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Theory of market fluctuations

S.V. Panyukov
P.N. Lebedev Physics Institute, Russian academy of Science, Leninskiy pr., 53, Moscow, 117924, Russia

We propose coalescent mechanism of economic grow because of redistribution of external resources.
It leads to Zipf distribution of firms over their sizes, turning to stretched exponent because of size-
dependent effects, and predicts exponential distribution of income between individuals.

We present new approach to describe fluctuations on the market, based on separation of hot (short-
time) and cold (long-time) degrees of freedoms, which predicts tent-like distribution of fluctuations
with stable tail exponent µ = 3 (µ = 2 for news). The theory predicts observable asymmetry
of the distribution, and its size dependence. For financial markets the theory explains first time
“market mill” patterns, conditional distribution, “D-smile”, z-shaped response, “conditional double
dynamics”, the skewness and so on.

We propose a set of Langeven equations for the market, and derive equations for multifractal
random walk model. We find logarithmic dependence of price shift on the volume, and volatility
patterns after jumps. We calculate correlation functions and Hurst exponents at different time
scales. We show, that price experiences fractional Brownian motion with chaotically switching of
sub- and super-diffusion, and calculate corresponding probabilities, response functions, and risks.

PACS numbers: 05.40, 81.15.Aa, 89.65.Gh
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I. INTRODUCTION

First question behind any research is why do we need
it? There are no unique approach in econophysics, and
the number of different approaches grows exponentially
with time. How can we decide, which of them is “cor-
rect”, if by construction, any one well describes empirical
facts?

The answer is simple: in no way. All of them are
equivalent at regions of their applicability. But these re-
gions are very different, and only several theories able to

http://arXiv.org/abs/0804.4191v3
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describe a large variety of empirical facts. Extrapolat-
ing, one can assume that only one theory can predict all
important phenomena: Market mill patterns, multifrac-
tality of fluctuations, volatility patterns, different Hurst
exponents above and below a time τx, and many other
facts. Some of them can be described in different ways,
but not the hookup of all facts.

What criteria should satisfy such theory? At first sight,
it is mathematical rigor. The most striking example is
the Flory approach in polymer physics, which is abso-
lutely “wrong” mathematically, but extremely well de-
scribing all known situations. All multiple attempts to
(im)prove it were failed. We conclude, that the rigor
of the theory is usually “inversely proportional” to intu-
ition.

Well, what kind of the theory should not be? If any
new fact or their series need to introduce additional terms
or ideas into the theory, the later can be considered as
a collection of facts, arbitrary ordered according to the
test of the author. We think, the real theory must predict
in future yet unknown facts (at present this criterium is
equivalent to extremely wide region of its applicability),
to be as rigor as possible, and use minimum of initial
assumptions.

We do not know other criteria of the “validity” of the
theory, and this is the reason why the theory must de-
scribe all known trustable facts. Present paper can be
considered as an attempt to follow this criteria. Only
one main idea lays in the basis of our theory of market
fluctuations: we assume, that they can be described as
random walk motion at all time scales. In the case of fi-
nancial market, it is random trading at all time horizons
from seconds to tenths years.

Our theory can be considered as an attempt to make
a step from numerous descriptive approaches toward a
physical Langeven formulation of the “econophysical”
problem. This is why we emphasize analogies with other
branches of physics, which may confuse econo-physicists
otherwise. Although we show, that multi-time random
trading allows to explain most of market dynamics, it
may be extended later in many directions.

As a strategy line, for each problem we try to construct
a simplified model of such multi-time random motion,
capturing the most of physics. As the result, we left
with several parts of the whole puzzle, strongly inter-
correlated with each other. It is the reason of unusual
length of this paper, which can not be cut into several
independent small parts.

II. FIRMS, CITIES AND INCOME

DISTRIBUTIONS

A. Is there thermodynamics of the market?

Econophysics studies physical problems in economics,
and most of its results were obtained from analogy with
thermodynamics. One of classical problems of econo-

physics, the firm grow, is usually described by the model
of stochastic firm growing1. In order to explain empir-
ically observed Zipf distribution of firm sizes2 it is pro-
posed to introduce the lower reflecting boundary in the
space of firm sizes, which stabilizes the distribution to a
power law3. Unfortunately, this explanation is inconsis-
tent for firms of one or several employers, well described
by the same empirical Zipf distribution.

Different models of internal structure of firms were pro-
posed for the stochastic mechanism of firm growing. Hi-
erarchical tree-like model of firm was studied in Refs.4,5.
A model of equiprobable distribution of all partitions of a
firm was introduced in Ref.6. Both models neglect the ef-
fect of competition between different firms. The random
exchange of resources between firms was taken into con-
sideration in “saving” models7. In Refs.8–11 the process
of stochastic firm grow and loss was considered by anal-
ogy with scattering processes in liquids and gases. The
distribution of firms over their sizes in different countries
was studied in Ref.12.

The theory of firms is usually called microeconomics,
and from economical point of view it is hard to con-
sider the stochasticity as the moving force of economic
grow. While in thermodynamics the stochasticity origi-
nates from interaction with a huge “thermostat”, there
are no such thermostat for the market, which subsists
only because of activity of its direct participants.

This puzzle forces us to develop a “mean field” theory
of firm growing, neglecting any fluctuation processes. We
show, that the moving force of evolution on the market
are not thermal-like excitations, but the supply of exter-
nal resources, which are (re-)distributed between differ-
ent firms. Exhaustion of the resource kills this (part of
the) market, while appearance of a new resource gives
rise to a new market. The process of firm growing and
mergence is similar to coalescence of droplets of a new
phase, when stochasticity plays only minor role.

In section II B we show that the coalescence theory
predicts Pareto power low for the distribution of firm
sizes. We propose self-similar tree-like model of firms
in section II B 2. This model is solved in Appendix B,
and we show, that it explains empirically observable time
dependence of the Pareto exponent for the world income.

The formal resemblance of observable exponential dis-
tribution of the income between individuals to Boltz-
mann statistics was used in Ref.13 to justify the appli-
cability of methods of equilibrium thermodynamics. But
how can all sectors of country economics and services
always be in thermal equilibrium? In section II B 3 we
propose an alternative explanation, based on unified tax
policy in the whole country: the coalescent approach pre-
dicts, as a by-product, the exponential income distribu-
tion, even without invention of thermal equilibrium. This
distribution is valid for the majority of the population,
and statistical fluctuations are only responsible for power
tails of its upper part (1–3%).

Countries with different financial policy have different
“effective temperature” of the distribution, which can
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be equilibrated only after unification of their financial
policies, even without establishment of a “heat death” –
global thermal equilibrium. Although one may consider
the perpetual trade deficit of US as consequence of the
fundamental second law of thermodynamics13, it would
be more natural to explain it by financial policy, directed
on attraction of resources to the country.

Econophysics is not only one field, deceptively resem-
bling thermodynamics, we have to mention also a sand,
turbulence and other macroscopic systems, which form
complex dissipative structures in the response on some
external forces. Although such “open systems” can not
be characterized by thermodynamic potentials, the pro-
cess of dissipation is accompanied by the rise of infor-
mation entropy. We calculate the entropy of the market
and show, that it can only increase with time, since the
market irreversibly absorbs external information (there
is deep analogy with physics of decoherence, discussed in
Conclusion).

“Thermodynamic-type” models predict asymptotically
Gaussian distribution of firm grow rates, while the real
distribution has tent-like shape. In order to reproduce
it, in Ref.14 an artificial potential was introduced in dif-
fusion equation, restoring the firm size to a certain ref-
erence value, at which the grow rate abruptly changes
its sign. In this paper we elaborate a new approach to
study dynamics of temporal dissipative structures on the
market, which do not use these artificial assumptions.

In section II C we introduce new general approach to
study market fluctuations. Main ideas of this approach
will be first formulated for the problem of firm grow. The
market is the system with multiple (quasi-) equilibrium
states, characterized by extremely wide spectrum of re-
laxation times. By analogy with glasses, for given obser-
vation (coarse graining) time interval τ we can divide all
degrees of freedom of the market into “hot” and “cold”
ones, depending on their relaxation times. Hot degrees of
freedom are in equilibrium, and they generate high fre-
quency fluctuations because of uncertainty on the mar-
ket, while cold degrees of freedom are not equilibrated,
and evolve on times large with respect to τ . As in the case
of spin-glasses, high degeneracy of quasi-equilibriums in
the market is reflected in the presence of a gauge invari-
ance. Any averages should be defined in two stages: first,
the annealed averaging over hot degrees of freedom, and
then quenched averaging over cold degrees of freedom.

We demonstrate, that our theory reproduces empiri-
cally observable (in general, asymmetric) tent-like distri-
bution of firms over their grow rates. In section II C 4
we show, that this distribution has fat tail with stable
exponent µ, equals to the number of essential degrees
of freedom of the noise (µ = 3 for Markovian statistics
of hot degrees of freedom, and µ = 2 for uncorrelated
noise).

B. Mean field theory

Dynamics of firm growing is similar to kinetics of grow-
ing of droplets of a new phase. Large firms can absorb
smaller ones, and they can grow or leave the business, by
analogy with resorption and growing of droplets in the
supersaturated solution. Below we use this analogy to
construct a new theory, not relying on stochastic mecha-
nisms of firm growth. Entropic and microeconomic inter-
pretations of our theory are discussed in Appendixes A
and C.

1. Zipf distribution

For definiteness sake we define the firm size as the
number G of its employees. In general, it could be any
resource, shared between different firms on the market.
According to economic approach (analog of the mean
field approach in physics) firms can hire or loose the staff
only through the “reservoir” of unemployments of value
U (t) at time t. Diffusion processes lead to finite value
U∗ > 0 of the “natural unemployment”. “Actual unem-
ployment” U is the sum of U∗15 and the “market unem-
ployment”, ∆ (t):

U (t) = U∗ + ∆(t) .

The equation of the resource balance can be written in
the form

Q (t) = U (t) +

∫

Gf (G, t) dG, (1)

where Q (t) is the supply of external resources. The prob-
ability distribution function (PDF) f (G, t) of firm sizes
is determined by the continuity equation,

∂f (G, t)

∂t
= − ∂

∂G

[

dG

dt
f (G, t)

]

, (2)

where dG/dt is the rate of ordered motion in the space of
firm sizes. Diffusion contribution in Eq. (2) is negligible
in coalescent regime. According to the famous Gibrat’s
observation1 the relative grow rate of the firm,

1

G

dG

dt
= rG (3)

do not depend on its size, G. In the case of full employ-
ment, ∆ = 0, the average numbers of people getting a job
and leaving it are the same, and there are no source for
firm grow, rG = 0. At small ∆ we can hold only linear
term in the series expansion of the grow rate rG = q∆ in
powers of ∆ with constant q.

To solve the set of equations (1) – (3) we substitute
Eq. (3) with rG = q∆ into Eq. (2), and find its general
solution

f (G, t) =
1

G
χ

[

ln
G

G0
− q

∫ t

0

∆(t′) dt′
]

,
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where G0 is the firm size at initial time t = t0 and χ
is arbitrary function. Substituting this solution into the
balance equation (1) and introducing new variable of in-
tegration u = ln (G/G0), we find

Q (t) = U (t) +G0

∫

euχ

[

u− q
∫ t

0

∆(t′) dt′
]

du. (4)

Consider the case of power growing of external re-
sources,

Q (t) = Q0t
m. (5)

For general time dependence Q (t) its logarithmic rate m
is determined by expression

m =
d lnQ (t)

d ln t
. (6)

In the case of small unemployment value, U ≪ Q, gen-
eral solution of Eq. (4) takes exponential form, χ (u) =
χ0e

−κu. Substituting this expression into Eq. (4) and
taking into account that the distribution f (G, t) can not
depend on initial firm size, G0, we find κ = 1 and

Q0t
m = χ0 ln

Gmax

Gmin
exp

[

q

∫ t

0

∆(t′) dt′
]

,

where Gmin and Gmax are maximal and minimal firm
sizes on the market. The solution of this equation has
the form

∆(t) = m/ (qt) , χ0 = Q0/ ln (Gmax/Gmin) . (7)

First of Eqs. (7) predicts, that the economic grow, see
Eq. (5), leads to less actual unemployment, ∆, in qual-
itative agreement with the famous macroeconomic “Fil-
lips curve”. Close quantitative relation between the co-
alescent theory and the Fillips low is established in Ap-
pendix C.

We conclude, that for any monotonically increasing
function Q (t) the distribution of firms over their sizes
G has Zipf form:

f (G, t) =
Q (t)

ln (Gmax/Gmin)

1

G2
. (8)

This dependence was really observed for extremely wide
range of firm sizes, see Fig. 1, where empirically observ-
able distribution

F (G, t) ≡
∫ Gmax

G f (G, t) dG
∫ Gmax

Gmin
f (G, t) dG

∼ 1

G
(9)

is plotted. The Zipf distribution2 (8) is valid for the
entire range of US firms16 (fromGmin = 1 toGmax = 106)
with Pareto exponent very close to unity.

The same mechanism may be responsible for power
distribution function of cities over their population, the
amount of assets under management of mutual funds17,
banks18 and so on. In the analysis of city population in
different countries, the exact form of Zipf’s law (9) was
confirmed in 20 out of 73 countries19. Deviations from
this low will be studied in next section.

10-6

0.001

1.

10-9

10-12

1 100 10000 106

Firm size

F
re

qu
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FIG. 1: Size distribution of U.S. business firms in 1997 (Cen-
sus data)16. Straight line corresponds to power law distribu-
tion F (G) ∼ G−γ with exponent γ = 1.059.

2. Stretched exponent

The Pareto exponent (9) can deviate from 1 because of
ineffective management, strong influence of industry ef-
fects on small firms and so on. With increasing size, these
effects gradually trail off, while remaining international,
national and regional shocks equally affect all firms. As-
suming self-similiarity of firm structure, the variation of
the firm size can be described by Master equation

r ≡ G−1dG/dt = rG − pG−β , (10)

with constant p and β.
To derive Eq. (10), consider the firm as the self-similar

tree14 of n generations, each of G0 ≫ 1 branches. The
size G0 of each subdivision is described by the same type
of equation (10),

r0 = G−1
0 dG0/dt = r0 − p0G

−β0

0 . (11)

Substituting the estimation G ≃ Gn
0 for the size of the

whole tree in Eq. (10) and comparing with Eq. (11),
we find the relation between coefficients of Master equa-
tions (10) and (11):

β = β0/n, rG = r0n, p = p0n.

