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Multi-agent models have been used in many contexts to study generic collective behavior. Sim-
ilarly, complex networks have become very popular because of the diversity of growth rules giving
rise to scale-free behavior. Here we study adaptive networks where the agents trade “wealth” when
they are linked together while links can appear and disappear according to the wealth of the cor-
responding agents; thus the agents influence the network dynamics and vice-versa. Our framework
generalizes a multi-agent model of Bouchand and Mézard, and leads to a steady state with fluctu-
ating connectivities. The system spontaneously self-organizes into a critical state where the wealth
distribution has a fat tail and the network is scale-free; in addition, network heterogeneities lead to
enhanced wealth condensation.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.65.Gh

I. INTRODUCTION

Multi-agent systems often involve only simple ingre-
dients and rules, yet can lead to “complex” dynamical
behavior. In general the agents of such systems inter-
act locally (e.g., only within nearest neighbors on a lat-
tice) or may interact with all other agents (corresponding
to a mean-field system). The network of interactions is
then given a priori and is time independent, only the in-
ternal states of the agents change with time. However
there are many situations where the network structure
will be influenced by the agents’ actions: agents may
move around and redefine their neighborhoods, or they
may choose their interactions according to their internal
states. For instance, in transportation networks, popula-
tion increases will lead to the construction of new links,
and inversely the introduction of new connections will af-
fect the dynamics of the populations. Analogous exam-
ples abound both in artificial networks (communication,
distribution, etc.) and in natural networks (biological,
ecological, social,...). Having both dynamic agents and
dynamic connections potentially allows for new phenom-
ena, be-it at the level of the agents or at the level of their
network of interactions.

Networks whose links change with time are often re-
ferred to as adaptive networks. There is a rich literature
on such networks, reviewed in particular in refs. [1]. But
as noted by these authors, in most such investigations,
the dynamics of the network occur on a very different
time scale from that of the variables (or “fields”) affect-
ing these changes. Only for consensus-forming networks
(see for instance [2, 3, 4]) and variations thereof [5] do

the links change at a rate comparable to the fields (agent
opinions in this case); but because opinions are discrete
or because of the nature of these models, one does not
reach a critical state generically. For our work we seek
systems which spontaneously lead to criticality (without
any parameter fine-tuning) and for which the network
and the fields driving the network have comparable time
scales. This challenge is particularly relevant today be-
cause the last decade has revealed that many natural
and artificial networks have strong topological hetero-
geneities and are often scale free. Surprisingly, the mod-
eling of such networks is almost always based on growth
rules: attachment of a new link is preferentially done to
hubs [6], or it depends on fixed hidden variables on the
nodes [7]. Such frameworks are out of equilibrium and
have no steady state; in addition, they ignore the dynam-
ics of the quantities implicitly associated with the nodes
in most real world examples. In the work described here,
the internal state of each agent can influence the link dy-
namics, and at the same time the set of existing links
affects the dynamics of the agents.

We present our model in the language of macro-
economics where agents have wealth, perform transac-
tions amongst themselves, and can see their wealth in-
crease multiplicatively as in financial holdings. This
choice is motivated by the overwhelming evidence
that wealth dynamics in human societies spontaneously
evolves to criticality. In particular, individual wealth
follows a “Pareto” law [8] with power law tails for the
wealthy; similar fat tails also arise in corporate wealth,
e.g., in the distribution of sizes of firms [9, 10].

Our framework extends a model proposed by
Bouchaud and Mézard [11] to the case where the net-
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work of interactions is heterogenous and adaptive. We
find that in the absence of regulatory mechanisms, the
system naturally goes to a “collapsed” phase where the
great majority of agents becomes marginalized (poverty
stricken) and isolated. Including a minimum support
level to maintain agent connectivity, the system is instead
generically driven to a self-organised critical steady state;
in this steady state, the distribution of wealth of agents
has a fat tail and the adaptive network is scale free.

The paper is organized as follows. The model is defined
in Sect. II; we also present different observables of inter-
est and sketch our simulational methods. In Sect. III we
exhibit the power laws arising in the quenched systems:
that of the node degree distribution when the wealth is
frozen and that of the wealth distribution when the net-
work links are frozen, considering in particular the effects
of network heterogeneity. In Sect. IV the settings of the
respective time scales for agent vs. network dynamics
are presented. Then we examine the full model where
the network is adaptive (the link dynamics is affected by
the agents and vice-versa) in Sect. V. We conclude in
Sect. VI.

