)≤ λ . In particular, ifF(y) := I(y,y0), whereI :Y×Y→R+∪{∞}
is some information distance, thenF(y) ≤ λ is the constraintI(y,y0) ≤ λ on informa-
tion distance. Note that without the constraint,x(p) is always maximised at least in one
of the extreme pointsδx ∈ extP.

Proposition 1. LetP be a non-empty compact convex subset of a locally convex space
Y. Then for any x∈ X ⊆Y♯ there existsδx ∈ extP such that

〈x,δx〉 := sup{〈x, p〉 : p∈ P} ∈R∪{∞} (7)

Proof. If there exist a non-empty subset∆ ⊆ extP of extreme pointsδx such that
〈x,δx〉 = sup{〈x, p〉 : p ∈ P} for anyδx ∈ ∆ , then by linearity〈x,δx〉 = 〈x, p̄〉 for any
p̄∈ clco∆ (here clco denotes convex closure of a set). Dually, the set∆ is empty only
if there exist ¯p such that〈x, p̄〉 > 〈x, p〉 for all p ∈ clcoextP. But clcoextP = P

(Krein-Milman theorem), and therefore ¯p /∈ P. ⊓⊔

In many practical applications, finding the optimal extremepointsδx solving op-
timisation problems may not be feasible as it may require a large (possibly infinite)
amount of information. A feasible solution can be found by taking into account the
information constraint.

Definition 1 (Information (feasibility) constraint). A valueλ of a closed functional
F : Y → R∪ {∞} is called aninformationor feasibility constraintin problem (3), if
x(λ ) < 〈x,δx〉, whereδx is defined in Proposition 1. Generally,inf F ≤ λ < F(δx) ≤
supF.

It will be shown later that if feasible solutions to problem (3) exist, then they are
also solutions to problem (4), defined by the inverse function x−1(υ). One often seeks
non-trivial solutionsp ∈ P to optimisation problems such that the expected utility is
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greater than that of a solution requiring no information (i.e. a trivial solution). Non-
trivial solutions can be found by taking into account a utility constraint.

Definition 2 (Utility (non-triviality) constraint). A valueυ of a linear functional
x : Y → R is called an expectedutility or non-triviality constraintin problem (4), if
x−1(υ)> inf F. Generally,υ > υ0, where

υ0 := lim
λ↓inf F

sup{〈x,y〉 : F(y)≤ λ} ∈ R∪{−∞} (8)

Remark 1.One can show in a way similar to Proposition 1 and using the equality
x(λ ) =−(−x)(λ ) that there existsδ−x ∈ extP such that

〈x,δ−x〉 := inf{〈x,y〉 : y∈ P} ∈ R∪{−∞} (9)

An information constraint in problem (5) is such thatx(λ ) > 〈x,δ−x〉, and generally
inf F ≤ λ < F(δ−x) ≤ supF . A utility constraint in problem (6) is such thatx−1(υ) >
inf F , and generallyυ < υ0, where

υ0 := lim
λ↓inf F

inf{〈x,y〉 : F(y)≤ λ} ∈R∪{∞} (10)

Note that often〈x,δx〉 6= −〈x,δ−x〉. Indeed, ifx is a real function onΩ , then〈x,δx〉 =
supx(ω) and 〈x,δ−x〉 = inf x(ω). Furthermore, generallyF(δx) 6= F(δ−x) and υ0 6=
−υ0.

Problems (3) and (4), considered on the statistical manifold P, generalise several
related variational problems in information theory and physics, in whichF(p) corre-
sponds to the Kullback-Leibler information distanceIKL(p,q) := Ep{ln p− lnq} of
probability measurep from a reference measureq. An important example is when
IKL(p,q) is Shannon information between random variablesa∈ A andb∈ B, which is
defined asIKL(p,q), wherep= p(A | b) is the conditional andq= p(A) is the marginal
probability. Function (3) in this case defines thevalue of Shannon information, which
was introduced and studied by Stratonovich [22,23]. The general form of problems (3)
or (4) allows us to study families of optimal solutions independent of the way informa-
tion distanceI(y,y0) or functionalF(y) is defined.

We shall study the question of existence of feasible and non-trivial solutions to
problemx(λ ), but not necessarily to(−x)(λ ). Because solutions may exist even for un-
bounded linear functionalsx∈Y♯, we shall refer to suchx∈Y♯ asinformation bounded
or simply asF-boundedelements.

Definition 3 (F-bounded linear functional). An element x∈ Y♯ is bounded relative
to a closed functional F: Y → R ∪ {∞} or F-boundedif x(λ ) ∈ R for each λ ∈
(inf F,F(δx)).

Topological questions will not be addressed in this paper. However, the follow-
ing should be noted about the space of allF-bounded elements. Information distance
I(y,y0) or functionalF(y) = I(y,y0) can be used to define a topology onY (andP ⊂Y),
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in which the collection of sublevel setsC := {y : F(y)≤ λ} of feasible and non-trivial
solutions is the base of closed neighbourhoods ofy0, inf F = F(y0) (e.g. see [3]). The
support functionsC(x) := sup{〈x,y〉 : y∈C}, which is a generalisation of a seminorm,
defines a topology onX ⊆Y♯ that is compatible with duality. BecausesC(x) = x(λ ), this
topological space is precisely the space of allF-bounded elements. Such topological
spaces, however, are generally not topological vector spaces, because setsC can be ‘un-
balanced’ ifI(y,y0) 6= I(y0,y) (or F(y−y0) 6= F(y0−y)), and thereforesC(x) 6= sC(−x).
Thus, the topologies onY andX, generated respectively by the information distance
I(y,y0) and support functionsC(x), are different from the norm topologies(Y,‖ ·‖) and
(Y∗,‖ · ‖∗). In particular,Y∗ may contain elementsx or −x that are notF-bounded, so
that solutions to problemx(λ ) or (−x)(λ ) may not exist, and setsC can be unbounded
in (Y,‖·‖). On the other hand, there can beF-bounded elements outsideY∗. These facts
will be illustrated on an example later.

In the next section, we show that solutionsyβ , if exist, are the elements of subdiffer-
ential of functionalF∗, dual ofF . We remind thatF∗ : X → R∪{∞} is the Legendre-
Fenchel transform ofF :

F∗(x) := sup{〈x,y〉−F(y)}

and it is aways closed and convex (e.g. see [20,25]). Condition F∗∗ = F implies F is
closed and convex. Otherwise, the epigraph ofF∗∗ is a convex closure of the epigraph
of F in Y×R. Closed and convex functionals are continuous on the (algebraic) interior
of the effective domain domF := {y : F(y)< ∞}, and they have the property

x∈ ∂F(y) ⇐⇒ ∂F∗(x) ∋ y (11)

where set∂F(y0) := {x : F(y)≥ F(y0)+ 〈x,y−y0〉 , ∀y∈Y} is subdifferentialof F at
y0, and its elements are calledsubgradients. In particular, 0∈ ∂F(y0) impliesF(y0)≤
F(y) for all y (i.e. infF = F(y0)). If F is weakly (Gâteaux) differentiable (or ifF∗ is
strictly convex), then∂F(y) = {x}, and the correspondencey 7→ x∈ ∂F(y) is a function.

Recall also that subgradients satisfy the following monotonicity condition [11]:

〈x1− x2,y1− y2〉 ≥ 0, ∀yi ∈ ∂F∗(xi) (12)

If the inequality is strict for allx1 6= x2, then∂F∗ is strictly monotone, andF∗ is strictly
convex.