In Appendix C we show that while the Gibrat grow
rate rG is fixed by economic factors, the coefficient p of
job destruction can experience strong random fluctua-
tions ∆p. Neglecting fluctuations of rG in Eq. (10) we
find that fluctuations in size are inversely correlated to
the size with an exponent β:

∆r = −∆pG−β. (12)

In order to estimate the exponent β0, consider a hy-
pothetical structureless firm with n = 1 of the size
G = G0 ≫ 1. Fluctuations of its size are characterized
by Gaussian exponent β = β0 = 1/2. The exponent β of
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real firms takes small values β = 0.15−0.215, correspond-
ing to the number of tree generations n = 1/ (2β) = 3−4.
Using Eq. (12) we find the dependence of the standard
deviation of grow rate ∆r on the firm size,

〈

∆r2
〉1/2

= σG−β , (13)

where σ ≡
〈

∆p2
〉1/2

does not depend on firm size G.
This relation is in excellent agreement with empirical
data14,20.

The condition r = 0 (10) determines the critical firm
size

Gc = (p/rG)1/β . (14)

Small firms with G < Gc collapse with time and may
leave from the business (or reach a certain fluctuation
size), while large firms with G > Gc grow. In Appendix A
we find the entropy S (G) of the firm of size G, and show
that G = Gc corresponds to its minimum, and also to
the minimum point of a “U-shaped” average cost curve
in the conventional economic theory (Appendix C). We
also derive maximum entropy principle for the market
(Appendix A), which is known as the most foundational
concepts of Gibbs systems.

In Appendix B we show that the solution of
Eqs. (1), (2) with the rate (10) has stretched exponent
form:

F (G) = exp
[

− (1/β −m) (G/Gc)
β
]

. (15)

Taking the limit β → 0 we reproduce Eq. (9). It is
shown that stretched exponent is the best fitting ap-
proximation for many observable distributions (size of
cities, population of different countries, popularity of ex-
ecutors, lifetime of different species, strength of earth-
quakes, indices of quoting, number of coauthors, rela-
tive rates of protein synthesis and many others21–23),
which are determined by the competition of units for
common resources. At small but finite β ≪ 1 expanding

(G/Gc)
β ≃ 1 + β ln (G/Gc) in Eq. (15) we find

F (G) ∼ G−γ , γ = 1− βm. (16)

We conclude, that the exponent γ of Pareto distribu-
tion is, in general, not universal and depends on current
rate m (t) of external supply, Eq. (6). This conclusion
can be verified by empirical observations: typically, the
value of this exponent is in the interval 0.7 < γ < 1.
For example, the size distribution of Danish production
companies with ten or more employees follows a rank-size
distribution with exponent γ = 0.74124.

To confirm the dependence of the exponent γ on the
supply rate m (t), consider the distribution of world in-
come across different countries. We assume, that coun-
tries could be described by the same Master equation (10)
as large firms. Exponential growing of consumable re-
sources leads to linear time dependence of m ∼ t, see
Eq. (6). As the result, the exponent γ linearly decreases

0.4

0.5

0.6

0.7

0.8

0.9

1

1960 1964 1968 1972 1976 1980 1984 1988 1992 1996

γ

FIG. 2: Temporal path of the exponent γ (continuous line),
and its approximation by linear dependence (dotted line)25.

with time, in good agreement with empirical observa-
tions, see Fig. 2. Assuming, that Q (t) doubles every 12
years, we estimate β ≃ 0.1, corresponding to a reason-
able number n ≃ 5 of hierarchical management ranks in
the “typical” country.

3. Income distribution

In order to find the distribution of income between
individuals we first introduce the most important eco-
nomic terms. The total income per state, Q, is shared
between all individuals {G} and the state expenses, U (t),
according to the balance equation (1). There are some
minimal expenses of the state, U∗, and the inequal-
ity ∆ = U − U∗ > 0 is usually regulated indirectly,
through taxes, which determine the relative income rate,
rG = q∆, of individuals. Therefore, the income G can be
described by a generalization of the Master equation (3),

dG

dt
= rGG− p. (17)

The last term describes the rate of losses (living-wage),
the same for all individuals (linear inG losses renormalize
rG). Since Eq. (17) has the form of Eq. (10) with β =
1, from Eq. (15) we get exponential distribution of the
income:

f (G, t) ∼ e−G/T , T = p/ [rG (1−m)] . (18)

According to Eq. (B3) of Appendix C the average in-
come (the “temperature26”) T linearly grows with time,
in good agreement with empirical observations26, and
also rises with the supply rate m (6). It is small for coun-
tries with low living wage p, producing high inequality in
incomes.

Analysis of empirical data shows13, that for approxi-
mately 95% of the total population, the distribution is
exponential, while the income of the top 5% individuals
is described by a power-law (16) with time dependent
Pareto index γ. This tail is because of speculation in
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stocks, when the income is proportional to the volume
of sale/buy G ∼ V . The distribution of large volumes is
power tailed, P (V ) ∼ V −γ . The exponent γ is not uni-
versal, it depends on individual stocks with typical value
γ ≃ 3/2, in good agreement with observable values26

γ = 1.4 − 1.8 (changing of the most profitable stocks
leads to variations in γ).

In general, the income may come from different
sources. In the case of n independent sources convolution
of n exponential distributions gives the Gamma distribu-
tion Pn (G) ∼ Gne−G/T , which better describes Russian
Rosstat data of salary distribution.

C. Fluctuation theory

1. Cold and hot degrees of freedom

Our approach to the description of fluctuations on the
market is related to the main idea of microeconomic the-
ory, based on independent study of “short-time” and
“long-time” periods of firm growth. The separation of
time scales also has deep analogy with methods of study
of complex physical systems with a wide spectrum of re-
laxation times, as glasses. For given observation time τ
degrees of freedoms of such systems can be divided into
“hot” and “cold” ones. Hot degrees of freedoms fluctuate
in the short-time period (t < τ ) given that cold degrees
of freedoms are fixed and can only vary in the long-time
period (t > τ ). Instead of consideration of slow dynamics
of one system in the long-time period one usually study
statistical properties of an ensemble of such systems at
the given time t.

We apply this approach to find PDF of grow rates
of firms, which have different dynamics in “short-time”
and “long-time” periods. In order to establish general
expression for oscillations of the parameter ∆p (t) (10)
it is instructive to consider first single-harmonic case.
General expression ∆p (t) =

√
2a cos (ωt+ φ) can be ex-

panded over two basis functions ξ′ (t) = cos (ωt) and
ξ′′ (t) = sin (ωt):

∆p (t) =
√

2a′ξ′ (t) +
√

2a′′ξ′′ (t) ≡
√

2 (a, ξ (t)) . (19)

which are orthogonal:

〈

ξ2
〉

=
〈

(

ξ′
)2
〉

+
〈

(

ξ′′
)2
〉

= 1,
〈

ξ′ξ′′
〉

= 0. (20)

Here 〈· · · 〉 means time average. Instead of two real ba-
sis functions it is convenient to introduce one complex
function ξ (t) = ξ′ (t) + iξ′′ (t) and complex amplitude
a = a′ + ia′′ = aeiφ, in terms of which the scalar product
in Eq. (19) is given by expression (a, ξ) = Re (a∗ξ). In
the following we use bold notations both for vectors and
complex numbers.

In general case, the frequency of quick oscillations
ω & τ−1 of ξ (t) (as well as its amplitude) randomly varies
with time. Real and imaginary parts of ξ can be con-
sidered as random values normalized by condition (20),

where 〈· · · 〉 has the meaning annealed averaging over the
noise ξ (t). Complex amplitude a is fixed in the short-
time period, and can be considered as random variable
in the long-time period (or for the ensemble of different
firms for given time t). The random function ξ (t) and the
amplitude a describe hot and cold degrees of the freedom
of the market, respectively.

Notice, that ∆p (t) (19) is invariant with respect to
“gauge” transformation

ξ → ξeiϕ, a→ aeiϕ, (21)

with constant ϕ, reflecting high degeneracy of market
quasi-equilibrium states.

2. Double Gaussian model

We first calculate PDF of fluctuations ∆p,

P (x) ≡ 〈δ [x−∆p (t)]〉. (22)

The bar means ensemble (quenched for the time τ ) aver-
aging over amplitudes a of fluctuations of different firms.
The main assumption of “Double Gaussian model” is ex-
tremely simple: since tactics of firms at the short-time
period is determined by large number of essentially inde-
pendent factors, we assume Gaussian statistics of random
variable ξ at time horizon τ (due to centeral limit theo-
rem). But two different firms (or the same firm at two
different time intervals τ ) will have, in general, differ-
ent amplitude of fluctuations a at the long-time strategy
horizon. Since the strategy of firms is also determined
by large number of independent random factors, we as-
sume Gaussian statistics of the random amplitude a with
dispersion σ2 = a2.

Due to the gauge invariance (21) the noise and the
amplitude PDFs could depend only on moduli ξ = |ξ|
and a = |a|. In this section we assume, that hot (ξ)
and cold (a) random variables are independent with zero
average and Gaussian weights

QG (ξ) =
1

π
e−(ξ′)2−(ξ′′)2 ,

1

πσ2
e−[(a′)2

+(a′′)2
]/σ2

(23)

respectively.
Fourier transform can be used to calculate the aver-

ages:

P (x) =

∫

G (k) e−ikx dk

2π
, G (k) =

〈

ei
√

2k(a′ξ′+a′′ξ′′)
〉

We first calculate the average over Gaussian normalized
ξ′ and ξ′′ and get G (k) = exp{−k2[(a′)2 + (a′′)2]/2}.
Calculating the average over a′ and a′′, we get G (k) =
(

1 + σ2k2/2
)−1

. The last step – is to take the inverse
Fourier transform of this G (k):

P (x) =

∫ ∞

−∞

cos (kx)

1 + σ2k2/2

dk

2π
=

1

2σ
e−

√
2|x|/σ. (24)
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Exponential distribution of firm grow rates (24) was re-
ally observed for typical fluctuations x = ∆p = −∆rGβ ,
see Eq. (12), with the exponent β = 0.15. We conclude,
that tent-like exponential distribution of firm grow rates
is the consequence of Gaussian statistics of all degrees of
freedom (hot and cold) of the market.

3. Asymmetry of PDF

The assumption of Double Gaussian model about in-
dependence of cold and hot variables is, in general, too
strong, and the noise ξ (t) is (anti)correlated with the
amplitude a. Taking such anticorrelations into account,
we can write general expression for the noise, satisfying
gauge transformation (21):

ξ (t) = ξ̃ (t)− ζa/α, α2 = a2, (25)

where ζ > 0 is the dimensionless correlation factor and
random variable ξ̃ (t) is not correlated with a, and has

zero average,
〈

ξ̃ (t)
〉

= 0. In the case ζ = 0 positive and

negative fluctuations of firm grow rate, ∆r, have equal
probability, while in the case of positive ζ > 0 firms will
in average grow (because of grow of external resources,
see section II B).

At economic level anticorrelations between firm tactics
and strategy (25) reflect the fact that firms prefer to have
tactical losses with the hope to get a profit at strategy
horizons (say, by pressing out business rivals). And firms
(and countries), aimed at the maximum instant profit
without significant investments in the short time period
will eventually get losses in the long time period.

Repeating our calculations for the model (25), we again
find exponential distribution (24)

P0 (x|σ) =
1

α
√

2
(

1 + ζ2
)

{

e−
√

2x/σ+ for x > 0

e
√

2x/σ− for x < 0
, (26)

but with different widths σ± (σ+ < σ−) of positive and
negative PDFs, and the dispersion σ:

σ± = α

(

√

1 + ζ2 ∓ ζ
)

, σ2 =
(

1 + 2ζ2
)

α2. (27)

The average of this distribution is shifted to negative ∆p,
corresponding to systematic tendency to grow:

〈∆p〉 = −
√

2αζ, 〈∆r〉 = −〈∆p〉G−β > 0. (28)

Such asymmetrical exponential distribution was really
observed in the analysis of empirical data in Ref.27 for
large averaging intervals (5 years, see Fig. 3). In Fig. 3 the
x-axis is in units of ∆r (12), and not ∆p. Empirical value

ζ = 0.23, and for typical
〈

∆r2
〉1/2

= 0.5 we reproduce

the observed mean 〈∆r〉 = 0.16.

F
re

qu
en

cy

1
0 1 2
∆r

-2 -1

10

100

1000

10000

FIG. 3: The distribution of grow rates of US firms in 1998-
2003 for seven size groups from Gup = 8−15 through Gdown =
512 − 102327 . Comparing with the theory we use the same
correlation factor ζ = 0.23 and varied only one parameter

σ (
˙

∆r2
¸1/2

= 0.62, 0.45 and 0.4, 0.3 respectively for upper
and lower curves. Deviations from exponential dependence
ar large |∆r| will be explained in section II C 4.

4. Fat tails

One of the most prominent features of PDF, the fat
tail, is usually attributed to large volatility fluctuations
(in different stochastic volatility and multifractal mod-
els). In this section we show, that the tail originates from
large jumps of the noise, and not of the volatility. This
new mechanism predicts universal tail exponent µ = 3
for stock jumps, independent on the coarse graining time
interval τ .

Fluctuations ∆p (t) of the Double Gaussian model are
characterized by random variable ξ, which is Gaussian
at the time interval τ and normalized by the condition
〈

ξ2
〉

= 1 (20). The problem is that even if we normalize
Gaussian variable for given time interval τ , this normal-
ization will be broken at next time intervals because of
the intermittency effect: relatively rare, but large picks
of fluctuations. The only way to normalize ξ (t) for all
times is to divide it

ξ (t) = ξ0 (t) /σ0 (t) . (29)

by the mean squared average

σ2
0 (t) =

∑

k
wkξ

2
0 (t− kτ) . (30)

σ0 (t) slowly varies at time interval τ , and therefore, ran-
dom variable ξ (t) leaves Gaussian at time scale τ . The
division of ξ0 (t) by σ0 (t) removes from general Gaussian
process ξ0 (t) the long-time (at the time scale τ ) trend
(long-time variations of the amplitude), leaving only high
frequency components.
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Standard definition of the mean square σ2
0 assumes

that weights wk in Eq. (30) do not depend on k, and
we reproduce our previous result (24) for PDF. But this
definition must be corrected, since there are no any fun-
damental value of dispersion σ2

0, which can only be esti-
mated from the knowledge of past values of ξ20. As the
first step, we have to put wk = 0 at k 6 0 and get

σ2
0 (t) = w1ξ

2
0 (t− τ ) +

∑

k>1
wkξ

2
0 (t− kτ) . (31)

In the case of totally uncorrelated events σ2
0 is determined

only by the “reference” value of ξ20 (t− τ ) at previous
time interval, and all wk −→ 0 at k > 1. Terms with
k > 1 describe the effect of correlations of events, leading
to variations ∆p (t).