II. THE MODEL

To specify a multi-agent system, one begins with the
possible internal states of the agents. Since our model
builds on that of Bouchaud and Mézard [11], each of our
agents will have its internal state specified by a real pos-
itive variable, hereafter called its “wealth”. Agents see
their internal state change with time: their wealth will
fluctuate because of returns on investments on the one
hand and because of exchange of goods against currency
on the other; such exchanges or “trades” lead to outflux
(from purchases) and influx (from sales). Trades are only
performed between linked agents; these links are either
set a priori (“quenched” or frozen network) or are dy-
namic as in adaptive networks. We now explain in detail
the dynamics of these two parts of our model. (Similar
ideas have been formulated independently in ref.[12], but,
to our knowledge, have not been further developed.)

A. Agent wealth dynamics

Our system has a fixed number N of agents, whose
state at time t is given by {Wi(t)}i=1,...,N . The change
in wealth of an agent takes into account trades and re-
turns on investments. For computational simplicity, we
consider a discrete time stochastic equation [11]:

Wi(t + 1) =
(

Wi(t) +
∑

j (Jij(t)Wj(t) − Jji(t)Wi(t))
)

eηi(t) (1)

where the parameters Jji(t) describe the fraction of agent
i’s wealth which flows to agent j as a result of trading at
time t. The change in an agent’s wealth is also affected

by the return on investments in stock-markets, currency
exchange rates, housing or commodity prices etc. These
investments lead to gains or losses, providing multiplica-
tive changes; if for example a stock price changes by two
percent, then the value of a portfolio allocated in that
stock will change by two percent. We model the fluctua-
tions by the term ηi(t) which is taken to be a stationary
Gaussian variable:

〈ηi(t)〉 = 0 (2)

〈ηi(t)ηj(t
′)〉c = σ2

0 δij δtt′ , (3)

Without the random factors eη in Eq. (1), the total
wealth of the system would be conserved; their presence
implies that the total wealth typically grows exponen-
tially with time, as discussed in ref. [11].

Note that wealth is a relative concept, i.e., independent
of the unit of currency used to measure the Wi; hence,
the wealth dynamics must be invariant under the scale
transformation

Wi(t) → λWi(t) (4)

It is evident that this requirement is satisfied by Eqs. (1).
Let us denote by Aij the adjacency matrix of the graph

representing the linking of agents and let us assume, for
simplicity, that this graph is undirected, i.e. Aij = Aji.
In ref. [11] Bouchaud and Mézard have studied in de-
tail the large time behavior in the class of models where
Jij ∝ Aij , with a constant proportionality factor J0,
where the graph is time independent. They limited their
study to fully connected graphs (the model is then an-
alytically solvable) and to sparse random (Erdös-Rényi)
graphs. They have shown that in both cases the system
tends to a steady state where wealth distribution has a
power law tail at large (relative) wealth values. Furthe-
more, for sparse random graphs and small enough J0 the
tail becomes sufficiently fat to lead to the “wealth con-
densation” phenomenon: a finite number of agents hold
a finite fraction of the total wealth, even in the large N
limit.

In this paper we propose a two-fold generalization of
the study summarized above. First, we will consider
highly inhomogeneous graphs. This is motivated by the
empirical observation that graphs encountered in nature
are very often inhomogeneous. For example, scale-free fat
tails of the degre distribution are ubiquitous. It is easy
to see that for highly inhomogeneous graphs assuming a
simple proportionality relation Jij = J0Aij is untenable.
Indeed, the loss term in (1) would then dominate over
the income term when Wi is large and the rich agents
would therefore prefer to have as few trading partners as
possible, contrary to common sense.

We will assume that all agents trade with the same
“activity” J0, which is constant in time. This means that
the total outgoing flow of wealth from the agent i equals
J0Wi(t); in effect, each agent allocates a fixed fraction

J0 of its wealth to trading, a reasonable hypothesis when
considering life-styles in developped countries.
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For each agent i, we shall assume that its outflow of
trades (purchases) is equally distributed over all agents
j it trades with. Thus, the matrix Jij(t) reduces to

Jij =
J0

qj
Aij (5)

where qi =
∑

j Aij is the number of agents trading with
i. We have checked, keeping the topology of the graph
quenched (inhomogeneous by construction), that with
Eq.(5) the average wealth is a monotonically increasing
function of the node degree: rich agents tend to have
many trading partners.

The second generalization we propose concerns the
topology of the graph, which will no longer be assumed
frozen. On the contrary, it will adapt itself to the de-
mands of agents. We now discuss this point in detail.