We remind also thatH : Y → R∪{−∞} is concaveif F(y) =−H(y) is convex. By
analogy, one definessupdifferentialof concave function [20], and the correspondence
x 7→ y∈ ∂H∗ is antitone. The dual ofH in concave sense isH∗(x) := inf{〈x,y〉−H(y)}.

3 General properties of optimal solutions and the optimal value
function

In this section, we study general properties of the optimal value function (3) and optimal
feasible solutions — elementsyβ such thatx(λ ) = 〈x,yβ 〉= υ < ∞. First, we apply the
standard method of Lagrange multipliers to derive solutionsyβ to problem (3).
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Proposition 2 (Necessary and sufficient optimality conditions).Element yβ ∈Y solves
problem (3) with closed F: Y →R∪{∞} if and only if the following conditions hold

yβ ∈ ∂F∗(βx) , F(yβ ) = λ , β−1 ∈ ∂x(λ ) , β−1 > 0

Proof. If the solutionyβ to problem (3) exists, then it belongs to the boundary of the
sublevel setC = {y : F(y) ≤ λ}, because〈x, ·〉 is linear and the sublevel set is closed.
Moreover,yβ belongs to the boundary of a convex closure of setC in Y, because it is the
intersection of all closed half-spaces{y : 〈x,y〉 ≤ 〈x,yβ 〉} containingC. Observe also
that

clco{y : F(y)≤ λ}= {y : F∗∗(y)≤ λ}

and therefore solutions satisfy conditionF(yβ )=F∗∗(yβ ). The latter implies also∂F(yβ )=
∂F∗∗(yβ ) (e.g. see [20], Theorem 12). Thus, the Lagrange function forthe conditional
extremum in (3) can be written in terms ofF∗∗ as follows

K(y,β−1) = 〈x,y〉+β−1[λ −F∗∗(y)] ,

whereβ−1 is the Lagrange multiplier for the constraintλ ∈ (inf F,F(δx)). Because
x(y) = 〈x,y〉 is linear andF∗∗ is convex, the Lagrange function is concave forβ−1 > 0.
In this case, condition∂K(yβ ,β−1) ∋ 0 is both necessary and sufficient foryβ andβ−1

to define its least upper bound, which gives

∂yK(yβ ,β−1) = x−β−1∂F∗∗(yβ ) ∋ 0, ⇒ yβ ∈ ∂F∗(βx)

∂β−1K(yβ ,β−1) = λ −F∗∗(yβ ) ∋ 0, ⇒ F∗∗(yβ ) = λ

Note that ifF 6= F∗∗, then generallyF∗∗(y) ≤ F(y), and conditionF∗∗(yβ ) = λ must
be replaced by the stronger conditionF(yβ ) = λ . Noting thatx(λ ) = 〈x,yβ 〉+β−1[λ −

F(yβ )], the Lagrange multiplier is defined by∂x(λ ) ∋ β−1. Note that∂x(λ ) ≥ 0, be-
causex(λ ) is isotone (non-decreasing), andβ−1 = 0 if and only if λ = F(δx). ⊓⊔

Remark 2.Solutions to problem (4), defining the inverse functionx−1(υ), are given by
similar conditions. Indeed, the corresponding Lagrange function is

K(y,β ) = F∗∗(y)+β [υ −〈x,y〉]

and the corresponding necessary and sufficient conditions are

yβ ∈ ∂F∗(βx) , 〈x,yβ 〉= υ , β ∈ ∂x−1(υ) , β > 0

Functionx(λ ), defined by equation (5), is antitone, becausex(λ ) = −(−x)(λ ). The
necessary and sufficient conditions for the infimum inx(λ ) are identical to those in
Proposition 2 with the only exception thatβ−1 < 0. Similarly, conditions defining the
infimum in x−1(υ) are identical those ofx−1(υ), given above, but withβ < 0.

Remark 3.If there existy0 ∈ domF such that infF = F(y0) (i.e. 0∈ ∂F(y0)), then
υ0 = sup{〈x,y〉 : y ∈ ∂F∗(0)} andυ0 = inf{〈x,y〉 : y ∈ ∂F∗(0)}. If y0 is unique (i.e.
∂F∗(0) = {y0}), thenυ0 = υ0; otherwise,υ0 ≥ υ0.
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In previous section, we defined anF-bounded linear functionalx that admits solu-
tions to problem (3) or (4) for each constraintλ ∈ (inf F,F(δx)). It was mentioned also
that solutions may not exist even for somex ∈ Y∗, so that the sets{y : F(y) ≤ λ} are
unbounded in the norm topology(Y,‖ · ‖). If they are bounded, then 0∈ Int(domF∗)
(see [2,15]). Thus, the concept of anF-bounded element allows us to consider such
x∈Y♯ that the origin of a one-dimensional subspaceRx := {βx : β ∈ R} is not on the
interior of domF∗. Also, conditionx(λ ) ∈ R does not imply(−x)(λ ) ∈ R, so thatx is
F-bounded, but−x is not. Furthermore, anF-boundedx can be unbounded relative to
a norm‖ · ‖ onY, and therefore it can be outside Banach spaceY∗ (in fact,Y∗ is pre-
cisely the space of‖ · ‖-bounded elements). For an illustration, consider the following
example.

Example 1.Let Ω = N and letX, Y be the spaces of real sequences{x(n)} and{y(n)}
with pairing 〈·, ·〉 defined by the sum (2). LetF(y) = 〈lny− 1,y〉 for y > 0, so that
the gradient∇F(y) = lny, andF is minimised at the counting measurey0(n) = 1. The
optimal solutions have the formyβ = eβ x, and the optimal value functionsx(λ ) and

(−x)(λ ) are respectively

〈x,yβ 〉=
∞

∑
n=1

x(n)eβ x(n) and −〈x,yβ 〉=−
∞

∑
n=1

x(n)e−β x(n) , β−1 > 0

In particular, forx(n) =−n, the first series converges to−eβ (eβ −1)−2, but the second
diverges for anyβ−1 > 0. Thus,x is F-bounded, but−x is not. Observe also that bothx
and−x are unbounded relative to the norm‖ · ‖1 onY, because there is no real number
‖x‖∞ := sup{|〈x,y〉| : ‖y‖1 ≤ 1}= supn{x(n),−x(n)} for suchx. On the other hand, any
constant sequencex(n) = α, whereα ∈ (0,∞), is bounded, but it is notF-bounded.

The criteria for anF-bounded elementx∈ X follow from the optimality conditions,
obtained in Proposition 2.

Proposition 3 (Existence of solutions).Solutions yβ ∈Y maximising x(y) = 〈x,y〉 on
closed sets{y : F(y) ≤ λ} exist for eachλ ∈ (inf F,F(δx)), where F: Y → R∪{∞} is
a closed functional, if and only if there exists at least one numberβ−1 > 0 such that
F∗(βx) < supF∗. In other words, x∈ X is F-bounded if and only if it is absorbed by
the set{w : F∗(w)≤ λ ∗} for someλ ∗ ∈ (inf F∗,supF∗).