Second, hot variable ξ (t) can vary only on the time
scale small with respect to τ . Therefore, all wk → 0 at
k > 2, and random variable ξ (t) has Markovian statistics
with correlations only between neighbour time intervals
τ . Otherwise it will depend on many time intervals time
kτ in the past, which is prohibited by definition of hot
variable ξ (t).

And the last: the only information known in future
about past fluctuations, is the very increment ∆p, which
depends only on one component ξ′0 = (ξ0,a) /a of ξ0

along the vector a. The information about correspond-
ing “perpendicular” component ξ′′ do not enter to the
increment, and is lost. Therefore, we should drop the

contribution of
(

ξ′′0
)2

from correlation terms with k > 1

in Eq. (31): ξ20 =
(

ξ′0
)2

+
(

ξ′′0
)2 −→

(

ξ′0
)2

. After all these
corrections we left with expression for the mean square
in Eq. (29):

σ2
0 (t) = w1ξ

2
0 (t− τ ) + w2

[

ξ′0 (t− 2τ )
]2

(32)

Although we get similar results for any quickly decay-
ing weights wk, calculations are much simplified in the
case of equal weights w1 = w2 = 1/2 and all wk = 0 at
k > 1. In order to calculate PDF of the noise ξ (t) (29),
we rewrite it in the form

Q (ξ) =

∫ ∞

0

dσ0π (σ0) 〈δ [ξ − ξ0/σ0]〉

=

∫ ∞

0

dσ0π (σ0)
σ2

0

π
e−ξ2σ2

0 , (33)

where we take the average over Gaussian variable ξ0. The
probability distribution of the random variable σ0 (32) is
π (σ) = 2σ

〈

δ
(

σ2 − σ2
0

)〉

. Using exponential representa-
tion of this δ-function, we get

π (σ) =
σ

π

∫

dseisσ2

(1 + is/2)
3/2

=

√

2

π
σ2e−

σ2

2 .

Substituting this expression into Eq. (33), we come to
Student noise distribution:

Q (ξ) =
3

π

(

1 + 2ξ2
)−5/2

. (34)
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FIG. 4: The distribution of grow rates of US firms in 1998-
199927, the same parameters as in Fig. 3. Tail exponent µ = 3.

The varied parameter
˙

∆r2
¸1/2

= 0.45 and 0.3 respectively
for upper and lower curves.

Using this distribution function, we finally get

P (x|σ) =
6√
πσ

e
x2

2σ2D−4

(√
2
x

σ

)

, (35)

where D is the parabolic cylinder function. The central
part of this distribution has exponential shape (24), while
its tale has power dependence:

P (x) ∼ |x|−1−µ , |x| ≫ σ. (36)

with the tail exponent µ = 3, well outside the stable Lévy
range (µ < 2). One can show, that this exponent does
not depend on relation between weights w1 and w2 ∼ 1
in Eq. (32) for Markovian noise. But in the absence of
noise correlations, w2 → 0, we get the effective exponent
µ→ 2.

If we take into account correlations between the noise
and the amplitude (see Eq. (25) and discussion therein),
〈ξ0〉 = −ζa/α, and after some calculations we get simple
expression for PDF:

P (x) =

∫ ∞

0

dσ0π (σ0)P0 (x|σ/σ0) =

1

α
√

1 + ζ2

{

σ+P (x|σ+) for x > 0
σ−P (x|σ−) for x < 0

, (37)

where functions P0 (x|σ) and P (x|σ) are defined in
Eqs. (26) and (35), and σ± are given in Eq. (27). We
show in Fig. 4 that Eq. (37) with ζ = 0.23 allows to
explain both the asymmetry and the shape of empirical
PDF for different size groups. The size dependence of
both Fig. 3 and Fig. 4 follows Eq. (12) with exponent
β ≃ 0.1 and universal ∆p.

Now we study the stability of the exponent µ for differ-
ent time periods τ . The total increment ∆p =

√
2 (a, ξ)
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for two joint intervals τ is the sum of corresponding incre-
ments ∆pi =

√
2 (ai, ξi) for each of these intervals. Since

the amplitude a in Eq. (19) slowly varies on the time
scale τ , we take it the same for both intervals, a1 = a2,
and so the noise ξ is proportional to the sum of noises
ξi for these intervals. Each of ξi can be represented in
the form of Eq. (29), and corresponding dispersions σ1

and σ2 depend on the same (but shifted over time) se-
ries of Gaussian variables ξ0, Eq. (32). Calculating the
distribution function of the sum ξ = ξ1 + ξ2, we find

Q (ξ) =

∫ ∞

0

dσ1dσ2

∫∫

ds1ds2
σ2

0

π
e−ξ2σ2

0×

σ1σ2

π2

1

(1 + is1/2) (1 + is2/2)
× (38)

eis1σ2
1+is2σ2

2

√

1 + i (s1 + s2) /2
,

where

1

σ2
0

=
1

σ2
1

+
1

σ2
2 (1 + is1/2)

. (39)

The tail of the distribution (38) is determined by small
σ̃, corresponding to large |s1| ≫ |s2| ∼ 1. As the result
we find, that the distribution Q (ξ) ∼ ξ−5 for the time
interval 2τ is characterized by the same exponent µ = 3,
as each of ξi for the time interval τ . The only difference
is that this asymptotic behavior can be reached at larger
ξ, with respect to the distribution function of ξi.

This observation explains why the fat tail in Fig. 3
for five year period is shifted to higher |∆r|, with re-
spect to Fig. 4 for one year period data. Experimental
observation of the stability of the exponent µ = 3 for
widely different economies, as well as for different time
periods28 τ , gives strong experimental support of our the-
ory. The stability originates in nonlinear correlations of
the noise, see Eq. (29), while linear correlations vanish,
〈(ξ1, ξ2)〉 = 0. To demonstrate the importance of such
correlations, assume, that the noise ξi has tail exponent
µ, and is uncorrelated at neighboring intervals τ . Than
the exponent of ξ ∼ ξ1 + ξ2 for the interval 2τ is equal
2µ, and not µ, as follows from our model.

The systematic study of the distribution of annual
growth rates by industry was performed in Ref.29 using
Census U.S. data. It is shown, that all sectors but fi-
nance can be fitted by exponential distribution (24). We
checked the data for finance sector, and show that they
can be well fitted by Eq. (35) with exponent µ = 3.

D. Main results

In this section we considered evolution of the market
as the result of competition of different firms for external
resources, by analogy with coalescent regime in physics
of supersaturated solutions. This analogy allows to find
informational entropy of the market, and prove the prin-
ciple of maximum entropy.

We demonstrate that in coalescent regime for Gibrat
mechanism of firm growing the distribution of firms over
their sizes follows the Pareto power low with the expo-
nent γ = 1 (Zipf distribution). Taking into account size
effects, it turns to stretched exponent distribution, which
also describes different processes, related to competition
of units for common resources. Coalescent mechanism is
also responsible for observable exponential distribution
of the income between individuals. The production of
real firms can be taken into account by vector models,
by analogy with multicomponent solutions.

We propose the theory of market fluctuations, based
on separation of all degrees of freedom of the market into
cold and hot ones. For Gaussian statistics of all degrees of
freedom such separation leads to experimentally observ-
able exponential PDF of firm grow rates. We also prove,
that this distribution has power tail with universal stable
exponent µ = 3.

We find analytical expression for PDF, and show, that
it reproduces observable shape and asymmetry of the
distribution of firm grow rates, which is related to exist-
ing anticorrelations between tactics of firms at short-time
horizon and their strategy at long-time horizon. In next
section we apply this approach to study price fluctuations
on financial markets.

III. FINANCIAL MARKET

Dynamics of fluctuations is determined by the spec-
trum of relaxation times of the system. When all times
are small with respect to the observation time interval
τ , the state of the market at time t+ τ depends only on
its state at previous time t, and dynamics is Markovian
random process. Short-range correlations of price fluc-
tuations on the market can be studied using stochastic
volatility models30, but in order to describe real mar-
kets with multi-time dynamics, the model should take
infinite-range correlations into account31, and has “infi-
nite” number of correction terms. In addition, to take
empirically observable excess of volatility into account,
one has to go at the boundary of stability of such mod-
els.

The real market has enormous number of (quasi-) equi-
librium states and extremely wide spectrum of relaxation
times, by analogy with turbulence32 and glasses. Mul-
tifractal properties of time series can be described by
phenomenological Multifractal Random Walk model33.
Although this model well characterizes scaling behavior
of price fluctuations, it can not capture correlations at
neighboring time intervals, which determine “conditional
dynamics of the market” and can be described by the bi-
variate probability distribution of price increments34.

In previous section II C we show, that the increment
of the random value P (t) of the time series

∆τP (t) ≡ P (t+ τ )− P (t) (40)

has the form of scalar product of two-component random
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vectors – the noise ξ (t) and its amplitude a (t):

∆τP (t) =
√

2 (a (t) , ξ (t)) . (41)

Hot variables ξ (t) vary at the scale small with respect
to τ , while characteristic times of cold variables a (t) are
large with respect to τ . The time τ plays the role of the
effective temperature: at minimal trade-by-trade time,
τ ≃ τk, the price is almost frozen, while in the opposite
limit τ > τ0 it has random walk statistics. In the in-
termediate time interval τk < τ < τ0 (of many decades)
the market has “restricted” ergodicity: only hot degrees
of freedom are exited, while cold degrees of freedom are
frozen and determine the amplitude a of price fluctua-
tions.

Here we apply this approach to calculate PDF of price
increments, as well as various conditional distributions
and their moments. The dependence of parameters of
these distributions on observation time τ will be studied
later, in section IV. In section III A we introduce hot
and cold degrees of freedom of the market. Two simpli-
fied models are formulated and solved in sections III B
and III C. “Markovian” model takes short-time corre-
lations into account and neglects the effect of long-time
challenges. “Effective market” model captures such ef-
fects, but neglects any short-time correlations because of
trader activity. Although both these models capture es-
sential part of observable phenomenons of price fluctua-
tions (extremely small linear correlations – the Bache-
lier’s first law, “dependence-induced volatility smile”,
“compass rose” pattern35 and so on), they can not de-
scribe all the variety of such “stylized facts”40.

In section III D we introduce Double Gaussian model,
that takes all correlation effects into account, and show
that it allows to explain the behavior of different types of
stocks36. Analytical solution of this model is derived in
Appendix D. We demonstrate, that this solution repro-
duces all observable types of “market mill” patterns and
gives the mysterious z-shaped response of the market for
all kinds of asymmetry of bivariate PDF, as well as other
fine characteristics of this distribution. We also show
that our theory allows to explain empirically observable
Markovian “double dynamics” of signs of returns on the
market37.

A. Cold and hot degrees of freedom

The idea of hot and cold degrees of freedom of the mar-
ket is qualitatively supported by empirical observations:
It is shown in Ref.38, that the amplitude of fluctuations
for ensemble (quenched) averaging significantly exceeds
the amplitude of fluctuations for time (annealed) aver-
aging. This observation can be interpreted as the result
of the presence of cold degrees of freedom, which remain
“frozen” when considering time fluctuations of hot de-
grees of freedom. In the case of ensemble averaging such
cold degrees of freedom become “unfrozen”, increasing

the amplitude of price fluctuations with respect to its
time average value.

Following Ref.39 consider two consecutive price incre-
ments, x (push) and y (response) for the time intervals
τ :

x = ∆τP (t) , y = ∆τP (t+ τ) .

According to Eq. 41 price increments can be written in
the form of the scalar products:

x =
√

2 (a1, ξ1) , y =
√

2 (a2, ξ2) , (42)

of complex noises ξ1 = ξ (t) , ξ2 = ξ (t+ τ ) and com-
plex amplitudes a1 = a (t) ,a2 = a (t+ τ). Complex
random walk ξ (t) in the “tactic” space describes “impa-
tient” agents. Complex random walk a (t) in the “strat-
egy” space can be thought of as a result of slow variation
of composition of the population of such agents on the
market, as well as the activity of “patient” agents.

Moduli of complex variables ξi and ai are normalized
as:

〈

ξ2i
〉

= 1, a2
i = σ2, (43)

σ is the dispersion of price fluctuations

〈∆τP 2 (t)〉 = 〈∆τP 2 (t+ τ)〉 = σ2. (44)

Eqs. (42) are invariant with respect to “gauge” transfor-
mation of noise and amplitude variables, Eq. (21).

We will characterize correlations of price increments
by uni- and bivariate PDFs:

P (x) ≡ 〈δ [x−∆τP (t)]〉 =
∫

dyP (x, y) , (45)

P (x, y) ≡ 〈δ [x−∆τP (t)] δ [y −∆τP (t+ τ )]〉. (46)

Using exponential representation of δ-function, these ex-
pressions can be rewritten in the form

P (x) =

∫ ∞

−∞

dk

2π
e−ikxG (k, 0) , (47)

P (x, y) =

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dp

2π
e−ikx−ipyG (k, p) , (48)

where G (k, p) is the Fourier component of PDF

G (k, p) ≡
〈

eik∆τ P (t)+ip∆τ P (t+τ)
〉

. (49)

The variable y may be interpreted as the response on
initial push x, which is characterized by conditional PDF

P (y|x) =
P (x, y)

P (x)
, P (x) ≡

∫

dk

2π
e−ikxG (k, 0) , (50)

The average conditional response is

〈y〉x =

∫ ∞

−∞
dyyP (y|x) (51)

=
i

P (x)

∫

dk

2π
e−ikx ∂G (k, p)

∂p

∣

∣

∣

∣

p=0

.
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FIG. 5: PDF of Russian financial market (finam.ru, 2006) for
τ = 5 min (♦- EESR, © - LKOH, � - RTKM, � - SBER,
� - SNGS), solid line shows theoretical prediction (35) with
µ = 3.

The width of the conditional PDF P (y|x) is character-
ized by the conditional mean-square deviation

σ2
x ≡

∫

dy (y − 〈y〉x)
2 P (y|x) (52)

= − 1

P (x)

∫

dk

2π
e−ikx ∂2G (k, p)

∂p2

∣

∣

∣

∣

p=0

.

Large σx correspond to a large variety of the behaviors,
the “volatility”. The dependence of σx on x reflects the
volatility clustering: σx should not depend of x if there
is no volatility clustering.