B. Link dynamics

The “interactions” between agents are their connec-
tions, i.e., the support for their mutual trades. The cor-
responding network depends on the internal state of the
agents themselves, and thus the links between agents are
dynamical: they can be added or removed over time. To
specify these dynamics, we shall model the time evolution
of the adjacency matrix Aij(t), which is now assumed to
be time dependent: Aij(t) = 1 if at time t the agents i
and j can trade with each other and Aij(t) = 0 otherwise.

We have to define the dynamics for the graph evolution
Aij(t) → Aij(t + 1). To model its dependence on wealth
distribution, we propose a preferential trading rule, ac-
cording to which the probability of establishing a new
trade connection between two agents is roughly propor-
tional to the wealth of each agent. To turn this rule into
a probabilistic recipe one has to define a quantity in the
range [0, 1] which can be interpreted as a probability. In-
stead of Wi(t), we will use normalized quantities which
express the wealth of agents in units of the current mean
value of the wealth in the ensemble:

wi(t) =
Wi(t)

W (t)
, W (t) =

1

N

N
∑

i

Wi(t) (6)

Clearly wi(t) is invariant under the scale transformation
Eq. (4). The position, or solvency, of the agent in the
system is better reflected by its normalized wealth than
by its absolute wealth. In these units the mean value of
wealth is by construction always equal to unity, w = 1.
In our wealth preferential trading rule, the probability
of establishing a new trading connection, Aij(t) = 0 →
Aij(t+1)=1, increases with awi(t)wj(t) where a is some
proportionality factor. The only problem is that even if
a is small, this quantity may exceed one for large wi and
wj and thus loose a probabilistic interpretation. To avoid
this pathology we set:

Prob(add link ij) =
awi(t)wj(t)

1 + awi(t)wj(t)
(7)

Of course trade connections between agents do not nec-
essarily exist for ever. We allow in our model for the
possibility of abandoning an existing trade connection,
Aij(t) = 1 → Aij(t + 1) = 0. For simplicity we shall as-
sume that the probability of breaking the trade or equiv-
alently of removing an existing link between i and j is
constant in time and independent of the agents’ wealth:

Prob(remove link ij) = r ≪ 1 (8)

Taken together, Eqs. (7)-(8) along with Eqs. (1) define an
adaptive network, preserving the property of invariance
under Eq. (4) of the original Bouchaud-Mézard model.

The model is now formulated. As will be seen, it dis-
plays a very interesting pattern of adaptation of the net-
work topology to the wealth distribution and vice versa.
Before we discuss these properties, let us first consider
the limiting cases in which only one sector is active while
the other is quenched: (a) the network topology evolves
according to the dynamics described above while the
wealth distribution is quenched; (b) the wealth distribu-
tion evolves according to the dynamics described above
while the network topology is quenched.

III. QUENCHED DYNAMICS

A. Quenched wealth distribution

Assume now that the distribution of wealth is con-
stant during the evolution of the network. The process
of adding and removing links between nodes i and j can
be viewed as a two-state Markov chain. Since the weights
are constant in time wi(t) = wi, the probability of adding
the link ij (cf. Eq. 7) is constant as well. Similarly, the
probability of removing the link ij is constant (cf. Eq. 8).
One can then easily determine the stationary probability
for this Markov chain; one finds that for this stationary
distribution the probability that there is a link between
nodes i and j equals

pij =
Prob(add link ij)

Prob(add link ij) + Prob(remove link ij)

=
βwiwj

1 + β(1 + r)wiwj
, (9)

where β = a/r. Assume that the weights wi are indepen-
dent identically distributed random numbers with some
probability distribution ρ(w)dw such that the mean is 1,
i.e., 〈w〉 =

∫

wρ(w)dw = 1. In this case one can easily see
that the total expected number of links of the network
can be bounded from above:

〈L〉 =
N(N − 1)

2
〈pij〉 ≤ β

N(N − 1)

2
(10)

We used the fact that the denominator of pij is by
construction equal or larger than one and 〈wiwj〉 ≈
〈wi〉〈wj〉 = 1. Additionally if the coefficient β is inversely
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proportional to the number of nodes, i.e., β = Q/N , the
network will be sparse and the expected number of links
will approach the upper bound given in (10) in the limit
N → ∞ because the denominator will tend to one. Thus,
the mean connectivity of the network is expected to be

q =
2〈L〉
N

→ Q (11)

for β = Q/N and N → ∞. For r ≪ 1 the probability (9)
that there is a link between a pair of vertices i and j is for
all practical purposes the same as in the Park-Newman
model [7], so we expect that the two models will behave
similarly for small r, and in fact we have checked that
this is indeed the case.