Proof. (⇒) Assume there exists numberβ−1 > 0 such thatF∗(βx) ∈ (inf F∗,supF∗).
Then there existsyβ ∈ domF∗∗ such thatF∗(βx) = β 〈x,yβ 〉−F∗∗(yβ ) ≥ β 〈x,yβ 〉−
F(yβ ). In fact, solutions to problem (3) areyβ such thatF(yβ ) = F∗∗(yβ ) andyβ ∈
∂F∗(βx) (Property (11)), and therefore

〈x,yβ 〉= β−1[F∗(βx)+F∗∗(yβ )
]

∈ R

Therefore,yβ ∈ ∂F∗(βx) solve problem (3) forλ = β 〈x,yβ 〉−F∗(βx) ∈ (inf F,F(δx)).
(⇐) Assume there exists a solutionyβ to problem (3) forλ ∈ (inf F,F(δx)). Then

yβ ∈ ∂F∗(βx) (Proposition 2), where 0< β−1 < ∞ (otherwise,λ = F(δx) ≤ supF or
λ = inf F).
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The existence of solutionyβ implies that sublevel set is bounded by closed half-
space{y : 〈x,y〉 ≤ 〈x,yβ 〉}. BecauseF is closed, its sublevel sets{y : F(y) ≤ λ} are
closed for allλ , and therefore the existence of a solution for one suchλ implies that
solutions exist for allλ ∈ (inf F,F(δx)). The converse is true and trivial.

Observe also thatβx is on the boundary of the closed convex set{w : F∗(w) ≤
F∗(βx)}, which is bounded by the closed half-space{w : 〈w,yβ 〉 ≤ β 〈x,yβ 〉}. In partic-
ular, elementsβ1x andβ2x for β1 < β < β2 are respectively on the interior and on the
exterior of this set, which is equivalent tox being absorbed by the set. ⊓⊔

Proposition 4 (Monotonicity). Functionsx(λ ), x(λ ), x−1(υ) and x−1(υ), defined by
equations (3), (5), (4) and (6) for a closed F:Y→R∪{∞} and x6= 0, have the following
properties:

1. The mappingsλ 7→ β , β−1 ∈ ∂x(λ ), andυ 7→ β ∈ ∂x−1(υ) are isotone.
2. If in addition F∗ is strictly convex ondomF∗, then these mappings are continuous.
3. x(λ ) is concave and strictly increasing forλ ≤ F(δx).
4. x(λ ) is convex and strictly decreasing forλ ≤ F(δ−x).
5. x−1(υ) is convex and strictly increasing forυ ≥ υ0.
6. x−1(υ) is convex and strictly decreasing forυ ≤ υ0.

whereδx, δ−x, υ0 andυ0 are defined by equations (7), (9), (8) and (10) respectively.

Proof. 1. Let yβ1
, yβ2

be two solutions to problem (3) with constraintsλ1 ≤ λ2 re-
spectively, and letυ1 = 〈x,yβ1

〉 andυ2 = 〈x,yβ2
〉. Using conditionyβ ∈ ∂F∗(βx)

of Proposition 2 and monotonicity condition (12) for convexF∗, we have

〈β2x−β1x,yβ2
− yβ1

〉= (β2−β1)〈x,yβ2
− yβ1

〉 ≥ 0

Functionx(λ ) is isotone (by the inclusion{y : F(y)≤ λ1} ⊆ {y : F(y)≤ λ2}), and
thereforeλ1 ≤ λ2 implies〈x,yβ2

−yβ1
〉= υ2−υ1 ≥ 0. It follows from the inequality

above thatλ1 ≤ λ2 (or υ1 ≤ υ2) implies β1 ≤ β2, which proves thatλ 7→ β and
υ 7→ β are isotone.

2. Optimality conditionyβ ∈ ∂F∗(βx) is equivalent toβx∈ ∂F∗∗(yβ ) by property (11),
and together with conditionF(yβ ) = λ (or 〈x,yβ 〉 = υ) it implies that different
β1 < β2 can correspond to the sameλ (υ) if and only if ∂F∗∗(yβ ) includes bothβ1x
andβ2x. This implies thatF∗ is not strictly convex on[β1x,β2x]⊆ ∂F∗∗(yβ ). Con-
versely, ifF∗ is strictly convex on domF∗, thenβ1 6= β2 impliesλ1 6= λ2 (υ1 6= υ2).
Therefore,x(λ ) (x−1(υ)) is a differentiable real function, and its derivative is con-
tinuous.

3. Functionx(λ ) is strictly increasing, because∂x(λ ) ∋ β−1 > 0 if λ < F(δx), and
β−1 = 0 if and only if λ ≥ F(δx) (Proposition 2). Moreover, the mappingλ 7→
β−1 ∈ ∂x(λ ) is antitone (becauseλ 7→ β is isotone), and thereforex(λ ) is concave.

4. By the same reasoning as above, function(−x)(λ ) is concave and strictly increas-
ing for λ ≤ F(δ−x). Thus,x(λ ) =−(−x)(λ ) is convex and strictly decreasing.

5. Functionx−1(υ) is strictly increasing forυ0 ≤ υ , because∂x−1(υ) ∋ β > 0, and
β = 0 if and only ifυ = 〈x,y0〉≤ υ0 for anyy0 ∈ ∂F∗(0) (inf F =F(y0)). Moreover,
the mappingυ 7→ β ∈ ∂x−1(υ) is isotone, and thereforex−1(υ) is convex.
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6. Functionx−1(υ) is the inverse of convex and strictly decreasing functionx(λ ).
Thus,x−1(υ) is also convex and strictly decreasing forυ ≤ υ0.

⊓⊔

Remark 4 (Strict convexity).Classical information distances between probability mea-
sures are often required to satisfy the additivity axiom:I(yz,y0) = I(y,y0)+ I(z,y0) [8].
This is why such information distances are represented using a logarithmic function,
and functionalF∗, dual of F(y) = I(y,y0), is represented using an exponential func-
tion, and it is strictly convex. IfF∗ is not strictly convex, then there may exist different
quantitiesβ1x 6= β2x corresponding to the same valueλ = F(yβ ) (or υ = 〈x,yβ 〉). If x
is understood as the objective function of an optimisation problem (e.g. a utility), then
without strict convexity ofF∗, the information functional cannot ‘distinguish’ between
some quantities ofx. Thus, the requirement forF∗ to be strictly convex is natural in the
context of optimisation problems.

To distinguish between positive and negative elements, we equip spacesX andY
with order relations≤ in a usual way. LetX+ ⊂ X be a pointed convex cone of non-
negative elements inX so thatw≤ x if and only if x−w∈ X+. We also demand thatX+

is reproducing:X+−X+ = X or

x= x+− x− , x+,x− ∈ X+ , ∀x∈ X

For example, ifX is a function space, thenX+ is the set of positive functions with
respect to the natural pointwise order. IfX is the space of operators on a Hilbert space,
thenX+ is the cone of elementsx∗x∈ X. The order onY is induced by the dual cone:

Y+ := {y∈Y : 〈x,y〉 ≥ 0, ∀x≥ 0}

Proposition 5 (Zero solution). If solutions yβ to problem (3) for all valuesλ of a
closed functional F: Y →R∪{∞} are non-negative (i.e. yβ ∈Y+ for all λ = F(y)) and
yβ = 0 for someλ , then

x= 0 or inf F = F(0) or F(δx) = F(0)