The conditional response (51) and PDF (46) depend
of correlations between noises ξi and their amplitudes ai

in two time intervals. Before formulating general model
(see section III D), that takes all such correlations into
account, it would be instructive to study some simple
limits.

B. Markovian model

We first consider the case when the amplitude a (t) is
not correlated with external challenges at strategy hori-
zons, and a1 = a2 for two neighboring time intervals.
We also assume that the noise is not correlated with
the amplitude, but take into account short range cor-
relations of the noise, 〈(ξ1, ξ2)〉 = ε. For this Markovian
model we find Eq. 35 for the probability distribution,
which describes very well Russian financial market for
τ = 5 min, see Fig. 5. For Gaussian noise we find ex-
ponential PDF (24) of price fluctuations, which is really
observed for high frequency fluctuations41.

Averaging the Fourier component of PDF (49) over
fluctuations of Gaussian amplitude a1 = a2 and noise ξi

we find G (k, p) =
[

1 + σ2
(

k2/2 + p2/2 + εkp
)]−1

. Cal-
culating the Fourier transformation of this function (48),
we get the distribution function

Pt (x, y) =
1

πσ2
√

1− ε2
K0

[
√

2(x2+y2−2εxy)
σ2(1−ε2)

]

, (53)

where K0 is the Bessel function. Calculating the inte-
gral (51) with function (53), we find the conditional re-
sponse

〈y〉x = εx. (54)

Linear dependence (54) with ε < 0 well agrees with data
for Russian market, what can be interpreted as indica-
tion that Russian investors are oriented only on current
benefits, mostly ignoring opening possibilities at strat-
egy horizons. Although linear response (54) is typical for
ACOR group of stocks with ε < 0 (according to classifi-
cation of Ref.36), this model can not describe essentially
nonlinear response of other groups of stocks.

C. Effective market model

In general, the amplitude a is varied in response to un-
predictable external challenges. We first study this effect
in the model of “Effective market”, neglecting correla-
tions between noise ξ0

i in two consecutive time intervals
τ , but taking into account random variations of its am-
plitude a0

i :

〈(

ξ
0
i , ξ

0
j

)〉

= δij , (a0
1,a

0
2) = ν(a0

1)
2 = ν(a0

2)
2, (55)

where ν is dimensionless correlation parameter, 0 < ν <
1. As in Markovian model we ignore (anti)correlations
between noise and amplitude. Correlations of the noise
ξ0

i are induced by trader activity, while the change of
a stock price in the model of Effective market is deter-
mined only by an external information, which may be
considered as uncorrelated random process.

PDF P (x) of this model is proportional to the
parabolic cylinder function with power tail exponent
µ = 2 (see Eq. (36)). Non Gaussian character of the
noise PDF can be ignored when considering the central
parts of price distributions, when P (x) takes exponential
form (24). In order to calculate bivariate PDF, we sub-
stitute equation (42) in (49) and perform the averaging
over fluctuations of Gaussian variables a0

i :

G (k, p) =
〈

exp
[

−σ2k2(ξ01)
2/2−

σ2p2(ξ02)
2/2− νσ2kp

(

ξ0
1, ξ

0
2

)]〉

.
(56)

The averaging over noise ξ
0
i is performed with Gaussian

PDF (23), and the integral over k and p in expression (48)
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FIG. 6: Profiles of conditional PDF P (y|x) at different x
and ν = 0.95 (σ = $0.04) in comparison with empirically
observable profiles42

is calculated expanding the function G (k, p) in powers of
ν:

P0 (x, y) =
∑∞

l=0
ν2lPl (x)Pl (y) . (57)

Here P0 (x) = P (x) is given by Eq. (24), and functions
Pl (x) are defined by:

Pl (x) =
1

l!

dl

dzl

[

1√
z
P
(

x√
z

)]∣

∣

∣

∣

z=1

. (58)

PDF P0 (x, y) is symmetrical with respect to indepen-
dent transformations of its variables, x → −x, y → −y,
and also with respect to time reversal transformation,
which corresponds to push-response interchange, x ←→
y. This function is not analytical in origin, and the ge-
ometry of equiprobability levels can be approximated by

|x|λ + |y|λ = const, where λ ≃ 1 near origin and λ ≃ 2
far away from it.

Profiles of conditional distribution (50) are shown for
different x in Fig. 6. With the rise of the push x the
response becomes more flat in origin, in good agreement
with empirical data. Slight deviations between the theory
and data at large |y| ≫ σ are related to non-Gaussian
character of the noise (leading to power tail), see Eq. 35
for more details. Calculating integral (52) in the case
of Gaussian noise, we get the conditional mean-square
deviation,

σ2
x = σ2

[

1 + 1
2ν

2
(√

2 |x| /σ − 1
)]

. (59)

This function is plotted in Fig. 7. It demonstrates the
so called “dependence-induced volatility smile” (“D”–
smile), well known from empirical data43. At small
|x| . σ the standard deviation of the response (59)
is smaller than the unconditional standard deviation σ,
while at large |x| & σ it is larger.

The shape of conditional PDF can also be characterizes
by the kurtosis, proportional to fourth momentum. One

FIG. 7: Conditional mean-squared deviation as function of
x = ∆p; the result of Gaussian model with ν = 0.95 and
empirically observable D-smile43.

can show that, in agreement with empirical data, the
kurtosis of theoretical conditional PDF P0 (y|x) decreases
with the rise of |x|. We conclude, that Effective market
model captures main features of the market behavior, but
it is enable to describe finite response of real stocks.

D. Double Gaussian model

In this section we generalize Effective market model
to take into account short-range correlations at strategy
horizon because of activity of traders. Such correlations
lead to the exponent µ = 3 of the power tail of PDF
(section II C 4), and relatively weakly affects the central
part of PDF: for time interval τ about several minutes
it is estimated as about 5%39. We assume normal dis-
tribution of noise fluctuations ξi for the central part of
PDF, and neglect the effect of noise-amplitude anticorre-
lations, which is small at short τ , and leads to gain/loss
asymmetry (see section III D 4).

For given noise variables ξi we introduce random vari-
ables ξ0

i of Effective market model, which form orthogo-
nal basis in the space of random functions ξi, see Eq. (55).
Expanding price fluctuations ∆P (t) and ∆P (t+ τ ) over
this basis, we get:

∆τP (t) =
√

2
(

a0
1, ξ

0
1

)

+
√

2
(

ε1, ξ
0
2

)

, (60)

∆τP (t+ τ ) =
√

2
(

a0
2, ξ

0
2

)

+
√

2
(

ε2, ξ
0
1

)

. (61)

We consider amplitudes a0
i of Effective market as Gaus-

sian random variables, Eq. (55). Non-diagonal ampli-
tudes εi describe the shift of equilibrium on the market
because of trader activity. Since there are only two in-
dependent amplitudes, a1 and a2, for two time intervals,
the amplitudes ε1 and ε2, can be expanded over two di-
agonal amplitudes a0

1 and a0
2:

εi=
∑

j
c̃ija

0
j . (62)
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In the case ε1 = 0 or ε2 = 0 this Double Gaussian model
is reduced to Markovian model (section III B), and in
the case ε1 = ε2 = 0 – to the model of Effective market
(section III C).

PDF of this model is calculated in Appendix D:

P (x, y) = P0

(

x cosφ+ − y sinφ−, y cosφ− + x sinφ+

)

,
(63)

where P0 is PDF of Effective market model, Eq. (57).
The distribution (63) depends on only four independent
parameters: the dispersion σ, the correlator of the am-
plitude ν (0 < ν < 1), and two angles φ− and φ+, de-
pending on starting parameters {c̃ij} of our model. The
correlator ν describes the “elasticity” of the market to
external challenges at the strategy horizon. The angles
φ− and φ+ control the feedback between trader expecta-
tions and real price changes at the tactic horizon. Their
difference, ε = φ+ − φ−, is taken as small parameter of
our theory, which controls the correlator of neighboring
price increments

〈∆τP (t)∆τP (t+ τ)〉 = σ2ε. (64)

Eq. (63) turns to corresponding expression (53) for
Markovian model in the limit ν → 1, and reproduces
Eq. (57) of Effective market model for φ− = φ+ = 0.

The sum (57) goes only over even 2l because of ne-
glect of noise-amplitude correlations, 〈ηi〉 = 0. In gen-
eral, there are correlations between noise and amplitude,
described by a factor ζ (see section II C 3). Such correla-
tions (studied in section III D 4) break the symmetry of
the conditional average 〈y〉x with respect to positive and
negative x, and are responsible for the so called Leverage
effect44.

In our theory we have an hierarchy of small param-
eters, ζ ≪ |ε| ≪ φ ≪ 1. PDF of Double Gaussian
model with all nonzero ζ, φ, ε 6= 0 has no symmetries
at all. In the case ζ = 0 but φ, ε 6= 0 there is a symme-
try P (x, y) = P (−x,−y), corresponding to rotations on
the angle π in the plane (x, y). In the case ζ = ε = 0
but φ 6= 0, when there are no linear correlations of
price (64) at adjacent time intervals, PDF (57) remains
symmetrical only with respect to mixed transformation,
P (x, y) = P (−y, x), corresponding to rotations by the
angle π/2 in the plane (x, y). The change of sign of y in
the above equation is related to reversion of the time: on
reversed time scale one can think about losses in future,
y < 0, as about gains in the “past”. This approximate
push-response invariance was established first time from
the analysis of empirical data42. And finally, in the case
ζ = φ = ε = 0 the function P (x, y) acquires the total
symmetry x → −x, y → −y and x ←→ y of Effective
Market model.

1. Market MILL, ACOR and COR stocks

It is convenient to describe the symmetry of PDF with
respect to the axes y = 0 by antisymmetric component,

FIG. 8: Two-dimensional projection of log4 P
a (x, y) with re-

spect to y = 0 axes a) and y = x axes b) for ν = 0.95, φ
−

= 8◦

and φ+ = 8.7◦. For comparison sake we show corresponding

empirically observed pictures c) and d)36.

Pa (x, y) = [P (x, y)− P (x,−y)] /2. In Fig. 8 a) we plot
equiprobability levels of positive part of this function,
(Pa (x, y) + |Pa (x, y)|)/2.

For small |ε| ≪ φ the plot demonstrates four–blade
mill–like pattern (the “market mill” pattern), that was
observed first time in Ref.43, see Fig. 8 c). To analyze
these pictures it is convenient to divide the push-response
plane (x, y) into sectors numbered counterclockwise from
I to VIII. In agreement with empirical data at ε > 0
the blades in II and IV quadrants of the (x, y) plane
are thinner than their counterparts, which extend out of
I and III quadrants. The situation is reversed at ε <
0. With the rise of |ε| the market mill pattern becomes
distorted and only two corresponding blades of the mill
pattern left well expressed.

In Figs. 9 a) and b) we show how the market mill pat-
tern is deformed with variation of ε. Varying the angle
φ− for fixed σ, ν and φ+, we get good qualitative agree-
ment with observable patterns, shown in Figs. 9 c) and
d). We conclude that the theory allows to explain all the
variety of basic patterns for different stocks36, and may
be considered as the basis for their quantitative classifi-
cation: Fig. 8 with φ− ≃ φ+ > 0 (ε ≃ 0) corresponds
to the mill pattern (MILL), Fig. 9 a) with φ− > φ+

(ε < 0) corresponds to negative autocorrelation (ACOR),
and Fig. 9 b) with φ− < φ+ (ε > 0) corresponds to pos-
itive autocorrelation (COR). Anti-mill pattern (AMILL)
with φ− ≃ φ+ < 0 was never observed in Ref.36.

Similar patterns are obtained for symmetry properties
of the bivariate PDF P (x, y) with respect to different
axes y = x, x = 0, or y = −x. As example we show
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FIG. 9: Changing of asymmetry with respect to y = 0 axes
with parameter ε = φ+ − φ

−
. We use ν = 0.95 and φ+ = 8◦

and vary the angle φ
−

= 14◦ a), φ
−

= 6◦ b). For comparison

sake we show typical patterns observed for different stocks36

c) and d).

in Fig. 8 b) equiprobability levels of positive part of the
function Pa (x, y) = [P (x, y)− P (y, x)] /2. The blades
of this market mill are more symmetric than those in
Fig. 8 a), in agreement with empirical pictures in Figs. 8
c) and d).

An attempt to explain market mill patterns for the
asymmetry with respect to the axis y = 0 was made in
Ref.45, where “hand-made” analytical ansatz for condi-
tional PDF was proposed. It was explicitly assumed, that
the response y depends only on push x at previous time,
and no long-range correlations were taken into account.
We do not think, that such Markovian model can give
adequate description of real market with extremely wide
spectrum of relaxation times.

2. Univariate PDF

Now we calculate one-point PDF, Eq. (47), of Double
Gaussian model. Expression (D2) of Appendix D for
the Fourier component G (k, 0) can be represented in the
form

G (k, 0) =
(

1 + σ2α2
1k

2/2
)−1 (

1 + σ2α2
2k

2/2
)−1

, (65)

α1 = cos θ, α2 = sin θ

with the angle θ defined by

sin (2θ) =
√

1− ν2 sin (2φ) . (66)
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FIG. 10: Probability distribution function for the S&P500.
Daily data from 31/1/1950 to 18/7/200346 a) 5 minute incre-
ments for 1991-199547 b) We show the best fit by Eq. (67)
with θ = 0.3 a) and θ = 0.4 b), for comparison we show by
dotted lines the best fit by Gaussian PDF.

Calculating the integral over k in Eq. (50) with this func-
tion G (k, 0) we find one-point PDF

P (x) =
α1e1 (x) − α2e2 (x)√

2σ (α2
1 − α2

2)
, ei (x) = e−

√
2|x|/(αiσ).

(67)
As one can see from Fig. 10 this distribution is in good
agreement with observable PDF of the Standard&Poor
500 (S&P500) index, that is one of the most widely used
benchmarks for U.S. equity performance.