It is known from the considerations of Park and New-
man [7] that if wi are independent identically distributed
random numbers with a probability distribution having
for large w a scale-free tail ρ(w)dw ∼ w−1−µdw with
µ > 1 then the node degree distribution also exhibits the
scale-free behaviour Prob(q) ∼ q−1−µ (in a range of val-
ues of q) provided the network is sparse. This is what we
observe too.

The original Park-Newman model used the concept of
fitness, closer in spirit to the unnormalized weights Wi

rather than the normalized ones wi (6). The main differ-
ence between the two frameworks is that the average fit-
ness W for the ensemble of N numbers Wi, i = 1, . . . , N
may differ from ensemble to ensemble while for the nor-
malized weights by construction it is always constant
w = 1. In effect, if one substitutes w’s by W ’s and
β → βPN in (9) and neglects r to get the original Park-
Newman model, one obtains a simple relation between
the two definitions of β:

β = βPNW
2

(12)

Note that in the Park-Newman model, βPN is constant;
then the above identification leads to a β that fluctuates
from event to event as a result of the fluctuations of the
average W .

For large N , by virtue of the central limit theorem,
W is, for µ > 2, a Gaussian random number fluctuating
around the mean 〈W 〉 within a range of size ∼ N−1/2.
For 1 < µ < 2, W is a Lévy random number whose prob-
able deviations from the mean are of order ∼ N1/µ−1,
Finally, for µ < 1, W is a Lévy random number of or-
der N1/µ−1, subject to enormous fluctuations. In other
words, as long as µ > 1, the Park-Newman construction
and ours differ for large N by a trivial rescaling (12),
while for µ < 1 the mapping breaks down.

Our network evolution has been defined using “com-
puter” time. Hence, if ǫ denotes the unit of the physical
time, the parameters a and r are both proportional to ǫ.
However, as was shown above, as long as r ≪ 1 the rele-
vant control parameter of the model, as far as the topol-
ogy of the network is concerned, is the ratio β = a/r,
which is insensitive to the value of ǫ. However, the value
of r controls the rate of updates of the algorithm and,

therefore, the autocorrelations during the history of a
computer simulation. We set r = 0.1 in our numerical
work, considering a as the relevant adjustable parameter.

B. Quenched network

1. The continuous time limit

Now assume that the network is fixed during the evo-
lution of weights: Aij(t) = Aij . In this case (cf. ref. [11])
Eq. (1) has a continuous time limit under a proper scal-
ing of the parameters of the model. Let τ = ǫt denote
the physical time and set

J0 = ǫJ (13)

σ0 =
√

ǫσ (14)

In the limit ǫ → 0 one gets from (1) together with (5)
the following stochastic equations (in the Stratonovich
sense):

dWi(τ)

dτ
= (15)

σ dBi(τ)
dτ Wi(τ) + J

∑

ij (AijWj(τ)/qj − AjiWi(τ)/qi)

where Bi(τ) is a N -dimensional Wiener process. Di-
viding both sides by σ2 and rescaling the time variable
τ → σ2τ one sees that at large time the only relevant
parameter is J/σ2.

We simulate the model on a computer using its dis-
crete formulation. However, we try to be close to the
continuous time limit, setting ǫ very small (in our runs
we used ǫ = 0.001). Since with such a choice one expects
that the dynamics depends on J/σ2 only, we can without
any loss of generality set the physical parameter σ = 1.

When the graph is complete, that is for Aij = 1 − δij ,
Eq. (15) can be solved analytically [11]. For J > 0, N →
∞ and τ → ∞ one gets a stationary distribution for the
normalized weights (6). It has a fat tail ∼ w−µ−1 at large
w, with the exponent µ = 1+J/σ2. Notice, that for J = 0
the stationary solution does not exist, and therefore the
limit J → 0 is singular. The authors of ref. [11] have
also shown, using numerical simulations, that for sparse
random Erdös-Rényi graphs, one again gets a fat tail but
with an exponent µ smaller than one if J/σ2 is smaller
than a certain critical value. We have repeated these
simulations in our version of the model for a sample of
network topologies. We observe that the fat tail always
emerges and that the corresponding exponent depends
weakly on network topology (see later). The occurence
of such a fat tail with µ < 1 in the wealth distribution
has consequences that we now discuss in detail.