Proof. Assume the opposite:x 6= 0 and infF < F(0) < F(δx). Then functionx(λ ) =
〈x,yβ 〉 is strictly increasing (Proposition 4), and sets{y : F(y)< F(0)} and{y : F(0)<
F(y)} are non-empty (F is closed). Thus, there exist solutionsy1 andy2 such that

F(y1)< F(0)< F(y2) and 〈x,y1〉< 0< 〈x,y2〉

Using decompositionx= x+− x−, x+, x− ∈ X+ andy1, y2 ∈Y+, we conclude that

〈x+− x−,y1〉< 0 ⇒ x+ < x− (x−− x+ ∈ X+)

〈x+− x−,y2〉> 0 ⇒ x+ > x− (x+− x− ∈ X+)

This impliesx= 0, which is a contradiction. ⊓⊔



12 Roman Belavkin, December 15, 2010

4 Main result: Mutual absolute continuity

Our interest is in the support set of optimal positive measures solving problem (3).
We remind thatX is a linear algebra, which can be associated with the algebraR(Ω)
of subsets ofΩ in the classical (commutative) setting, or with the algebraR(H ) of
subspaces ofH in non-classical (non-commutative) setting. A subalgebraR(E) of
subsetE ⊂ Ω or subspaceE ⊂ H corresponds in each case to a subspaceM ⊂ X.
Thus, we shall treat these cases generally by defining a continuous linear projection
PM : X → M ⊂ X and using notationy(M) = 0 to denote measures that are zero on
subset or subspaceE.

We remind also that ifY is the dual ofX, then the dual of subspaceM ⊂ X is the
factor spaceY/M⊥ of equivalence classes[y] := {z∈Y : y− z∈ M⊥} generated by the
annihilatorM⊥ := {y∈Y : 〈x,y〉= 0, ∀x∈M}. Thus, the elements ofY/M⊥ correspond
to measures that are equivalent onM. In particular,[0] ∈Y/M⊥ is the annihilatorM⊥,
and it is a subspace ofY corresponding to measures such thaty(M) = 0. The restriction
of F∗ to M is given byF∗(PMx), and the dual ofF∗(PMx) is defined onY/M⊥ as
F∗∗([y]) := inf{F∗∗(y) : y∈ [y]}.

Theorem 1 (Mutual absolute continuity).Let{yβ}x ⊂Y+ be a family of non-negative
linear functionals on X that are solutions to problem (3) forall valuesλ of a closed
functional F : Y → R∪{∞}. If F ∗, the dual of F, is strictly convex for all x∈ domF∗,
then:

1. There is a subfamily{y◦β}x ⊆ {yβ}x containing y◦β for eachλ ∈ (inf F,F(δx)), and
y◦β correspond to mutually absolutely continuous positive measures.

2. If 0∈ domF∗ (domF∗∗ is closed), then there exist y0 (δx) in {yβ}x such thatinf F =
F(y0) (sup{〈x,y〉 : y∈ domF} = 〈x,δx〉), and it is absolutely continuous w.r.t. all
y◦β .

3. If in addition F∗∗ is strictly convex for all y∈ domF∗∗, then {y◦β}x = {yβ}x \

{y0,δx}.

Proof. Let yβ be a solution for someλ ∈ (inf F,F(δx)). Thenyβ ∈ ∂F∗(βx), 0< β−1 <
∞ (Proposition 2). LetPM : X → M be a continuous linear projection onto subspace
M ⊂X. Then[yβ ]∈ ∂F∗(βPMx), [yβ ]∈Y/M⊥. Assume that the corresponding measure
yβ (M) = 0. Thenyβ ∈ [0] ∈ Y/M⊥, where[0] = M⊥, and because[yβ ] ≥ 0 (PM is a
positive operator),[yβ ] = [0] implies by Proposition 5

PMx= 0 or infF∗∗ = F∗∗([0]) or F∗∗([δx]) = F∗∗([0])

Observe that∂F∗∗([0]) is a singleton set, becauseF∗ (and henceF∗(PMx)) is strictly
convex on domF∗. Therefore, the latter two cases above are false, because otherwise
∂F∗∗([0]) would contain the intervals[0,βPMx] or [βPMx,∞), 0 < β < ∞. Thus, the
only true case isPMx= 0. But thenβPMx= 0 for all β , and therefore

[0] ∈ ∂F∗(βPMx) , ∀β ∈R
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In other words, for eachλ ∈ (inf F,F(δx)), there is a solutionyβ , such that the corre-
sponding measureyβ (M) = 0.

These measures are not mutually absolutely continuous onlyif there exists solution
y◦β for someλ ∈ (inf F,F(δx)) such that the corresponding measurey◦β (M

′) = 0 on
some larger subspaceM′ ⊃M. The subfamily{y◦β}x ⊆{yβ}x corresponding to mutually
absolutely continuous measures for allλ ∈ (inf F,F(δx)) is constructed by taking

M = sup{M′ ⊂ X : ∃y◦β ∈ {yβ}x, y◦β (M
′) = 0}

where supremum is with respect to ordering by inclusion.
If 0 ∈ domF∗ (domF is closed), then infF (sup{〈x,y〉 : y∈ domF}) is attained at

somey0 (δx) corresponding toβ = 0 (β−1 = 0). BecausePMx= 0 implies thatβPMx= 0
for β = 0 (β−1 = 0), the measure corresponding toy0 (δx) is absolutely continuous with
respect to all measures in{y◦β}.

If F∗∗ is strictly convex on domF∗∗, then∂F∗(βx) contains unique elementy◦β for

eachβ−1 > 0, and{y◦β}x = {yβ}x\ {y0,δx}. ⊓⊔

Remark 5.If F∗∗ is continuous atyβ ∈ Int(domF∗∗), then it is G-differentiable atyβ
if and only if ∂F∗∗(yβ ) is a singleton set (e.g. see [25], Chapter 2, Section 4.1). Our
interest, however, is in solutionsyβ ∈ ∂F∗(βx) that can be on the boundary of domF∗∗,
such as in the case when domF∗∗ is the positive coneY+ of (Y,≤), and all solutions
yβ ∈ Y+ correspond to positive measures. In this case,yβ (M) = 0 for someM ⊂ X
impliesyβ is on the boundary ofY+. The condition of strict convexity ofF∗ on domF∗

in Theorem 1 implies that∂F∗(x1) 6= ∂F∗(x2) for all x1 6= x2 in domF∗, even if∂F∗(xi)
are on the boundary of domF∗∗.

Corollary 1 (Support). Under the assumptions of Theorem 1, the support of element
x∈ X is a subset of the support of optimal measures yβ for all λ ∈ (inf F,F(δx)).

Proof. During the proof of Theorem 1, we established under its assumptions, that if
λ ∈ (inf F,F(δx)), then conditionyβ (M) = 0 impliesPMx= 0∈ M. Dually, if PMx 6= 0
for someM ⊂ X, thenyβ (M) 6= 0 for all yβ ∈ {yβ}x. ⊓⊔

Example 2 (Relative Information).Let us defineF : Y →R∪{∞} as

F(y) :=











〈

ln y
y0
,y
〉

−〈1,y− y0〉 if y> 0 andy0 > 0

〈1,y0〉 if y= 0 andy0 > 0
∞ otherwise

(13)

This functional is closed, strictly convex and weakly differentiable on the interior of
domF :

∇F(y) = ln
y
y0

⇐⇒ ex y0 = ∇F∗(x)

One can defineF∗ : X → R∪{∞} as

F∗(x) := 〈1,ex y0〉
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which is also closed, strictly convex and weakly differentiable for allx ∈ X, where it
is finite (i.e. on domF∗). Solutions to problem (3) withF defined above belong to the
exponential family (1), and they correspond to exponentialmeasures that are mutually
absolutely continuous.