3. Conditional response

Calculating the integral (51), we find the mean condi-
tional response

〈y〉x = −sign (x)
√

2σ
2εα2

1α
2
2 −A

(α2
1 − α2

2)
2

e1 (x)− e2 (x)

α1e1 (x)− α2e2 (x)

+x
(εα1 −A/α1) e1 (x) + (εα2 −A/α2) e2 (x)

(α2
1 − α2

2) [α1e1 (x)− α2e2 (x)]
, (68)

where A = α1α2

√

(α2
1 − α2

2)
2 − ν2, αi and ei (x) are de-

fined in Eqs. (65) and (66). In Fig. 11 a) we show how
the dependence (68) of mean conditional response on
push x depends on the angle φ . This dependence has
zigzag structure for MILL group (ε ≃ 0), it is almost
monotonic for ACOR group (ε < 0), with linear limiting
dependence (54)), and is essentially nonlinear for COR
group (ε > 0). Similar calculations of conditional mean
absolute response 〈|y|〉x (which shows how the response
volatility is grow with the amplitude of the given push x)
show that in the case ε = 0 to a good accuracy it is linear
in the absolute value of the push |x|, 〈|y|〉x ≃ c0 + c1 |x|,
in good agreement with empirical data42.

To analyze the asymmetry of PDF P (x, y) with re-
spect to time reversion in the case of MILL group
(ε = 0), it is convenient to introduce the total incre-
ment of price during the two time intervals, and also
the difference of these increments z = 2−1/2 (x+ y) and
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FIG. 11: The dependence of mean conditional responce on
push x for different angles φ

−
. We use σ = $0.04 and φ+ = 8,

ν = 0.97 and φ
−

= 12.5◦ (ACOR),, ν = 0.9 and φ
−

= 9◦

(MILL), and ν = 0.8 and φ
−

= 4.5◦ (COR). Fitting parame-
ters were taken to reproduce empirical dependences presented
for some stocks36. Conditional responce 〈z〉z̄ for ν = 0.95,
φ+ = 8◦ and φ

−
= 7.7◦ in line with corresponding empirical

data are shown in Insert.

z̄ = 2−1/2 (y − x). PDF P (z, z̄) of these random vari-
ables takes the form of Eq. (63) with the substitution
φ → ϕ = π/4 − φ, describing the rotation of the push-
response plane by the angle π/4. Therefore, both PDF
and all conditional averages are given by above expres-
sions under the substitution 〈y〉x → −〈z̄〉z and θ → θ′,
where

sin
(

2θ′
)

=
√

1− ν2 sin (2ϕ) =
√

1− ν2 cos (2φ) .

Conditional response 〈z̄〉z also has z-shaped structure,
and it is shown in Insert in Fig. 11 in comparison with
empirical data.

Nonvanishing of average responses 〈y〉x and 〈z̄〉z
(Fig. 11) allows one to make some “nonlinear” predic-
tions (68) about future price changes on the market,
which can not be obtained from the knowledge of only
linear correlations: the response y in the next time in-
terval is correlated with initial increment of the price x
at small |x| . σ, and is anticorrelated with it at large
|x| & σ. The order of price increments is also important

for given total increment
√

2z: for small z < z0 ∼ σ the
average initial variation x is larger than next one, y, and
the situation is reverted at large z.

4. Conditional double dynamics

In this section we discuss the hypothesis of Ref.37, that
the average return is actually the result of composition of
two independent signals with Markovian statistics: one
of them positive, and another one negative. It is pro-
posed to characterize this effect by average daily returns
〈y−〉rc

and 〈y+〉rc
given that the previous day had a re-
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FIG. 12: Average daily return given that the previous day had
a return greater than rc (right) and given that the previous
day had a return smaller than rc (left). Prediction of Gaussian
model at θ = 0.2 a) and empirical data37 b).

turn greater than rc and smaller than rc:

〈y−〉rc
=

∫ rc

−∞
dx 〈y〉x P (x)

/
∫ rc

−∞
dxP (x) , (69)

〈y+〉rc
=

∫ ∞

rc

dx 〈y〉x P (x)

/
∫ ∞

rc

dxP (x) . (70)

Calculating integrals (69) and (70) for Double Gaussian
model in MILL case ε = 0, we find at rc > 0:

〈y−〉rc
= −〈y+〉rc

=
σ√

2 (α2
1 − α2

2)
×

A

α2
1e1 (rc)− α2

2e2 (rc)

{

α1e1 (rc) + α2e2 (rc)

2
−

−α1e1 (rc)− α2e2 (rc)

α2
1 − α2

2

− rc√
2σ

[e1 (rc) + e2 (rc)]

}

.

(71)
This function is shown in Fig. 12 in line with empirical
data. As one can expect from Fig. 12 a) the average re-
sponse 〈y+〉rc

is correlated with rc at small rc . σ and is
anticorrelated with it at larger rc. We added horizontal
dotted line in Fig. 12 b), shifting the y-axis by uncon-

ditional average return37 〈y〉 = 0.00025. This shift and
remaining difference in shape between Figs. 12 a) and b)
is related to the buy/sale asymmetry, discussed below.

At rc = 0 the average daily return for given sign of
the previous day return is finite, reproducing the effect
of “double dynamics” of the market, attributed in Ref.37

to “propagation” of two independent signals in “Marko-
vian” market.

In fact, the market is not Markovian, but the sign
of price increments is determined only by the noise ξ.
Markovian “double dynamics” of signs is direct conse-
quence of Markovian statistics of noise correlations, see
section II C 4. Anticorrelations between the noise and the
amplitude are responsible for small systematic trend of
the price, 〈y〉 ≃

√
2αζ (28), reproducing empirical data37

for ζ ≃ 0.02. This positive trend leads to corresponding
increase of the probability to have positive price incre-
ment, p+ = 1/2+ c1ζ with c1 ≃ 1. Conditional probabil-
ities of the two-state model37 can be expressed through
the angle φ ≃ φ− ≃ φ+, which determines the ampli-
tude of the response 〈y〉x on previous price increment x
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FIG. 13: Theoretical dependence of the skewness ρx on x for
double Gaussian model at φ = 0.2, ε = 0 and ν = 0.9 and
empirically observable dependence39.

(c2 ∼ 1):

p++ = 1/2 + c1ζ + c2φ,

p−− = 1/2− c1ζ + c2φ.

Empirical observation of “double dynamics” may be
considered as direct confirmation of Markovian statistics
of noise fluctuations, but not of the whole market, as
conjectured in Ref.37. We show in section IVC 7, that
multifractal evolution of the amplitude is strongly non-
Markovian. But consideration of only signs of returns
“erases” information about the amplitude from the time
series.

5. Skewness

Asymmetry of the conditional distribution P (y|x)
with respect to the average (51) is characterized by the
skewness of the conditional response:

ρx =
1

σ3
x

∫ ∞

−∞
dy (y − 〈y〉x)3 P (y|x) .

The conditional mean-square deviation σx is defined in
Eq. (52). Positive value of ρx indicates that only few
agents perform great profits, while many of them have
small losses with respect to the mean. A negative ρx

describes a complementary case. As one can see from
Fig. 13, the skewness has the sign of initial push x in
accordance with the empirical dependence. Notice that
although the skewness is very sensitive characteristic of
PDF, our theory reproduces both observed shape and
values of ρx.

In this section we show, that separation of hot and
cold degrees of freedoms allows to reproduce numerous
empirical data, known for high-frequency fluctuations on

financial markets. For Gaussian statistics of all degrees of
freedom this model captures main features of all groups
of stocks, including “market mill” patterns, “dependence-
induced volatility smile”, z-shaped response function and
so on. Correlations between hot and cold variables are re-
sponsible for observable double dynamics of the market,
mixing propagating signals of opposite signs and provid-
ing systematic positive trend of prices.

E. Results and restrictions

In this section we demonstrate, that the idea of hot and
cold variables allows to capture main features of price
fluctuations, which can be described by Double Gaus-
sian model – a generalization of the random walk model
for the case of multiscale fluctuations. For different sets
of parameters the analytical solution of this model re-
produces the behavior of all kinds of stocks on financial
market, as well as the market as a whole.

Consider some restrictions of this approach. Using
coarse-grained description of price fluctuations at times
τ > τk . 1 min we loose information about sale/buy
mechanisms48,49. This knowledge (see, for example, Mi-
nority and Majority Games50) is important to derive pa-
rameters of our models for particular markets. We also
considered only uni- and bivariate distribution functions,
while market dynamics is described by the whole fam-
ily of n-point correlation functions. In next section we
present alternative description of the market at differ-
ent time scales using ideas of renormalization group ap-
proach.

IV. MULTISCALE DYNAMICS OF THE

MARKET

Standard thermodynamics can describe only ergodic
systems, while the market is the system with “restricted
ergodicity”: during the time τ it can explore only small
part of the total configuration space near current local
equilibrium. Increasing the time t, this equilibrium is
shifted because of long-time variations. The resulting
multi-time dynamics of fluctuations on the market is not
ergodic, and can only be described by continuous set of
Langevin or Fokker-Planck-type equations for all time
scales.

Note, that this is not exclusive, but standard behavior
of complex physical systems. As we will show, different
local equilibriums on the market are organized into tree
cascades (“self-organized criticality”), by analogy with
“hot spots” in Quantum Chromodynamics51, and dy-
namics of unergodic spin-glasses, which is government
by continuous set of Fokker-Planck equations52. Contin-
uous set of equilibriums was also predicted for incomplete
markets53.

The behavior of the market at the trade by trade level
was studied in many details54–56. At larger times col-
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lective effects become important, and financial time se-
ries display long-time nonlinear correlations57–59, which
puzzle many researchers60–62. Different models have
been proposed in order to reproduce some “stylized
facts”40 of empirical time series. Lévy flight processes63

were used to model jumping character of price varia-
tions. Volatility (the amplitude of fluctuations) cluster-
ing effects have been studied in frameworks of stochastic
volatility models64 and GARCH-type models65. Mixed
effect of jumps and stochastic volatility was taken into ac-
count in some models66. A key to study multiscale prop-
erties of price fluctuations is provided by phenomeno-
logical multifractal models, see Refs.67,68. Renormgroup
approach, describing evolution of multiscale systems, was
first proposed for glass systems69,70, and in present work
we extend it to the market.

The key question is the source of price fluctuations.
Assumption about totally random activity of traders71,72

leads to Brownian motion of prices. Although random
trading model predicts many qualitative and quantita-
tive properties of the order books55,73, it can not describe
existing correlations in price fluctuations. An alternative
“efficient market hypothesis” assumes, that the price can
be changed only because of unanticipated and totally un-
predictable news. This hypothesis lays in the basis of
the model of fully rational agents74, which also predicts
Brownian walk statistics of prices. Observed volatility of
the market is too high to be compatible with the idea of
fully rational pricing75, and can only be reproduced by
introducing an artificial random source – “sunspots”76.
In addition, the analysis of Ref.77 shows, that most of
large fluctuations in the market are due to trading activ-
ity, independently of real news.

The main idea of this paper is that market activity can
be described as random trading at all time horizons τp

from a minute to tenths years. The market tends to reach
equilibriums on extremely wide baseband of time scales,
and all these equilibriums are continuously changed both
because of long-time modes and external events. Multiple
local equilibriums can be represented by an hierarchical
tree, see Fig. 14. Each generation r of this tree is char-
acterized by its relaxation time τr. For any observation
time interval τ = τ r, all states with times smaller than
τ r are in equilibrium, and fluctuations near this equi-
librium are described by hot degrees of freedoms. The
states with times larger τ r are frozen, and are described
by cold degrees of freedom.

In this section we derive an analog of renormgroup
equations for the market, which relate fluctuations at
different coarse grained time scales τ . With decrease
of the time interval τ , which can be thought of as ef-
fective temperature, the market experiences a cascade
of dynamic phase transitions of broken ergodicity, when
some hot degrees of freedom become frozen. This cascade
can be graphically shown as the hierarchical tree, each
branching point of which represents “phase transition”
to a state with frozen degrees of freedom with relaxation
times τr > τ , see Fig. 14. We show in section IVA1,

FIG. 14: Hot and cold degrees of freedom have, respectively,
times small and large with respect to coarse graining time τ .
The scale of relaxation times for two observation times τ and
τ/ (f − 1), Fig. a). Elementary step of renorm group trans-
formation corresponds to division of “parent” time interval
τ into (f − 1) “child” time intervals τ/ (f − 1), see Fig. b).
Hierarhical tree in ultrametric time “space” is shown in Fig.
c). For given observation time τ upper part of the tree, shown
by solid lines, corresponds to “cold” degrees of freedom, and
lower (dotted) part corresponds to “hot” degrees of freedom.

that the topology of this tree reflects ultrametricity of
the time “space”.

In section IVA2 we demonstrate, that fluctuations at
given time scale τ are determined by contributions of all
“parent” time scales of the hierarchical tree in Fig. 14,
what is the reason of non-Markovian dynamics of the
market. Cumulative contribution of all time scales al-
lows to explain extremely high volatility of the market
(section IVB1), and is responsible for power low de-
cay of correlation functions (section IVC 1) and their
multifractal properties. In section IV C1 we formulate
self-consistency condition, under which the hierarchical
tree in Fig. 14 describes coarse-graining dynamics at all
levels of the coarse graining time τ , and find the τ -
dependence of parameters of our Double Gaussian model,
section III D.

In section IVC 3 we derive a set of Langevin equa-
tions, describing dynamics of the market with extremely
wide range of characteristic times – from minute to tenths
years, and calculate the price shift in the response on im-
balance of trading volumes (section IVC 4).

We also calculate PDF of volatility (section IV C5)
and show, that it has fat tail with stable exponent µ = 3
for stock jumps and µ = 2 for news jumps. We de-
rive, that coarse grained dynamics of the market can
be reduced to the multifractal random walk model78,79,
which determines multifractal properties of price fluctu-
ations, related to the ultrametric structure of the tree
in Fig. 14. We calculate volatility patters after news
and stock jumps, and find their conditional probabili-
ties. In section IVC6 we show, that the price P (t) be-
haves as fractional Brownian motion. We demonstrate
in section IVC 7, that Brownian motion, sub- and super-
diffisive regimes change each other at the long-time scale.
The knowledge of history can be used to estimate the
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tendency and risks of future price variations.
Main results of this section are summarized in sec-

tion IVD. In Appendix E we show details of calculations
of the volatility distribution.

A. Renormalization group transformation

Consider statistics of price increments (returns)

∆τP (t) = P (t+ τ )− P (t) , (72)

as the function of the coarse-graining time interval τ .
Here P (t) is the price or its logarithm at time t. For
definiteness sake, we consider only ACOR group of
stocks36, when ∆τP (t) can be represented as scalar prod-
uct of complex amplitude a (t) and complex noise ξ (t),
Eq. (41). By analogy with renormgroup consideration,
cold variable a (t) slowly varies at time scale τ , while hot
variable ξ (t) quickly fluctuates at this scale, see Fig. 14
a).