2. Poverty and wealth condensation

Let us carefully study the consequences of using the
normalized w’s instead of W ’s (our discussion is inspired
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by ref. [13]). For the sake of simplicity, but without
any real loss of generality, assume that the probability
distribution of W is (we omit the index i for simplicity
of writing):

Prob(W )dW = µW−µ−1dW , W ≥ 1 (16)

and zero otherwise. Assume first that µ > 1 so that
the mean 〈W 〉 is well defined. We want to calculate the
probability distribution of the scaled variable defined in
(6):

w =
NW

W + S
(17)

where w = wi, W = Wi and S =
∑

j 6=i Wj is the sum of
remaining terms. For large N one can replace S by its
mean value S = sN , where s = 〈W 〉 = µ/(µ − 1). After
trivial algebra one gets from (16)

Prob(w)dw =

Cw−µ−1
(

1 − w
N

)µ−1
dw , w ∈ [wmin, wmax] (18)

where wmax = N , wmin = s−1 and C = µs−µ.
The above distribution has natural cut-offs, as ex-

pected. In addition to the behavior w−µ−1dw inherited

from (16) it involves a factor
(

1 − w
N

)µ−1
suppressing w’s

of order N . The lower cut-off wmin = s−1 = (µ − 1)/µ
is finite as long as µ > 1. For µ ≤ 1, one has to redo the
analysis.

Let us observe that strictly speaking s is not fixed but
fluctuates. Hovever, when µ > 1 its departures from the
average can be neglected when N is large enough. When
µ < 1 this is no longer true. If µ ≤ 1 the sum S (17)
does not increase linearly with N : instead S scales as
ηN1/µ, where η is some constant, which shall be calcu-
lated below. So in this case the lower cut-off wmin in (18)
is

wmin = η−1N1−1/µ (19)

as one can see by inserting Wmin = 1 on the right hand
side of (17). The cut-off goes to zero as N → ∞, but for
any finite N it is finite. It is essential to keep it finite
while calculating the integral

∫

Prob(w)dw since other-
wise the singularity w−1−µ at zero would make the inte-
gral (18) diverge. With C = µη−µNµ−1 (for µ < 1) the

integral is properly normalized
∫ N

wmin

Prob(w)dw = 1 for

N → ∞ and the mean value of w is 〈w〉 =
∫ N

0
wρ(w)dw =

η−µµΓ(µ)Γ(1−µ). (In the calculation of the mean value
〈w〉 = 1 one can set wmin = 0 since the singularity at zero
is integrable). Hence, 〈w〉 = 1 if ηµ = µΓ(µ)Γ(1 − µ).

One can calculate the probability that w is smaller
than a given small fixed number ∆w:

Prob(w < ∆w) =

∫ ∆w

wmin

ρ(w)dw ≈ 1 − cNµ−1 (20)

where c = (σ∆w)−µ, so that Prob(w < ∆w) → 1 for
N → ∞. This means if one makes a fixed-bin histogram

of wi’s for large N , then almost all wi’s will be in the first
bin adjacent to zero. This phenomenon can be called a
“poverty condensation”.

Another surprising feature of the wealth distribution

when µ < 1 is that the factor
(

1 − w
N

)µ−1
does not intro-

duce a suppression of w of order N , but an enhancement.
The singularity at w = N is integrable. Intuitively this
means that in a large sample of wi’s, most values are con-
centrated at zero, but a few remaining ones are of order
N . This is also what one can infer from the calculation
of the inverse participation ratio Y2 [11, 13]. For N → ∞

〈Y2〉 =

N
∑

i

(wi

N

)2

=
1

N
〈w2〉 = 1 − µ. (21)

is a finite positive number when µ < 1 whereas Y2 = 0 for
µ > 1. This shows that in a large sample of wi’s a finite
fraction of them is of order N . This is the “wealth con-
densation” signaled by Bouchaud and Mézard. Notice,
that poverty and wealth condensation occur simultane-
ously.

The above discussion refers to simple sampling of wi’s.
Now let the agent’s wealth be dynamic (but still keeping
the geometry frozen). We show in Fig. 1 the wealth dis-
tribution calculated keeping the network quenched, for
Erdös-Rényi, scale-free with exponent 1.5 and regular
networks with fixed connectivity (in all these cases we
set the average connectivity to 4). The parameter J is
set to 0.005. The fitted slopes equal 1 + µ = 1.447(2) to
1.465(2). In agreement with the above discussion, most
of the agents (about 80%) are concentrated in the left-
most bin [0, 0.01]. This completes the discussion with
either the wealth or the links frozen. From now on we
focus on the full model.