Note that generally domF∗ ⊂X. For example, ifX is the space of sequencesx :N→
R, then there are unbounded sequences inX. However, some unbounded sequences are
F-bounded, if there existsβ−1 > 0 such thatF∗(βx)< ∞ (e.g. see Example 1). Observe
that this property depends on the choice of elementy0 = ∇F∗(0) minimisingF .

The relative information functional (13) is a generalisation of the classical Kullback-
Leibler information distanceIKL(p,q) := Ep{ln p− lnq} on P(Ω) [14]. Indeed, for
positive measures with equal norm‖·‖1= 〈1, ·〉, we have〈1,y−y0〉= 0. Functional (13),
however, is non-negative for all elementsy and y0 (i.e. not necessarily with equal
norms), and the gradient ofF has a convenient form. IfX andY are commutative alge-
bras, such as algebras of real functions onΩ , then the pairing〈·, ·〉 is defined by the sum
or the integral (2), and (13) reduces to the classical measures of relative information.
For non-commutative algebras, such as the algebra of compact Hermitian operators on
a separable Hilbert space and the trace pairing (2), functional (13) is a generalisation of
some quantum information distances, which depend on the wayyy−1

0 is defined (e.g. as
exp{lny− lny0} or y1/2y−1

0 y1/2).

Example 3 (Counter-example).This example is based on a counter-example, proposed
by one of the reviewers of an earlier version of the paper. Letw∈ X be a fixed ‘weight’
vector, and letF : Y →R∪{∞} be defined as follows

F(y) := 〈w, |y|〉2−〈w, |y|〉

where|y|= sup{−y,y}. Its subdifferential is

∂F(y) =







(2〈w,y〉−1)w if y> 0
[−w,w] if y= 0
(1−2〈w,y〉)w if y< 0

It is clear from the above that infF = F(0), because 0∈ ∂F∗(x). For anyλ > inf F ,
there is a unique solutionyβ ∈ ∂F∗(βx) to problem (3) such thatβx /∈ [−w,w]. How-
ever, if β1PMx ∈ [−PMw,PMw], then all solutionsyβ1

∈ [0] (andyβ1
(M) = 0) for the

correspondingλ > inf F . If β2PMx /∈ [−PMw,PMw], thenyβ2
/∈ [0] (andyβ2

(M) 6= 0).
Therefore, solutionsyβ do not correspond to a family of mutually absolutely continu-
ous measures. It is quite clear, however, that functionalF is defined above in such a way
that its dualF∗ is not strictly convex, and therefore it does not satisfy theconditions of
Theorem 1. As mentioned in Remark 4, such functionals are notvery good for mea-
suring information in optimisation problems, because their values cannot distinguish
between some quantitiesβx of utility.

5 Optimal probability measures

Let us now consider the case, when the optimisation problem (3) is restricted to statisti-
cal manifoldP ⊂Y. In this case, solutionspβ = yβ/‖yβ‖1 are optimal probability mea-
sures maximising expected valueEp{x} := 〈x, p〉 subject toF(p)≤ λ and‖y‖1 = 1. In
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this context, we interpretF(p)≤ λ as an information constraint. Theorem 1 and Corol-
lary 1 establish general properties of optimal measures in abroad class of functionals
F . However, a little bit more can be said about optimal probability measures.

As was mentioned earlier, measures such thaty(M) = 0 for someM ⊂ X belong to
the same subspaceM⊥ ⊂ Y. Therefore, all mutually absolutely continuous measures,
such as the family{y◦β} of optimal solutions in Theorem 1, belong to the same subspace

in M⊥ ⊂Y. Recall that statistical manifoldP is a compact convex set that is the base
of projective positive coneY+. Thus, all mutually absolutely continuous optimal proba-
bility measuresp◦β corresponding toy◦β ∈ {y◦β}x belong to the interior of the base of the

projective subconeM⊥
+ , or in other words to the interior of a statistical sub-manifold.

In the classical case, this sub-manifold is a simplexP(Ω \E), and it is a facet of the
simplexP(Ω).

The restriction ofy ∈ Y+ to the statistical manifoldP factorises the dual space
X ⊆Y♯. Observe thatP is a subset of the affine setN:

N := {y∈Y : 〈1,y〉= 1}= {1}⊥+q, q∈ P

where subspace{1}⊥ is the annihilator of linear functional 1∈ X. This unit functional
is the extension of the norm‖·‖1, which is additive on the coneY+ of positive elements,
from Y+ to the whole spaceY: 〈1,y〉 = ‖y‖1 if y≥ 0. Thus, every probability measure
p∈ P is equivalently represented by elementsy∈ {1}⊥ asp= y+q, q∈ P.

The space of random variables (observables) is the dual of subspace{1}⊥, and it
is the factor spaceX/R1, generated by the subspaceR1 := {β1 : β ∈ R, 1 ∈ X} of
constant vectors. Random variables are shifts[x] = R1+ x, and they are equivalence
classes:x is equivalent tox′ if and only if x−x′ ∈R1 or equivalently〈x−x′, p−q〉= 0
for any p, q∈ P. Thus, different random variables[x] and[w] correspond to elements
x,w∈ X such that〈x−w, p−q〉 6= 0 orx−w /∈ R1.

In Corollary 1, it was established that for strictly convexF∗, the support ofx∈ X is
a subset of the support of optimal measuresyβ for all λ ∈ (inf F,F(δx)). Observe now
that zero in the space of random variablesX/R1 is subspaceR1 of constant vectors.
Therefore, ifPMx /∈R1, thenpβ (M)> 0. Conversely,pβ (M) = 0 implies thatPMx∈R1.
In the language of classical probability this result can be stated as follows: ifx(ω1) 6=
x(ω2) for someω1, ω2 ∈ E ⊂ Ω , thenpβ (E) > 0 for all optimal probability measures
with λ ∈ (inf F,F(δx)). Conversely,pβ (E) = 0 implies thatx(ω) = const for allω ∈ E.

6 Optimal transition kernels

In this section, we consider a composite systemΩ = A×B and the problem of opti-
misation of transitions between the elements ofA andB. For simplicity, our exposition
will be in the classical setting of commutative algebraX. This is because joint and
conditional probability measures are well-defined and understood in this setting. In the
non-classical case, the analogue of a conditional probability operator can also be de-
fined, and the results of this section can then be transferredto this setting. However,
this leads to unnecessary complications, which we shall avoid.

Optimisation problems for composite systems appear in theories of optimal deci-
sions and control, where optimality is defined relative to a utility function x : A×B→R,
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and the main objective is optimisation of transitions between the elements of setsA and
B. In some cases, optimal transitions are deterministic corresponding to some functions
a= f (b) or b∈ f−1(a). Non-deterministic transitions are represented by Markovtran-
sition kernels.