1. Ultrametricity and restricted ergodicity

In order to establish an analog of renormgroup trans-
formation for the market we first introduce correspond-
ing partitioning of the time “space”. At elementary
step of the renormgroup each “parent” interval τ r of
time axis can be divided into f − 1 “child” time interval
τ r+1 = τr/ (f − 1), see Fig. 14 b). Repeating such divi-
sion, we arrive to the hierarchical tree with functionality
f , shown schematically in Fig. 14 c). For this tree the
time

τ r = τ0e
−κr, κ = ln (f − 1) (73)

depends exponentially on the current rank r, τ0 is maxi-
mal relaxation time. Minimal time τk = τ0e

−κk (k is the
number of generations of the tree) is about average time
between trades. Typically, τ0 is about several years and
τk is about minute for liquid markets, and so κk & 13.

We define the “distance” z between events at times t
and t′ by the condition τ r−z = |t− t′|:

z (t− t′) =
1

κ
ln
|t− t′|
τ

at |t− t′| ≫ τ = τ r, (74)

which can be identified with the distance (number of gen-
erations) along the tree in Fig. 14 c) between these points.
One can show, that for three different times t, t′, t′′

z (t− t′′) ≃ max [z (t− t′) , z (t′ − t′′)] ,

and, therefore, the metric (74) generates ultrametric time
“space” (with only isosceles and equilateral triangles),
which can be really mapped to the tree. For example, in
Fig. 14 c) the distance between points a and b is zab = 1,
zbc = 2, and zac = max (zab, zbc) = 2.

Note, that Eq. (73) gives standard relation between
time scales of discrete wavelet transformation. The tree
in Fig. 14 can be thought of as a skeleton of the wavelet
transformation of time series. We turn to wavelet inter-
pretation of our approach in section IVC 3.

Each of horizontal levels at the time τ = τ r on the tree
in Fig. 14 c) corresponds to course-grained description of
fluctuations at the time scale τ . Hot degrees of freedom
are “melted”, and described by complex noise ξ (t) with
continuum spectrum of relaxation times extended from
τk through τ . Cold degrees of freedom are characterized
by complex amplitude a = ar of the noise, which is frozen
at the time τ , see Eq. (41).

By analogy with glasses, the states of real market
are highly degenerated, what is reflected in the pres-
ence of gauge transformation (21) of complex noise and
amplitude variables, which do not affect price variations
∆τP (t), Eq. (41). The degeneracy is the reason of high
sensibility of the market to external events. Recall, that
in spin glasses any observable are not affected by “non-
serious” part of disorder, which can be removed by gauge
transformation of glass degrees of freedoms.

Following this analogy, the time τ plays the role of the
temperature T . With decrease of the temperature T ∼ τ
from τ = τ0 the market experiences a cascade of dynamic
phase transitions of broken ergodicity, when some hot de-
grees of freedom become frozen (the system is unergodic
if its fluctuations can not explore the whole configura-
tion space). This cascade proceeds continuously down to
the time τk, and can be graphically shown as hierarchi-
cal tree, each branching point of which represents phase
transition to a state with frozen degrees of freedom with
relaxation times τ r > τ , see Fig. 14. The parameter
κ ≪ 1 determines the probabilities of such transitions,
which are relatively rare for real markets.

In this sense at any τ < τ0 the market is just at the
point of dynamic phase transition of broken ergodicity,
and has, therefore, increased amplitude of fluctuations –
the volatility. This observation supports the idea that the
market is always operating at a critical point as the result
of competition between two populations of traders: “liq-
uidity providers”, and “liquidity takers”80,81. Liquidity
providers correspond to hot degrees of freedom, creating
antipersistence in price changes, whereas liquidity takers
correspond to cold degrees of freedom, and they lead to
the long range persistence in prices.

Since such separation of the market into hot and
cold degrees of freedom takes place at any time scale,
τk ≪ τ ≪ τ0, there could not be any unique classifica-
tion of traders, which can be divided also into “positive
feedback” traders and “fundamentalists”82, “contrarian”
traders and “trend followers”83 and so on. There is, how-
ever, important difference between market and spin-glass
hierarchical trees: while the states of the glass are not or-
dered, there is strong time ordering of all “points” of the
market tree at any level r of the hierarchy.
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2. Recurrence relation

General recurrence relation between amplitudes ar and
ar+1 at levels r and r + 1 of the hierarchical tree can be
written through the random transition matrix ur:

ar+1 = ur+1ar + ∆ar+1. (75)

In general, there could be a term ∼ (ar)
∗

in the rhs of
this equation, but it is not invariant with respect to gauge
transformation, Eq. (21), and should be dropped. The
term ∼ ur+1 describes the inheritance of the amplitude
ar of the “parent” levels of the hierarchy, and ∆ar+1

gives the contribution of “newborn” during the transition
r → r + 1 unfrozen degrees of freedom to the “child”
amplitude ar+1.

The recurrence relation (75) can also be rewritten in
the multiplicative form, introducing relative increment
∆r+1 = ∆ar+1/ar:

ar+1 = eωr+1ar, eωr+1 ≃ 1+ωr+1 = ur+1+∆r+1 (76)

Random variables ur+1 and ∆ar+1 (∆r+1) are deter-
mined by degrees of freedom with characteristic times
τ r < τ < τr+1, while ar is formed by degrees of freedom
with times larger τ r. Assuming independence of fluctua-
tions of different time scales, ar do not depend on ur+1

and ∆ar+1. We estimate the mean squared amplitudes
of fluctuations of ∆ar and ur as

(∆ar)
2

= D0τ r, u2
r = u2, (77)

There is important difference of Eq. (77) from the case
of usual diffusion, when

〈

r2
〉

= Dt is the consequence
of independence of fluctuations at different times t. In
contrast, diffusion-like dependence (77) with effective co-
efficient D0 is the consequence of independence of fluctu-
ations of different time scales τ r. The time t-dependence
of price fluctuations is strongly non-diffusive.

B. Amplitude of fluctuations

1. Excess of volatility

In the mean field approximation we neglect fluctua-
tions of ur = u, and find the solution of Eq. (75) in the
form of the sum of independent random signals ∆ar−k

from time intervals τ (f − 1)
k
, obtained by multiplicative

merging of (f − 1)
k

previous time intervals τ :

ar (t) =
∑

k>0
uk∆ar−k (t) . (78)

Weights of these signals exponentially fall with the dis-
tance k in time hierarchy from the current rank r. Simu-
lated time series (78) for the amplitude a (t) in the model
with random ∆ar = ±

√
D0τ r are shown in Insert in

Fig. 15. This picture demonstrates multiscale character
of resulting price fluctuations.

FIG. 15: Empirical dependence84 of dispersion σ (τ ) on time
interval τ , and its fitting by Eq. (82), λ2

0 = 0.9 for DELL and
λ2

0 = 0.8 for General Electric. The effective Hurst exponent
H is different at τ < τx and τ > τx. In Insert – computer
simulation of random amplitude, Eq. (78).

Averaging the square of the recurrence relation (75),
we find difference equation

σ2 (τ r+1) = u2σ2 (τ r) +D0τ0e
−κ(r+1) (79)

for the dispersion σ (τ r+1) of the amplitude ar , which
has the solution

σ2 (τ r) = Dτr + Lu2r, (80)

where L is the constant of integration and D is the effec-
tive diffusion coefficient:

D =
D0

1− e−κλ2
0

≫ D0, e−κλ2
0 ≡ u2eκ. (81)

From Eqs. (80) and (73) we find the dependence of
the dispersion of price increments on the coarse-graining
time τ :

σ2 (τ ) = Dτ + L (τ/τ0)
1+λ2

0 . (82)

The dependence (82) for different stocks is in good agree-
ment with empirical data, see Fig. 15. Although at small
τ ≪ τx,

τx = τ0 (Dτ0/L)
1/λ2

0 , (83)

it looks like diffusion with apparent diffusion coefficient
D (81), price fluctuations do not really have diffusive
behavior. As the sign of it, the amplitude of price
fluctuations is anomalously large due to the presence
of a big prefactor for κ ≪ 1 in Eq. (81). It was
shown by Schiller85, that even accounting the volatility of
dividends86 leaves the empirical volatility at least a factor
5 too large with respect to the random walk model. Such
anomalous “excess of volatility”, D/D0 ∼ 10, originates
from the superposition of signals from all time scales, see
Eq. (78). Similar effect (by 10 orders of value) is well
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known in spin glasses, where the parameter κ in Eq. (74)
is extremely small.

Eq. (80) can be used to estimate the amplitude of the
transition matrix in Eq. (76). From Eqs. (77) and (80)

with L = 0 (at τ ≪ τx) we find ∆2
r+1 = e−κ

(

1− e−κλ2
0

)

,

and get

e2ωr = e−κ. (84)

2. Cross-over time and Hurst exponents

The term ∼ L in Eq. (82) appears as a constant of
integration of the recurrence equation (79), which is de-
termined by the “boundary condition” at trading time
τk. Therefore, L is not universal and determined by mi-
crostructure of the market.

At small τ < τx the first term in Eq. (82) gives the
main contribution, σ (τ ) ∼ τH , with effective Hurst ex-
ponent close to 1/2. At large τ > τx the second term
in Eq. (82) gives dominating contribution to the Hurst
exponent:

H = (1 + λ2
0)/2. (85)

Such behavior with different exponents H at τ < τx

and τ > τx was really observed for S&P 500 stock in-
dex (1984-1996)87 with different values of the cross-over
time τx for individual companies, see Fig. 15.

The removal87 of the largest 5 and 10% events kills
correlations of the noise ξ (t) at small time scales, reduc-
ing the constant L. According to the prediction (83) of
our theory, it shifts σ (τ ) to lower values, and strongly
increases τx. Excluding the shift of L from variations of
both σ and τx, we find linear relation between two these
shifts: ∆ lnσ ≃ −

(

λ2
0/4
)

∆ln τx. Comparison with em-

pirical data87 gives the estimation λ2
0 ≃ 1, in good agree-

ment with observable exponent H ≃ 0.93 for the regime
τ > τx, see Eq. (85). Similar behavior is observed for
different stocks with typical transition times τx about
several days.

3. Parameters of Double Gaussian model

Let us show, that in order to represent coarse grained
dynamics of price fluctuations for the time interval τ =
τ r, noise variables ξn

r+1 at different “child” subintervals
n = 1, . . . , f − 1 of the same “parent” interval should
be (anti)correlated. According to the idea of the coarse
grained description, the price increments for the time in-
terval τ r is the sum

∆τrP (t) =
∑f−1

n=1
∆τr+1

P (t+ nτ r+1) (86)

of price increments for all f − 1 adjacent time intervals
τ r+1. Substituting Eq. (41) into Eq. (86), this last equa-

tion can be rewritten in the form

(ar, ξr) =

f−1
∑

n=1

(

ar, ξ
n
r+1

)

=

(

urar ,

f−1
∑

n=1

ξn
r+1

)

+

f−1
∑

n=1

(

∆an
r+1, ξ

n
r+1

)

,

(87)

where we substituted Eq. (75) for the amplitude an
r+1 to

the right hand side of Eq. (87). Calculating the aver-
age (both quenched and annealed) of the square of this
equation, we find the self-consistency equation

σ2 (τ r) = u2σ2 (τ r) (f − 1) (1 + ε) +D0τ r (f − 1) ,

where ε is the noise correlator at neighboring time inter-
vals,

ε ≡
〈

∆τr+1
P (t)∆τr+1

P (t+ τ r+1)
〉

/

σ2 (τ r+1)

=
〈(

ξr+1
α , ξr+1

β

)〉

,

Substituting here u2 = e−κ(1+λ2
0) (80) with eκ = f − 1

we find in the case L = 0

ε ≃ − (eκ − 1)κλ2
0 ≃ −κ2λ2

0.

This value is always negative and small at κ≪ 1.

4. Time and size dependence of fluctuations

The effect of noise/amplitude anticorrelations, studied
in section II C 4, is small in the parameter ζ ≪ 1, and
leads to the asymmetry of the tails of probability dis-
tributions (see Fig. 4), observed for PDF of individual
companies in Ref.88. It is also responsible for different
apparent exponents for positive (µ+ > 3) and negative
(µ− < 3) power tails. This effect is illustrated in Insert

in Fig. 16, where we show, that the function (x− x̄)−4

at x̄ = 1 is indistinguishable at about two decades in x
from power tails |x|−1−µ± with exponents µ+ = 3.25 and
µ− = 2.8. Increasing x̄ ∼ ζ leads to larger deviations of
these exponents from the universal value 3, see Insert.

Simple analytical expression for the whole distribution
P (x) for general τ can be easily constructed by consec-
utive matching Gaussian, exponential and power distri-
butions, P (x) ∼ x−4, at some points x± and y±, respec-
tively. The resulting expression well reproduces most of
empirical data for PDF P (x). Below we use this expres-
sion to explain main features of PDF at τ ≪ τx and
τ ≫ τx:

We can estimate the effective exponents µ± re-

expanding x−4 ∼ (x− x̄)−1−µ± about correlation in-

duced systematic shift x̄ ≃
√

2ζα ≃
√

2ζσ (see Eq. 28),
and find µ± ≃ 3 + 4x̄/x± near cross-over points x = x±.
At small τ ≪ τx the central part of the distribution has
exponential shape (26) with maximum at x̄. Matching it
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FIG. 16: Empirically observed positive a) and negative b)
tails88 of the probability distribution, and their matching by
shifted Gaussian and power tail (x − x̄)−4, x̄ = 0.1σ for time
interval τ = 64 days and x̄ = 1.1σ for τ = 1024 days. In Insert
we show matching of x−4 by (x − x̄)−1−µ± with µ+ = 3.25
(1), µ

−
= 2.8 (2) at x̄ = 1, and µ+ = 4.5 (3), µ

−
= 2.3 (4) at

x̄ = 2.

at x = x± with power tails A±x−4 we find x± = ±2
√

2σ±
and µ± ≃ 3± 2ζ, in good agreement with Ref.88.

At large τ ≫ τx the central part has Gaussian shape.
Matching it at x = y± with power tails, we get y± =

x̄/2±
√

x̄2/4 + 4σ2. With increase of ζ (at x̄ ≃
√

2ζσ &
σ) Gaussian region of the positive distribution is pro-
gressively extended, while negative distribution remains
fat-tailed, explaining corresponding mysterious behavior
of empirical data88, see Fig. 16.