IV. AGENT AND NETWORK TIME SCALES

For our simulations, we alternate the updatings of the
wealth and links. In one update of the wealth, Eq. (1)
is used for each node. Once all new Wi are found, they
are renormalized, so that

∑

i Wi = N . In one update
of the geometry we pick a pair of nodes at random and
use Eqs. (7) or (8), when the nodes are connected or
not, respectively. This is repeated N(N − 1)/2 times.
But this poses the problem of the relative frequency of
the updates, i.e., what are the two associated time scales
for wealth and link updates. In physical systems, these
time scales are a priori given by the laws of physics. One
example of this is the coupling of matter and geometry
in theories of gravity. Network nodes involve “matter”
fields while the network links describe the curved geom-
etry of interactions. The theory involves coupling con-
stants which specify the dynamical time scales of mat-
ter and geometry degrees of freedom. Comparing to our
agent based model, matter is analogous to wealth and
geometry is described by the network topology.
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FIG. 1: The distribution of wealth has a power law tail in
generic networks; furthermore the corresponding exponent is
not sensitive to the network structure as shown here for differ-
ent kinds of networks (Erdös-Rényi, scale-free or with fixed
connectivity). The network size is N = 1000, the coupling
J = 0.005 and the fitted slopes equal 1 + µ = 1.447(2) to
1.465(2). Inset: the same, but after imposing a lower cut-off
Wi > 0.01 on agent’s wealth. Here, the essentially common
slope is 1 + µ = 1.691(1).

For our adaptive network model of agents, how should
one set the two time scales? As pointed out in a re-
cent review [1], in most models studied so far the wealth
changes either much faster or much more slowly than the
geometry. We wish to have the two time scales be com-
parable. Once the value of ǫ has been chosen, the rate
of wealth updates is fixed. As already mentioned, the
rate of geometry updates is controlled by the parame-
ter a or equivalently r. To compare the two rates, we
have randomized the system and then let it evolve keep-
ing the wealth or the geometry quenched. We found that
(with our choice of ǫ and r) the autocorrelation length
for wealth is two orders of magnitude larger than for ge-
ometry. Consequently, in the simulations of the coupled
system we alternate 1 sweep of the geometry with 100
sweeps of the wealth (and there are about ten updates of
the whole system within one autocorelation time inter-
val).

The physical control parameters are J and β. Actually,
as will be seen, the choice of β has little influence on the
wealth distribution; it controls the average degree of the
network. The degree distribution itself turns out to have
a smooth dependence on β when it is plotted versus the
scaled variable q/〈q〉. On the other hand the value taken
by J is essential for the behavior of the system.

The ansatz Eq. (5) generates a positive correlation be-
tween the degree of a node and the wealth stored in this
node. One can suspect that this leads to a breakdown
of ergodicity for heterogeneous networks. And indeed,
ergodicity is broken as long as the geometry is quenched:
if at a certain moment a given agent is the poorest (rich-
est) it never becomes the richest (poorest) during the run
history. We have found, however, that the ergodicity is

restored when wealth and links get coupled. In a sense,
this coupling increases the “social mobility”.

V. ADAPTIVE NETWORK OF INTERACTING

AGENTS

A. Network collapse in the absence of a cut-off

The poverty condensation has dramatic consequences
when one couples wealth to geometry. As soon as one
enters the regime where the wealth distribution develops
a fat tail with µ < 1, nearly all nodes become progres-
sively isolated (have zero degree) and all wealth becomes
the property of a tiny minority. A modification of the
rules is called for, either for wealth (welfare) or for con-
nectivity (not considered here). We impose a lower cut-
off on Wi’s viz. Wi > Wmin = 0.01. Since we work with
scaled variables wi and since we recalculate them after
each wealth update, the wi’s inherit a similar cut-off, ex-
cept that it somewhat smeared around 0.01. In the inset
of Fig. 1 we show the wealth distribution for quenched
networks when this cut-off is imposed; no collapse is pos-
sible there. Hence, a calculation with and without cut-off
can be compared and one notices that the fat tail appears
in both cases, although the exponent µ is a little larger
when the cut-off is present. When the network is adap-
tive, the cut-off prevents the collapse.

B. General overview

Before presenting more datailed data on the wealth and
degree distributions and on the correlation between the
two, let us have a general view of the model’s properties.

With an ongoing trading activity and link changes, the
system evolves and empirically always seems to reach a
steady state that is unique (independent of the initial
conditions). Furthermore, there is a smooth large volume
limit.