Let P(A) andP(B) be classical statistical manifolds associated with measurable
sets(A,A ) and(B,B) respectively. Recall that atransition kernelτ : B→ P(A) (e.g.
[8]) is a conditional probability measureτ(b) = p(Ai | b) that is measurable with respect
to B(B) for eachAi ∈ A (A). Transition kernel defines linear operatorT : P(B) →
P(A) as follows:

T p(B j) :=
∫

B j

p(Ai | b)dp(b) = p(Ai)

Elementsp ∈ P(A×B) are joint probability measuresp(Ai ∩B j) = p(Ai | B j) p(B j),
and forp(B j)> 0, the conditional probability is defined by the Bayes formula:

p(Ai | B j) =
p(Ai ∩B j)

p(B j)
,

A random variablea is statistically independent ofb if and only if p(Ai | b) = p(Ai)
for eachb∈ B, Ai ∈ A (A). In this case,p(Ai ∩B j) = p(Ai)p(B j). On the other hand,
deterministic dependencya= f (b) corresponds to transition kernel

p(Ai | b) = δ f (b)(Ai) =

{

1 if f (b) ∈ Ai

0 otherwise

In this case,p(Ai ∩B j) = δ f (b)(Ai) p(B j) = 0 for all f (b) /∈Ai . If a= f (b) is an injective
function, thenp(Ai) = p(B j) for eachAi = f (B j), andp(B j | a) = δ f−1(a)(B j). Thus,
we can classifyp∈ P(A×B) into deterministic or non-deterministic.

Definition 4 (Deterministic composite state).A joint probability measure p∈P(A×
B) is deterministic, if and only if it defines a deterministic transition kernelτ(b) =
δ f (b)(Ai) for a measurable function f: B → A or f−1 : A → B. Otherwise, p isnon-
deterministic.

Example 4 (Exponential kernels).Let Ω = A×B, whereA= (A,da) andB= (B,db)
are equivalent Lebesgue spaces. LetX = X(A×B) be a commutative algebra, andY
be in duality withX via 〈·, ·〉, defined by the integral (2). LetF : Y → R∪ {∞} be
the relative information functional (13), such that for each y ∈ Y+, F is minimised at
y0 = y(A)y(B), wherey(A) = 〈1,y〉|B, y(B) = 〈1,y〉|A are the corresponding marginal
measures. Then the restriction ofF to P(Ω) is the Shannon mutual information [21]:

FS(p) :=
∫

A×B
ln

[

dp(a,b)
dp(a)dp(b)

]

dp(a,b) =
∫

B
dp(b)

∫

A
ln

[

dp(a | b)
dp(a)

]

dp(a | b) (14)

Solutionspβ ∈ P(A×B) to problem (3) with constraints on Shannon information be-
long to the exponential family:

dpβ (a,b) = eβ [x(a,b)+Φ(β−1)]dp(a)dp(b) ,
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whereΦ(β−1) is determined from the normalisation condition as

Φ(β−1) =−β−1 lnF∗(βx) =−β−1 ln
∫

A×B
eβ x(a,b)dp(a)dp(b)

The solutions define exponential transition kernels:

dpβ (a | b) = eβ [x(a,b)+Φ(β−1,b)]dp(a) , dpβ (b | a) = eβ [x(a,b)+Φ(β−1,a)]dp(b)

whereΦ(β−1,b) andΦ(β−1,a) now depend onb anda, as they are computed using
partial integrals inA andB respectively. Observe also that becausedp(a) =

∫

Bdp(a,b)
anddp(b) =

∫

Adp(a,b), the following conditions hold

∫

B
eβ [x(a,b)+Φ(β−1,b)]dp(b) = 1,

∫

A
eβ [x(a,b)+Φ(β−1,a)]dp(a) = 1

If A= (A,+) andB= (B,+) are groups, and the utility function is translation invariant
x(a+ c,b+ c) = x(a,b), then it follows from the conditions above that

eβ Φ(β−1,b)dp(b) =

(

∫

B
eβ x(a,b)db

)−1

, eβ Φ(β−1,a)dp(a) =

(

∫

A
eβ x(a,b)da

)−1

and the exponential transition kernels take the following simple form

dpβ (a | b) =
eβ x(a,b)da

∫

Aeβ x(a,b)da
, dpβ (b | a) =

eβ x(a,b)db
∫

Beβ x(a,b)db

The normalising integrals above are constant as they do not depend ona or b. In this im-
portant case, one can introduce thefree energyfunctionΦ0(β−1) :=−β−1 ln

∫

Beβ x(a,b)db
or thefree cumulant generating functionΨ0(β ) = −β Φ0(β−1). If one of the marginal
distributions, sayp(B), is fixed, then Shannon information has the following expression:

FS(pβ ) =

∫

A
dp(a)

∫

B
ln

dp(b | a)
dp(b)

dp(b | a)

=
∫

A
dp(a)

∫

B

{

ln(eβ x(a,b))− ln
∫

B
eβ x(a,b)db− ln[dp(b)/db]

}

dp(b | a)

= β Epβ {x}−Ψ0(β )+H{p(B)} , (15)

Observe also that the expected utility is the derivative ofΨ0(β ) = ln
∫

Beβ x(a,b)db:

Epβ {x}=
∫

A
dp(a)

∫

B

x(a,b)eβ x(a,b)

∫

Beβ x(a,b)db
db=

dΨ0(β )
dβ

∫

A
dp(a) =Ψ ′

0(β ) (16)

Here,H{p(B)} = −
∫

B ln[dp(b)/db]dp(b) is the differential entropy ofp(B) (assum-
ing that the densitydp(b)/dbexists). Also, because Shannon information can be repre-
sented as the differenceFS(p) =H{p(B)}−H{p(B | a)}, the quantityΨ0(β )−β Ψ ′

0(β )
is clearly the conditional differential entropyH{p(B | a)}.
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Remark 6 (Information of deterministic kernels).Transition kernels define information
in a more traditional sense as communication between the elements of setsA andB. The
maximum amount of information in this sense can be communicated by an injective
functiona= f (b), because the preimagef−1(a) uniquely determinesb. If a function is
not injective, thenb∈ f−1(a) is determined up to the probability 1/| f−1(a)|. Note that
∑a∈ f (B) | f

−1(a)| = |B|, and the expected value of| f−1(a)| with respect to a uniform
distribution ofa∈ f (B) is |B|/| f (B)|. Therefore, one can putp(a) = p(b)| f (B)|/|B|.
This reasoning demonstrates that for deterministicpf ∈ P(A×B), information con-
straintsF(pf ) ≤ λ < supF, understood in the sense of communication, impose con-
straints| f (B)|< |B| on the cardinality of the image of the function. IfB is infinite, then
there can be an infinite number of constraintsλ < supF such that the imagef (B) is
finite. Moreover, ifB is countable, thenf (B) is finite for all λ < supF. The infimum
of information corresponds to constant functions (including the empty function). These
facts can be well illustrated using Shannon information:

FS(pf ) =

∫

B
dp(b)

∫

A
ln

δ ( f (b)−b)
dp(a)

δ ( f (b)−b)

= −

∫

B
dp(b) ln

(

dp( f (b))
)

=−

∫

B
dp(b) ln

(

|B|
| f (B)|

dp(b)

)

= ln | f (B)|− ln |B|+H{p(B)}

wherepf = δ ( f (b)−b)dp(b), andH{p(B)} is the entropy ofp(B). As is well-known,
H{p(B)}≤ ln |B|, and thereforeFS(pf )≤ ln | f (B)|. Moreover, becauseH{p(A | b)}=0
for p(A | b)= δ f (b)(A), we haveFS(pf )=H{p(A)}≤H{p(B)}. The maximum amount
of informationFS(pf ) = H{p(B)} is communicated if and only iff : B→A is injective
on the support ofp(B).