The size dependence of the volatility was studied for
individual companies in Ref.88. It is shown, that Eq. (13),
σ ∼ G−β , well describes the dependence of dispersion of
returns on market capitalization. For τ = 1 day β ≃ 0.2,
while it gradually decreases with the rise of τ , approach-
ing the value β ≃ 0.09 for τ = 1000 days. This effect
supports our self-similar model of companies (see sec-
tion II B 2), when the index β = 1/ (2n) is determined
by the number n of generations of the hierarchical tree.
The effective number n of tree generations logarithmi-
cally depends on relaxation time τ , Eq. (73), and for
τk ≪ τ ≪ τ0 the dependence β on τ can be approxi-
mated by

β ≃ β0 − β1 ln τ. (88)

From equation σ ∼ G−β ∼ τH we find that the Hurst
exponent (85) should grow logarithmically,

H = H0 + β1 lnG,

with market capitalization G, in good agreement with
empirical data84.

C. Nonlinear dynamics of fluctuations

1. Correlation functions: multifractality

From Eqs. (75) and (80) we find simple analytical ex-
pression for the correlation function of amplitudes:

(a (t) ,a (t′)) = Dτ0e
−κr−κλ2

0z(t,t′) + Lu2r, (89)

where z is the logarithmic distance (74) in the ultrametric
space, see Fig. 14. Therefore, observed power autocorre-
lations in the time series are the consequence of the self-
similiarity of the hierarchical tree in Fig. 14. Neglecting
the term L at large enough r (small coarse-graining time
τ < τ×) in Eq. (89) we find that amplitude correlation
function decays as the power of the time

(a (t) ,a (t′)) ∼ exp
(

−λ2
0 ln |t− t′| /τ

)

, |t− t′| ≫ τ .

Now consider fluctuations of the modulus a (t) of the
amplitude a (t). The solution of the multiplicative re-
current relation (76) for the coarse graining time τ = τr

is

a (t) ≃ σ0e
ω(t), ω (t) =

∑

p6r
ωp (t) . (90)

From expansion (90) we find

aq (t) aq (t′) ∼
(

τ

|t− t′|

)τ(q)

, τ (q) =
g (2q)− 2g (q)

κ
(91)

with

g (q) ≡ ln eqωr = −qκ/2 + κλ2
(

q2/2− q
)

+ ...,

where we expanded g (q) over irreducible correlators of

ωr = ω̄r + ∆ωr, κλ
2 = ∆ω2

r, and used Eq. (84) to find
the linear in q term. For Gaussian ωr there are only two
first terms in this expansion, and we get τ (q) = λ2q2.
We also find

aq (t) ∼ τ qH̃(q), qH̃ (q) = −g (q) /κ.

In the case of Gaussian ωp this gives us the generalized

Hurst exponent H̃ (q) = 1/2+λ2−λ2q/2, see also Ref.89.
The intermittence parameter λ2 characterizes the uncer-
tainty on the market, and we expect, that λ2 is relatively
large for emerging markets with large uncertainty, and
small for well-developed markets (see section IVC3).

We conclude, that hierarchical structure of market
times, see Fig. 14, generates multifractal time series with
q-dependent generalized Hurst exponent. The ampli-
tude a of fluctuations is randomly renewed with time
t: with the probability p0 ∼ τ−1

0 for the root of the hi-
erarchical tree in Fig. 14, ..., and with the probability
pk ∼ τ−1

k ≫ γr for maximum rank i = k of the tree.
This random process generalizes the Markov-Switching

Multi-Fractal process67 with a2 = σ2
∏k

r=1M
(r). The

multiplier M (r) is renewed with probability pr exponen-
tially depending on its rank r within the hierarchy of
multipliers.
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2. Volume statistics

In this section we introduce an analog of canonical
action-angle variables, in which coarse-grained market
dynamics can be described by a set of linear Langeven
equations for all time scales τp in the market. The “ther-
modynamic force” of price variations is the imbalance of
trading volumes, V (t), which can be considered as ran-
dom function of time (volume time series). The incre-
ment of the volume at the time interval τ = τ r can be
written by analogy with price increment (Eq. 90) in the
form:

∆τV (t) ≃ σ0e
v(t)η (t) , v (t) =

∑

p6r
vp (t) . (92)

Normalized random noise η (t) is proportional to the sign
of the increment ∆τV (t). Gaussian random variable v (t)
slowly varies at the time scale τ , and can be expanded
over modes p covering the frequency band from τ−1

p to

τ−1
p+1. Explicit expression for vp (t) can be obtained ex-

panding its variation ∆v (t) = vp (t)− v̄p over normalized
wavelet functions ψ with expansion coefficients v̂p (t′) (v̄p

describes regular trend):

∆vp (t) =
∫

τ
−1/2
p ψ [(t− t′) /τp] v̂p (t′) dt′,

v̂p (t′) =
∫

τ
−3/2
p ψ∗ [(t− t′) /τp] ∆v (t) dt.

(93)

Similar equations relate modes ωp (t) (90) with the
volatility ω (t). In the case of random activity of traders
v̂p (t′) at all time horizons τp should be considered as
uncorrelated random values:

v̂p (t) v̂p′ (t′) ≃ λ2κδpp′δ (t− t′) . (94)

The noise function η (t) in Eq. (92) can be presented
in the form η (t) ≃ cosφ (t), where φ (t) is the phase
of corresponding complex amplitude (see Eq. 41). Ran-
dom function φ (t) can be expanded over wavelet modes
(Eq. 93). Assuming that corresponding expansion coeffi-

cients φ̂p (t′) are independent random values at all time
horizons,

φ̂p (t) φ̂p′ (t′) ≃ γκδpp′δ (t− t′) , (95)

we find:

η (t) η (t′)− η (t)
2 ≃ exp



−
∑

τk<τp<|t−t′|
φp (t)φp (t′)





≃ exp

[

−
∫ |t−t′|

τk

dτp

κτp
(γκ)

]

.

Calculating the integral over τp we arrive to

η (t) η (t′)− η (t)
2 ∼ |t− t′|−γ

. (96)

From above equations we find that the amplitude of
volume increments |∆τV | is log-normally distributed and

uncorrelated with the sign of ∆τV (t). These predictions
are supported by empirical data90, which also show, that
signs η (t) of trade volumes (and, therefore, the very η (t))
have long-range power correlations, Eq. (96), with stock
dependent exponent γ < 1. We conclude, that observed
power-low correlations in signs of volume are the con-
sequence of the self-similiarity of price fluctuations at
different time scales, which lead to scale invariant in-
termittence parameter λ2 (Eq. 94) and the amplitude of
fluctuations γ (Eq. 95). Such long range correlations are
usually considered as the result of cutting of large trades
into small chunks (see Ref.90).

3. Langeven equations and market entropy

The key idea of Langeven formulation of multi-time
market dynamics is that fluctuations at different time
scales τp are statistically independent. Therefore, the
logarithmic volatility ωp (t) of the mode with relaxation
time τp is induced only by corresponding volume mode
vp (t) (93). Since both ωp (t) and vp (t) have Gaussian
statistics, general Langeven equations are linear (differ-
ent choice of fluctuation modes makes these equations
highly nonlinear):

τp
∂ωp (t)

∂t
+ ωp (t) = vp (t) (97)

with δ-correlated noise:

∆vp (t) ∆vp′ (t′) = 2δpp′κλ2τpδ (t− t′) . (98)

At time scale τp this equation is in agreement with
Eq. (94). After standard calculations we find correlation
function of volatility modes

∆ωp (t)∆ωp′ (t′) = δpp′κλ2e−|t−t′|/τp , (99)

and fluctuations of logarithmic volatility for the coarse
graining time τ = τ r:

G (t− t′) = ∆ω (t)∆ω (t′) =
∑

p6r ∆ωp (t)∆ωp (t′)

≃ λ2 ln (τ0/ |t− t′|) , τ ≪ |t− t′| ≪ τ0.
(100)

This expression lays in the basis of multifractal random
walk model78,79, and reproduces Eq. (91):

aq (t) aq (t′) ∼ exp q [ω (t) + ω (t′)] ∼ (τ/ |t− t′|)τ(q)
.

Eqs. (90), (97) and (98) present Langeven formulation
of multifractal market dynamics. Using standard trans-
formations, they can be rewritten in the form of Smolu-
chovski equations for probability function Ψ {ωp}. The
importance of this function is that it defines rigor entropy
of the market

S [Ψ] =

∫

DωpΨ {ωp} ln Ψ {ωp} ,
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which can only increase with time. The entropy S [Ψ]
characterizes informational content of the market.

From Eq. (97) we find the relation between averages:
v̄p = ω̄p ∼ −κ (see Eq. 84), which allows one to express

parameters κ and λ2 of our theory through corresponding
moments of the trade volume V :

κ ∼ 2

k
ln
|V |
Vk

, λ2 ∼ (∆ lnV )2

kκ
∼ (∆ lnV )2

ln |V/Vk|
, (101)

where V 2
k ≃ σ2

0τk/τ0 is about squared bid-ask spread.

4. Response functions

From Langeven equation (97) we find the response of
the mode p on volume imbalance vp (t):

ωp (t) =

∫ t

−∞
χp (t− t′) vp (t′) dt′,

χp (t− t′) =
κ

τp
e−(t−t′)/τpθ (t− t′) . (102)

Using Eq. (93) one can check, that the response function
χ of volatility on volume imbalance at the coarse graining
time τr = τ is determined by the sum of contributions of
modes p > r:

ω (t) ≃
∫ t

−∞
χ (t− t′|τ ) v (t′) dt′,

χ (t− t′|τ ) =
∑r

p=0
χp (t− t′) ≃ θ (t− t′)

t− t′ . (103)

The average price shift because of a single trade at the
time t = 0 of the volume

|∆V | = Vk

(

e∆v − 1
)

(−1 is only important at small |∆V | ∼ ∆v) is determined
by all modes with times from τk through τ0 (the noise
ξk ≃ 1 at τk):

∆P (t) ≃ σk

[

e∆ω(t) − 1
]

≃ σk∆ω (t) (104)

≃ σkχ (t|τk) τk∆v.

The dispersion σk at time interval τ = τk is obtained
by averaging over fluctuations of random variables (98),
describing variations of the liquidity of the market. In
general, the liquidity (at physical language, susceptibil-
ity) strongly depends on the history: small volumes can
initiate large jumps or make almost no effect. Similar
“aging” effect exists for spin glasses, where the suscep-
tibility strongly depends on the history of temperature
and magnetic field changes.

Using Eq. (92) we get

∆P (t) = G0 (t) sign(∆V ) ln (1 + |∆V | /Vk) , (105)

G0 (t) ≃ σkθ (t) τk (t+ τk)−1 .

FIG. 17: The price shift ∆P per trade vs. transaction size
V , for buy orders in 1996, renormalized by powers of market
capitalization G.91 Theoretical prediction, Eq. (105), is shown
by solid line. Results for 1995, 1997 and 1998 are very similar.
In Insert: normalized ∆τP for different τ as function of V ,
V > 0 (©) and V < 0 (�), data from Ref.92. Solid lines show
fitting by Eq. (106).

In general, 1 under logarithm is out of accuracy of our
calculations, and we hold it to reproduce expected lin-
ear response ∆P ∼ ∆V at extremely small ∆V . The
result G0 (τk) ≃ σk = σ (τk) extremely well supported
by data90. Weak logarithmic dependence of average price
shift ∆P on the trade volume ∆V is related to multi-time
character of volume fluctuations, described by Eq. (92).

The dispersion, σk ∼ G−β , is inversely correlated to
the capitalization G of the market, see Eq. (13). The
exponent β ≃ 0.3 (Eq. 88 at τ = τk) is smaller than the
Gaussian value 1/2, because of hierarchical structure of
financial markets, see Ref.93. It is shown in Fig. 17 that
price impact curves for 1000 stocks are collapsed very
well by Eq. (105) with Vk ∼ Gδ and δ ≃ 0.3− 0.4.

The average price shift during the time interval τ >
τk can be estimated considering several trades as one
large trade of summary volume ∆V , and renormalizing
minimal relaxation time τk → τ in Eq. (105):

∆τP ≃ σsign (∆V ) ln (1 + |∆V | /Vτ ) , (106)

with V 2
τ = V 2

k τ/τk. We show in Insert in Fig. 17, that
the above dependence ∆τP well agrees with empirical
data at different τ . Eq. (106) can be approximated by
power dependence ∆P ≃ h∆V 1/υ, with time, volume
and capitalization dependent effective exponent (see In-
sert in Fig. 17):

υ ≡ d lnV

d ln ∆τP
=

(

1 +
Vτ

|∆V |

)

ln

(

1 +
|∆V |
Vτ

)

.

At small ∆V the apparent exponent υ is large at small τ ,
and υ ≃ 1 at large τ (υ ≃ 3 for τ = 5 min and υ ≃ 1 for
τ = 195 min, see Ref.92 and Insert in Fig. 17). At large
∆V typical value υ ≃ 2, see Ref.94, while 1/υ slowly
decreases95 with ∆V , and96 1/υ → 0 for very large ∆V .
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FIG. 18: Response function R (l, V ), conditioned to a cer-
tain volume V , as a function of dimensionless time l. Data
for France-Telecom90. The thick line is the prediction of
Eq. (107).

In the end of this section we estimate introduced in
Ref.90 response function conditioned to a volume V :

R (l, V ) ≃
∑

n<l
∆P [(l − n) τk] η (0)

∣

∣

∣

∣

∆V =V

≃
∫ l

0

|∆P [(l− n) τk]| η (nτk) η (0)dn.

Here |∆P [(l − n) τk]| is the value of average price shift
at time lτk because of a trade at time nτk. It is impor-
tant, that ln |V | at time lτk for given value of ln |V | at
time nτk logarithmically weakly depends on time interval
(l − n) τk because of multi-time relaxation of this value
(see Eq. 112 below as an example of calculation of such
conditional average). Substituting Eqs. (105) and (96)
we find with logarithmic accuracy

R (l, V ) ≃ R (l) ln |V/Vk| ,

R (l) ∼
∫ l

0

1

l− n+ 1

dn

nγ
≃ ln (1 + l)

lγ
,

(107)

Plotted in Fig. 18 function R (l) is in good agreement
with empirical data for France-Telecom90 with the sole
parameter γ = 1/5. In general, R (l) initially grows,
reaching maximum at certain l∗ ≃ e1/γ , and than de-
creasing back with dimensionless time l > l∗.