It is most instructive to examine the dependence of the
inverse participation ratio Y2 defined in Eq. (21) versus
J/σ2 (cf. Fig. 2). The qualitative behavior is similar to
that observed in the Bouchaud-Mézard model. (For com-
pleteness we show also in the figure the data correspond-
ing to a calculation with quenched random network.) We
find that Y2 is finite as long as J/σ2 is small enough, it
falls progressively as J/σ2 increases and eventually settles
at a value of order 1/N when J/σ2 is increases beyond a
certain critical value. Notice that an increase of β from
0.020 to 0.20 has very little effect. Remember also that
Y2 = 1 − µ as long as the distribution has a tail falling
off as a power with µ < 1 (evidence for this scale-free
behavior will be presented in Sect. VD). Hence, the evo-
lution of the wealth distribution slope with J/σ2 can be
immediately deduced from Fig. 2.

The model has two distinct phases. An educated guess
is that in the large J/σ2 phase the dynamics is qualita-
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0.3

0.4

Y2

FIG. 2: The inverse participation ratio is an order parameter
for wealth condensation. One goes from a homogeneous phase
at large J to a condensed phase at low J where a finite number
of agents hold a finite fraction of the total wealth (we have
set σ = 1). Shown are data for adaptive networks with β =
0.020 (squares) and β = 0.20 (circles) when N = 1000. The
analogous data for quenched random networks with 〈q〉 = 4
are displayed using triangles. The lines are here to guide the
eye. Note that the transition point is insensitive to the type
of network: quenched or adaptive.

tively well described by the “mean field” approximation
of ref. [11]. This is also suggested by the simulations
we have carried out, which are however strongly affected
by finite-size corrections (the efficiency of our algorithm
does not allow us to go far beyond N = 1000). The low
J/σ2 phase is by far more interesting and we focus on
it hereafter. In the following paragraphs, we shall con-
sider successively network properties, wealth properties
and joint effects.

C. Scale-free steady-state networks

We display in Figs. 3-5 the distribution of node connec-
tivities q in the case of sparse networks (cf. Eq. (11)). For
not too large J , the degree distribution depends weakly
on the value of this parameter whereas the dependence on
β is rather strong. However, scaling the degree q → q/〈q〉
we find that the tail of the degree distribution is both
scale free and insensitive to N at large N . Such scale-
free behavior seems to be generic; indeed we find it for
all the parameter values we have explored. Thus, the tail
of the distribution of q behaves as

Prob(q) ∼ q−γ (22)

where γ depends on the values of the control parameters
though it is not sensitive to them. Furthermore, we find
that γ does not go below 2 so no node carries a finite frac-
tion of all links. This can be referred to as lack of “link
condensation”. One can define Y2 for the degree distri-
bution by replacing wi → Qi = Nqi/2L in the defining
equality in (21) (notice that

∑

i Qi = N). One finds that

1000.01 0.1 1 w  (q/<q>)

<
q>
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q)
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10
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FIG. 3: Adaptive networks: wealth (left) and degree (right)
distributions for N = 1000, J = 0.005 and β ranging from
0.020 to 0.120. The slopes are 1 + µ = 1.644(2) and γ =
2.105(5) respectively. The lines are to guide the eye. The
scale-free shape of both distributions is evident. We have
plotted the degree distribution using the rescaling q → q/〈q〉.
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FIG. 4: Adaptive networks: wealth (left) and degree (right)
distributions for N = 1000, β = 0.020 and J ranging in small
steps from 0.001 to 0.010. The lines are to guide the eye.

this Y2 is typically one order of magnitude smaller than
the corresponding parameter for the wealth.

D. Power-law wealth distributions

Now we focus on the properties of the agents’ wealth.
We saw that when the network was quenched, a fat tail
appeared generically so it will come as no surprise that
in the adaptive network model the distribution of wealth
Prob(w) again has power law tails. Examples of such
tails are given in Figs. 3-5 for the case of sparse networks
(β scaling as 1/N). As already mentioned, the exponent
µ depends on the parameters of the model, weakly on β,
more strongly on J , as can be deduced from the curves
in Fig. 2.
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FIG. 5: Adaptive networks: wealth (left) and degree (right)
distributions for J = 0.005 at N = 1000 (dashed line; β =
0.20) and 10000 (solid line; β = 0.02). For wealth the slopes
are 1 + µ = 1.697(1) and 1 + µ = 1.749(9) at N = 1000
and 10000, respectively. The slope for the tail of the degree
distribution is γ = 2.069(13). The figure illustrates that the
exponents depend very weakly on the network size as expected
in a thermodynamic limit.
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FIG. 6: The number L of links in the network fluctuates
substantially in the steady state. Here N = 1000, J = 0.005
and β = 0.020, with a binning of size 100.