The application of Theorem 1 to the caseΩ = A×B yields the following result.

Corollary 2 (Optimal transition kernels). Let{pβ}x ⊂P(A×B) be a family of joint
probability measures that are optimal solutions to problem(3) for all valuesλ of a
closed functional F: Y → R∪{∞}. If F ∗, the dual of F, is strictly convex ondomF∗

and F is minimised at p0 ∈ ∂F∗(0) ⊂ Int(P(A×B)), then pβ is deterministic if and
only if λ ≥ F(δx) or 〈x, pβ 〉= 〈x,δx〉.

Proof. Assume there existspβ ∈ {pβ}x for λ < F(δx) (and hence〈x, pβ 〉< 〈x,δx〉) and
such that the corresponding transition kernel is deterministic: pβ (Ai | B j) = 1 if Ai =
f (B j ) andpβ (A\Ai | B j) = 0. In this case,pβ (A\Ai,B j) = 0, and therefore it is not on
the interior ofP(A×B), pβ /∈ ∂F∗(0) andF(pβ ) = λ ∈ (inf F,F(δx)). But thenpβ (A\
Ai ,B j) =0 for all λ ∈ [inf F,supF ] by Theorem 1. In particular, there existsp0 ∈ ∂F∗(0)
such thatp0 = 0 if f (b) /∈ Ai , and thereforep0 is not on the interior ofP(A×B). Thus,
by contradiction we have provenλ ≥ F(δx) (and hence〈x, pβ 〉= 〈x,δx〉). Conversely, if
λ ≥F(δx), then by there exist solutionδx ∈extP(A×B) (Proposition 1) corresponding
to some functionf (b) = a. ⊓⊔

Remark 7.The assumptions of Corollary 2 are quite general. Strict convexity of F∗ was
justified in Remark 4, and conditionp0 ∈ Int(P(A×B)) is very natural. Indeed, each
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facet of the simplexP(A×B) is also a simplex of some subset ofA×B. Therefore,
the elementp0 is always in the interior of some simplexP(Ai ×B j), unlessp0 = δ ∈
extP(A×B). In all practical cases, information is minimised atp0 6= δ . In particular,
one often choosesp0 = p(Ai)p(B j), so thata andb are independent, and the support of
p(Ai) andp(B j) includes more than one element.

Corollary 3 (Strict inequalities). Let {pβ}x ⊂ P(A×B) and F : Y → R∪ {∞} be
defined as in Corollary 2. Then, for any F-bounded element x∈ X

〈x, pf 〉< 〈x, pβ 〉

for all deterministic pf ∈ P(A×B) such that F(pf ) = F(pβ ) ∈ (inf F,F(δx)). Simi-
larly,

F(pf )> F(pβ )

for all deterministic pf ∈ P(A×B) such that〈x, pf 〉= 〈x, pβ 〉 ∈ (υ0,〈x,δx〉).

Proof. For all x∈ X andy∈Y, the Young-Fenchel inequality holds:

〈x,y〉 ≤ F∗(x)+F(y)

Moreover, the above holds with equality if and only ify∈ ∂F∗(x) (e.g. see [25]). Ifx∈X
is F-bounded andF(y) = λ ∈ (inf F,F(δx)), then∂F∗(βx) is non-empty by Proposi-
tion 3. Assumepβ ∈ ∂F∗(βx). Then〈x, pβ 〉 = β−1[F∗(βx) + F(pβ )]. On the other
hand, if pf is deterministic, thenpf /∈ ∂F∗(βx), unlessF(pf ) ≥ F(δx) (Corollary 2).
Thus, for anypf such thatF(pf ) = F(pβ ), we have〈x, pf 〉 < β−1[F∗(βx)+F(pβ )],
which proves the first inequality.

By definition of the Legendre-Fenchel transform,F∗∗(y) ≥ 〈x,y〉−F∗(x), and the
equality holds if and only ify∈ ∂F∗(x). Thus, ifpf is deterministic, thenpf /∈ ∂F∗(βx),
unless〈x, pf 〉= 〈x,δx〉 (Corollary 2). Moreover,β > 0 for anyλ > inf F corresponding
to 〈x, pβ 〉 > υ0. In this case,F∗∗(pf ) > β 〈x, pf 〉 − F∗(βx) = β 〈x, pβ 〉 − F∗(βx) =
F∗∗(pβ ). Using the facts thatF(pf ) ≥ F∗∗(pf ) and F∗∗(pβ ) = F(pβ ) for solutions
pβ ∈ ∂F∗(βx), we obtain the second inequality. ⊓⊔

Strict inequalities of Corollary 3 present an interesting opportunity for constructing
an example such that〈x, pf 〉 = −∞ or F(pf ) = ∞ for any deterministic transition ker-
nel satisfying a given information or utility constraint. The inequalities〈x, pβ 〉 > −∞
or F(pβ ) < ∞ would imply the existence of a non-deterministic transition kernel sat-
isfying the same information or utility constraints and having a finite expected utility
and information. Such an example can be relevant in the context of the computational
complexity theory. Let us consider one prototypical example.

Example 5 (Optimal communication).Let a ∈ A andb ∈ B be real variables, and let
us consider the problem of information transmission between A andB that is optimal
with respect to a measurable utility functionx : A×B→R. If b∈ (R,B, p) is a random
variable with known distribution, then the expected utility Ep{x} is:

Ep{x}=
∫

A

∫

B
x(a,b)dp(a,b) =

∫

B
dp(b)

∫

A
x(a,b)dp(a | b) =

∫

B
Ep{x | b}dp(b)
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HereEp{x | b} denotes conditional expected utility, and it is maximised by choosing
the optimal conditional probabilitydp(a | b). The maximum of information is com-
municated by an injective functiona= f (b), represented by a deterministic transition
kernel. The optimal function is defined by the utility function. On the other hand, if no
information aboutb ∈ B can be communicated, thendp(a | b) = dp(a), and one can
only consider constant functions. Note, however, that one can still choose the optimal
constant function ¯a= f (b). Indeed, ifx(a,b) is differentiable and concave ina, thenā is
a solution to the equation∇a

∫

Bx(a,b)dp(b) = 0. In particular, ifx(a,b) =− 1
2(a−b)2,

then∇a
∫

Bx(a,b)dp(b) =
∫

B(b− a)dp(b), andā =
∫

Bbdp(b) = Ep{b}, which is the
well-known classical method minimising mean-squared deviation. Therefore

Epf {x}=−
1
2

∫

B
(a−b)2dp(b)≤−

1
2

Var{b}

The value on the right depends on the distributionp(B), and there are many examples
of distributions with unbounded variance, such asdp(b) = [π(b2+ 1)]−1db (Cauchy
distribution). Indeed, the integral

∫

B(a− b)2(b2 + 1)−1db does not converge onB =
(−∞,∞). We note thatEp{b} is also undefined in this case. However, ifp(B) is uni-
modal and symmetric, then one can choose ¯a to be the mode ofp(B).