E. Wealth and topology are associated

The relative insensitivity of our results to parameter
changes might suggest that the steady state reached at
large time by the system is extremely stable. It turns
out, however, that the system is actually subject to very
large fluctuations, for instance for the total wealth, and
that these fluctuations are much larger than those ob-
served when the geometry is kept quenched. This can be
traced back to the slow fall-off of the wealth distribution:
with such wi’s the link dynamics of Sect. II B necessarily
generates networks with strongly fluctuating number of
links. An illustrative example is given in Fig. 6, which
shows that the total number of links has a fairly broad
distribution. What is even more interesting, one observes
a strong (anti)correlation between the wealth inverse par-

0 500 1000 1500

0.2

0.4

0.6

time

0.8

L
/2

00
0Y2

FIG. 7: Adaptive networks: wealth inverse participation ratio
(dotted line) and the total number of links (divided by 2000;
solid line) versus computer time. Here N = 1000, J = 0.005
and β = 0.020.

ticipation ratio and the total number of links (see Fig. 7).
The periods of relatively low participation ratio and large
number of inter-node connections alternate with peri-
ods where participation ratio is large and the number
of links small. Increasing the number of trading links
apparently reduces “social disparities”. Of course, this
remark should not be taken too seriously, the frequency
of the regime changes is too rapid to be an image of the
behavior of actual markets. However, the trend is of in-
terest.

VI. DISCUSSION AND CONCLUSION

We have introduced a class of models in which agents
perform trades and influence the associated network of
interactions. We find that these adaptive network sys-
tems spontaneously go to a unique steady state, and
that several very distinct behaviors arise depending on
the parameters defining the models. When no lower cut-
off is imposed on agent wealth, the poor go into a spi-
ral of poverty and disconnect from the network which
“collapses”; furthermore this is a cascading process so
that rapidly nearly all individuals reach this situation.
When instead a minimum wealth is enforced, the overall
system reaches a critical state where wealth and con-
nectivity distributions have power-law tails; this critical
behavior is generic, no fine tuning of parameters is nec-
essary. In this critical steady state, the heterogeneity or
“differences” in agent wealth depends on the trade inten-
sity, parametrized in our model by a coupling J/σ2. For
large J/σ2, the wealth circulates rapidly, and differences
in wealth are small. On the contrary when J/σ2 is small,
wealth differences are large, and in fact for J/σ2 small
enough, one goes into a “condensed” phase where a fi-
nite fraction of the wealth is held by just a few agents.
Interestingly, we find this phase transition point to be
the same as when the network is quenched according to
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any law for the degree distribution. Not surprisingly, we
have also found that the wealth and the network dynam-
ics lead to large correlated fluctuations; in particular, the
total wealth tends to be lowest when the network is the
densest.

The occurence of power laws in wealth distributions,
usually referred to as Pareto’s law [8, 9, 10], has been
empirically observed in many economic contexts. Since
such systems almost always involve adaptive networks,
it would be of major interest to extend those observa-
tions to the properties of the underlying networks. Our
model suggests not only that these networks will be char-
acterized by power laws, but that the wealth and net-
work properties will be strongly correlated. In situations
where regulation of such behavior is considered necessary,
policies may focus on the network “rules” rather than at-
tempting to regulate wealth directly; these policies might
involve introducing fees or subsidies for different kinds of
trades. Clearly in realistic situations, there may be other
features to take into account such as geographic influ-

ences on the adaptive network dynamics. One may have
to also consider social trends such as spontaneous assor-
tativity formation in trading networks. It seems to us in
particular that sufficient assortativity may prevent the
spiral of poverty formation when no minimum wealth is
imposed. More generally, many of these issues extend far
beyond economic adaptive networks: food-webs, trans-
portation networks, or social networks all lead to similar
questions.
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[13] J.-P. Bouchaud and M. Mézard, J. Phys. A: Math. Gen.
30, 7997 (1997).

http://arXiv.org/abs/0709.1858

	Introduction
	The model
	Agent wealth dynamics
	Link dynamics

	Quenched dynamics
	Quenched wealth distribution
	Quenched network
	The continuous time limit
	Poverty and wealth condensation


	Agent and network time scales
	Adaptive network of interacting agents
	Network collapse in the absence of a cut-off
	General overview
	Scale-free steady-state networks
	Power-law wealth distributions
	Wealth and topology are associated

	Discussion and conclusion
	References