Let us assume now that some limited information about the value ofb can be com-
municated so thatdp(a | b) 6= dp(a) (and hencedp(b | a) 6= dp(b)). For example, this
can be the information thatb belongs to some subset ofB, such asb> 0 or b≤ 0. In
each case, one can choose a different optimal value ¯a1 andā2. A more ‘precise’ infor-
mation aboutb would correspond to a larger number of subsetsBi ⊂ B, and therefore
one could choose a larger number of optimal values ¯ai . The expected utility in this case
is

Epf {x}=−
1
2

n

∑
i=1

∫

Bi

(āi −b)2dp(b)

The cardinality| f (B)| of the image of the optimal function ¯ai = f (Bi) is bounded
by the amount of information that can be communicated. Thus,the minimum of infor-
mation corresponded to the optimal constant functionEp{b} = f (b). The maximum
of information would imply that the value ofb can be communicated exactly, and one
could select the optimal injective functiona = b. If, however, all information cannot
be communicated, then the function cannot be injective. In particular, for an infiniteB,
there can be an infinite number of constraints such that| f (B)| is finite (see Remark 6).
In this situation, one can choose only a finite number of optimal values ¯ai , such as
choosing two values ¯a1 andā2 if the information partitionsB into two subsets.

Observe now that the integral
∫

(a−b)2(b2+1)db does not converge on the inter-
valsB1 = (−∞,0] or B2 = [0,∞). In fact, for any finite partition of the real line, there are
some unbounded intervals on which the integral does not converge. Thus, in our exam-
ple,b is distributed in such a way, that the expected value of utility x(a,b) =− 1

2(a−b)2

cannot be larger than−∞ for any deterministicpf satisfying constraintsλ < supF such
that | f (B)| is finite. To achieve a finite expected utility, a function must have infinite
image f (B). But this means that the function will transmit an infinite amount of in-
formation. Let us now demonstrate that there exist non-deterministic transition kernels
for this problem achieving finite expected utility and communicating finite amount of
information.
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Indeed, letF be the Shannon information as in Example 4. In this case, the optimal
transition kernels belong to the exponential family. Moreover, because the utility func-
tion x(a,b) = − 1

2(a−b)2 is translation invariantx(a+ c,b+ c) = x(a,b), we can use

simplified expressions from Example 4. In particular,Ψ0(β ) = ln
√

2πβ−1, and optimal
transition kerneldp(a | b) is Gaussian

dpβ (a | b) =
1

√

2πβ−1
exp

{

−
1
2

β (a−b)2
}

da

Conditional expectationEpβ {x | b} is constant for allb∈ B:

Epβ {x | b}=−
1
2

1
√

2πβ−1

∫ ∞

−∞
(a−b)2e−

1
2β (a−b)2 da=−

1
2

√

2πβ−3
√

2πβ−1
=−

1
2

β−1

and therefore

Epβ {x}=
∫

B
Epβ {x | b}dp(b) =−

1
2

β−1

The expression above can also be easily obtained from equation (16) as the derivative
of Ψ0(β ) = ln

√

2πβ−1. The optimal valueβ−1 ≥ 0 depends on the amountλ of infor-
mation, representing divergence ofdp(a | b) from dp(a), and it can be found using the
inverse of functionλ = FS(pβ ). Thus, using equation (15), we obtain

β = 2πe1−2[H{p(B)}−λ ]

The value ofβ depends on the differenceH{p(B)}− λ , which equals to the condi-
tional differential entropyH{p(B | a)}, becauseλ =FS(pβ ) =H{p(B)}−H{p(B | a)}.
Therefore, ifH{p(B | a)} is finite, thenβ > 0 (β−1 < ∞), andEpβ {x} is finite for all
λ > 0. In fact, one can easily check that the following integral converges

∫ ∞

−∞
(a−b)2 e−β 1

2 (a−b)2

b2+1
db< ∞ ∀β > 0

Thus, in our example, the expected utility of any deterministic pf is 〈x, pf 〉 =−∞, un-
less the imagef (B) and the amount of informationpf communicates is infinite. A non-
deterministicpβ communicating finite amount of information was shown to havefinite
expected utility〈x, pβ 〉. We point out also that the utility functionx(a,b) =− 1

2(a−b)2

is unbounded, but it isF-bounded becauseF∗(βx) = β 〈x, pβ 〉−λ = − 1
2 −λ < ∞ for

all λ ∈ (inf F,F(δx)).

Remark 8.As mentioned in Remark 6, ifB is countable, then any constraintλ < supF
implies that the imagef (B) is finite. Thus, one can use the same ideas of Example 5
to construct an example such that the expected utility〈x, pf 〉 = −∞ for all λ < supF
and any deterministicpf with F(pf ) = λ . For instance, ifA= B=N, then the example
can be constructed by using utilityx(a,b) =− 1

2(a−b)2 and takingp(b) = [b3ζ (3)]−1,
whereζ (k) = ∑b∈N b−k is the Riemann zeta function. The expected utility of a de-
terministic pf is negatively infinite for allλ < supF; the expected utility of a non-
deterministicpβ is finite for all λ > 0.
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7 Discussion

We studied optimal Radon measures using a generalisation ofthe classical variational
problem of information theory. The main result is the existence of families of mutually
absolutely continuous measures that are optimal solutionsto problems with constraints
on an abstract information resource with a strictly convex dual. Thus, we showed that
this property of optimal measures, which was known for a one-parameter exponential
family, is related to a geometric rather than algebraic property of information. Moreover,
we argued that strict convexity of the dual functional is a natural property of information
in the context of optimisation. Our method does not depend oncommutativity of the
algebra of observables, and for this reason the result holdsboth for classical and non-
classical (i.e. non-commutative or quantum) measures.

In many ways, this work can be seen as a generalisation of the classical results on
variational problems in information theory [21,22] and statistical physics [10]. Indeed,
standard formulae of these theories relating Gibbs measures, free energy, entropy and
channel capacity can be recovered simply by defining information constraints using the
Kullback-Leibler divergence. However, the general approach allowed us to show that
some properties of the optimal families of measures, such asmutual absolute continuity
and support sets, do not depend on how the information constraints are defined.

Our results about classification of optimal transition kernels can have applications
not only to optimisation problems, but also to some theoretical questions in the the-
ory of computational complexity, where much of the effort isdevoted to the ques-
tion of whether non-deterministic procedures give any advantage over deterministic.
It was shown here that in a broad class of optimisation problems with information con-
straints optimal deterministic kernels do not exist. As an illustration, an example was
constructed where any deterministic kernel can only have negatively infinite expected
utility (or equivalently unbounded expected error or risk), unless it communicates an
infinite amount of information. On the other hand, it was shown that non-deterministic
kernels can both give finite expected utility and communicate finite information in the
same problem.

The results about sub-optimality of deterministic kernelsdo not contradict the estab-
lished understanding in the classical theory of statistical decisions that asymptotically
randomised policies cannot be better than deterministic (e.g. see [23] or more recently
[13]). Indeed, a randomisation of the function’s output canonly decrease (loose) the
amount of information it communicates. However, our results are about determinis-
tic and non-deterministic kernels that communicate the same amount of information.
Moreover, asymptotic results are concerned with obtainingall, possibly infinite infor-
mation, in which case there are deterministic optimal kernels. A non-trivial claim that
we can make here is that under information constraints deterministic kernels are not just
suboptimal, but may fail to provide any meaningful solutionbecause of an unbounded
below expected utility, as was shown in Example 5. This seemsto confirm common
intuition in the field of applied optimisation, where numerous problems exist on which
non-deterministic algorithms outperform all known deterministic methods (e.g. [12]).
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