Notice, that Eqs. (105), (106) and (107) were obtained
by pre-averaging over fluctuations of the liquidity of mar-
ket, and can not be applied to find higher moments of
price increments, like dispersion σ (τ). Multifractality
changes power dependences of these values: in contrast
to the first moment, Eq. (107), when the intermittency

effect is not important, it gives a major contribution to
higher moments. We show in section IVC 6, that the
liquidity fluctuations lead to strong variations of the vir-
tual trading time, the rate of which is determined by
local time between trades. Therefore correlation func-
tion R (l, V ) with pre-averaged time intervals τk car-
ries no information about dispersion σ (τ ). The relation
between R (l, V ) and σ2 (τ ) ≃ Dτ was used in Ref.90

to demonstrate a very delicate balance between liquid-
ity takers and liquidity providers to put the market at
the border between sub- and super-diffusive behavior. In
section IVB 1 we show, that apparent diffusive behavior
σ2 (τ) ≃ Dτ is really a result of random trader activity
at all time scales.

5. Stock and news jumps

In this section we study volatility patterns of large
price jumps in the market. The volatility variable
ω (t) (90) can be measured empirically as the average
over n ≫ 1 time intervals τ of the logarithmic modulus
of price increments:

ω (t) =
1

n

∑n

k=1
ln |∆Pk (t)| , ∆Pk (t) = ∆τP (t− kτ) .

In the limit n → ∞ ω (t) can be considered as asymp-
totically Gaussian random variable. To prove this it is
instructive to define generalized volatility

Vq (t) =
1

n

∑n

k=1
|∆Pk (t)|q , (108)

which turns to standard definition of volatility at q = 1,
while in the limit q → 0 we have

ω (t) =
dVq (t)

dq

∣

∣

∣

∣

q=0

. (109)

In Appendix E we show, that at large n ≫ 1 PDF
of volatility converges to universal function, which de-
pends only on q, exponent µ = 3 of the fat tail of PDF,
P (∆P ) ∼ |∆P |−1−µ

, and non-universal constant c > 0
(will be calculated later):

P (Vq) =
x−1−µ/q

cΓ (cµ/q)Vm
e−x−1/c

, x =
Vq

Vm
. (110)

The maximum of this distribution is reached at the point
Vmax = [c (1 + µ/q)]

−c
Vm.

In Fig. 19 we show that expression (E2) of Appendix E
for q = 1 with µ = 3 and c1 = 2/3 is in excellent agree-
ment with known empirical data. Usually this depen-
dence is fitted by log-normal, Eq. (E3) of Appendix E,
or inverse gamma distributions97 (Eq. (110) with c = 1)
with extremely high exponent µ = 5 − 7. Our calcula-
tions show, that the distribution P (Vq) has the same tail
exponent µ = 3 as PDF of price incemants. This result
clearly demonstrates the absence of the self-averaging of
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FIG. 19: Comparison of theoretical (with µ = 3 and c = 2/3)
and empirical87 volatility distributions for τ = 30 min, nτ =
120 min. In insert we show the tail distribution of volatility
of jumps and news77.

price fluctuations: large variations of the coarse-grained
“volatility” variable Vq (t) (108) are induced by large
short time jumps, the contribution of which is dominated
even after averaging over nτ −→∞ time interval.

In Insert in Fig. 19 we show the probability of large
volatility fluctuations77. As one can see, the probability
of large “stock jumps” has power tail, P (V ) ∼ V −1−µ

with µ = 3, while µ = 2 for “news jumps”, induced
by independent macroeconomic events. We show in sec-
tion II C 4 that µ equals to the number of essential de-
grees of freedom of the noise: complex uncorrelated noise
of “news jumps” has µ = 2 components, while there is ad-
ditional component of price at previous time interval for
Markovian noise of stock jumps. The prediction µ = 3 is
strongly supported by the analysis of distinct databases
with extremely large number of records98 for the interval
τ from a minute through several months.

Both predictions for the tail exponent of PDF, µ = 2
and µ = 3, are quite general. For example, they de-
scribe two major universal classes of city grow (discov-
ered from empirical data in Ref.99), because of adding
new street lines. The PDF describes the distribution of
lengths of these lines. New lines are created randomly for
cities with µ = 2, while there are strong local correlations
in line creation for cities, characterized by the exponent
µ = 3. Similar Gutenberg-Richter power law describes
earthquakes of a given strength.

Since µ/q →∞ at q → 0, the distribution of Vq (110) in
this limit becomes asymptotically Gaussian, and random
variable ω (t) at large n≫ 1 has Gaussian statistics with
the probability

P {ω} ∼ e−H[ω],

H {ω} =
1

2

∫∫

dtdt′ω (t)ω (t′)G−1 (t− t′) , (111)

where G−1 is an inverse to the kernel G, Eq. (100) (ex-
plicit expression for G−1 is given in section IVD). We

checked Gaussian character of ω (t) by numerical simu-
lations in the model of Eq. (78). Eqs. (90) and (100)
lay in the basis of the famous Multifractal Random Walk
model78,79.

Minimizing H {ω} (111) under the condition of fixed
ω (t0), we find deterministic component of ω (t) at t−t0 >
τ :

ω (t) = ΛG (t) = ω (t0)h (t− t0) , (112)

h (t) ≡ ε ln (τ0/ |t|) , ǫ = 1/ ln (τ0/τ ) , (113)

where we expressed the Lagrange multiplier Λ =
ǫω (t0) /(2λ

2) through ω (t0).
Eq. (112) describes the result of trading activity, while

news coming at time t = 0 induce additional volatility,
see Eq. (103):

ωn (t) = ω0τ/t, t > τ, (114)

ω0 is the amplitude of the news jump. Combining both
contributions, Eq. (112) and (114), we find differential
equation for the most probable ω (t) after a news jump
dω = −ǫωd ln(t/τ) + dωn, with the solution

ω (t) =
ω0

1− ǫ
[τ

t
− ǫ
(τ

t

)ǫ]

, t > τ . (115)

The resulting volatility pattern, a (t) = a0e
ω(t), can be

measured by averaging over all significant news.
Last term in Eq. (115) appears because of long mem-

ory effect, known as “aging” effect in spin glasses. It can
also be interpreted77 as the reduction of measure of un-
certainty after news, since some previously unknown in-
formation becomes available. In Fig. 20 we show the pre-
diction of Eq. (115) in comparison with empirical data77.
Initial increase of ω (t) at t < 0 is related to finite waiting
time τw, see Eq. (115).

Although stock jumps have Markovian statistics, cor-
relations quickly decay at the coarse graining time τ ,
which is slightly longer than the time of returns, and
at larger times these events can be described by uncor-
related random variable η (t). The volatility, Eq. (100),
can be rewritten through η (t) as100

∆ω (t) =

∫ t

−∞

dt′η (t′)√
t− t′

, η (t) η (t′) = λ2δ (t− t′) .
(116)

Substituting η (t) = ω0δ (t) in Eq. (116), we find,
that volatility after stock jump at t = 0 is relaxing
as ω (t) = ω0t

−1/2, in good agreement with empiri-
cal observations77. Stock jumps can be interpreted as
stochastic resonance of different fluctuation modes p in
Eq. (90) because of their random concurrence. Such res-
onance is usually happened because of delaying the jump
until it will be anchored by jumps of larger time scales.
The amplitude of the resulting stock jump is significantly
increased, and slowly decays with time. The model pre-
dicts diffusion dependence ω2

0 ∼ λ2tw of the amplitude
of a jump on the waiting time tw between neighboring
stock jumps.
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FIG. 20: The volatility pattern before and after news jump,
given by Eq. (115) with τ = 3, τ0 = 10 years, in comparison
with empirical data77. The amplitude ω0 is choosed from
the condition of best fitting. In Insert we show, that the
probabilities of stock jump after jump, P (J, t|J, 0), decays

to jump probability as |t|−1/2, as predicted by our theory.
We also show the probability to observe a jump after news,
P (J, t|N, 0), Eq. (118), which is increased at small times and
decreased at intermediate times.

The central part of PDF of the volatility fluctuation
V1 (t0) = a0e

ω(t0), averaged over all fluctuations, can be
found by substituting Eq. (112) into (111):

P (V1) ∼ exp

[

−G (0)
Λ2

2

]

≃ exp

[

− ǫ

4λ2

(

ln
V1

a0

)2
]

.

(117)
The log-normal of this distribution is supported by nu-
merous empirical data97. Comparing this expression with
Eq. (E3) of Appendix E, we find the value of constant
c ≃ λ2 (µ+ 1) /ǫ in Eq. (110) for q = 1.

The volatility pattern of a news jump at time t = 0
followed by a stock jump at time t can be presented as
the sum of corresponding volatility patterns, Eq. (115)
and (112). Substituting it into Eq. (111) we find the
probability of this pattern:

P (J, t|N, 0) = Pn (ω0)P (V1) exp

[

− ǫω (t)

2λ2 ln
V1

a0

]

.

(118)
Here Pn and P are probabilities of news and stock jumps,
and function ω (t) is calculated in Eq. (115). We con-
clude, that at small time interval t there is asymmetric in-
crease of the probability to see a jump induced by a news,
following by the decrease of this probability at intermedi-
ate times. Similar expression (118) with ω (t) = ω0t

−1/2

can be found for the probability P (J, t|J, 0) to find a
jump at time t after a jump at time t = 0. These pre-
dictions are in good agreement with empirical data, see
Insert in Fig. 20.

6. Virtual trading time

In this section we show, that fluctuations of the liquid-
ity of the market lead to corresponding variations of the
virtual trading time, Θ (t), which is proportional to the
number of trades per given time interval. Logarithmic
volatility ω (t), Eq. (112), gives the deterministic part of
time dependence of the amplitude at t− t0 > τ :

a (t) ≃ a0e
ω(t) ≃ a (t0) [(t− t0) /τ ]α , (119)

with the “feedback parameter”

α = −ǫω (t0) . (120)

In Multifractal models101 the (logarithmic) price is as-
sumed to follow

P (t) = B [Θ (t)] , (121)

where B (t) is Brownian motion and Θ (t) is the ran-
dom trading time, which is an increasing function of t.
Differentiating Eq. (121) over t, we can represent the in-

crement of price in the form ∆τP (t) = a (t) ξ̂ (t) with
a (t) ∼ Θ′ (t). Substituting “classical trajectory” a (t)
from Eq. (119), we find

Θ (t)−Θ (t0) ∼ (t− t0)1+α
, (122)

and the mean square increment of the price is

〈

[P (t)− P (t0)]
2
〉

∼ Θ (t)−Θ (t0) ∼ (t− t0)2H
(123)

with the local Hurst exponent

H = (1 + α) /2. (124)

Expression (123) is valid for any t0 with current H(t0).
The price P (t) experiences different types of fractional

Brownian motion in time intervals ∆ti with different
feedback index α, which randomly change each other,
see Fig. 21. The case H ≃ 1/2 (α ≃ 0) describes usual
Brownian motion. A Hurst exponent value 0 < H < 1/2
(α < 0) will exist for a time series with sub-diffusive
(anti-persistent) behavior. A Hurst exponent value from
the interval 1/2 < H < 1 (α > 0) indicates super-
diffusive (persistent) behavior. H 6= 1/2 can be inter-
preted as the result of local unbalance between the com-
peting liquidity providers and liquidity takers90.

The fractal dimension of the fractional Brownian mo-
tion is Dext = 2 − H . At large H the motion becomes
more regular (Dext → 1), with large up- and downturns,
while at small H it quickly fluctuates, trying to covers
the whole plane (Dext → 2). Therefore, establishing of a
super- and sub-diffusive behavior leads to significant sup-
pression/creation of short-time fluctuations, see Fig. 21.
This effect was really observed102, and may be used as an
indicator of establishment of large volatility at long time
scales, which is hard to detect at short time intervals.
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FIG. 21: Price fluctuations and corresponding virtual trading
time Θ (t) as functions of real time t for Brownian motion
(α = 0), sub- (α < 0) and super-diffusive behavior (α > 0).

7. Brownian motion, sub- and super-diffusion

Switching of fluctuation regimes between Brownian
motion (α ≃ 0), sub- (α < 0) and super-diffusion (α > 0)
is happened randomly at “frustration times” (with equal
probability of different choices) with the probability (see
Eq. (117))

p (α) =
1√

2πσ0

exp

(

− α2

2σ2
0

)

, σ2
0 = 2ǫλ2. (125)

Because of multifractality, such change of fluctuation
regimes is happened at all time scales τ .

We also define a multivariate PDF

p (α0, · · · , αk) ≡
∏k

l=0
δ [αl + ǫω (tl)], (126)

which determines information entropy conditional to the
set of indexes α0, · · · , αk:

S (α0, · · · , αk) ≃ ln p (α0, · · · , αk) . (127)

The entropy, Eqs. (127) and (125), is maximal for Brow-
nian motion, α = 0, sub- and super-diffusion lower the
entropy production, since the market behavior is more
predictable in these regimes.

Conditional dynamics of mode switching can be de-
scribed by the probability p (α1|α0) = p (α0, α1) /p (α0)
to find given value of the index α1 at time t1 = t0 + ∆t1
under the condition that it was α0 at previous time t0.
Calculating the average (126) at k = 1 with Gaussian
distribution function, Eq. (111), we find:

p (α1|α0) =
1√

2πσ1

exp

[

− (α1 − ᾱ1)
2

2σ2
1

]

, (128)

ᾱ1 = α0h (∆t1) , σ
2
1 = σ2

0

[

1− h2 (∆t1)
]

(129)

Conditional average ᾱ1 decreases with time ∆t1, while
the conditional dispersion σ1 grows with this time. The

FIG. 22: Daily series of Exxon Mobil Corporation and corre-
sponding µ (t)102. Probability distribution of α1 − h1α0 with
h1 = 0.9 at ∆t1 = 16 days is shown in Insert.

transition to a new state is happened in average when
two these amplitudes become of the same order:

∆t1 ≃ τ0

(

τ

τ0

)1/
√

1+z

, z =
α2

0

4ǫ2λ2 . (130)

It is surprising, that the length of the time interval ∆t1
grows with the rise of |α0| (although the probability of
large initial |α0|, Eq. (125), is small). Such counter-
intuitive behavior is related to the absence of any “restor-
ing force” to α = 0.

The characteristic time of sub- and super-diffusion
behavior can be roughly estimated substituting in the
above expression the most probable value α2

0 ≃ σ2
0 from

Eq. (125), giving z ≃ 1
2 ln (τ0/τ). For τ = 1 day, τ0 ≃ 103

days and λ2 ≃ 0.1 this gives ∆t1 about a month, in agree-
ment with empirical observations, see Fig 22 and Ref.102.
The effect of sub- and super-diffusion switching can be
hardly detectable at small time intervals τ , because of
small α (see Eq. (120)), but it is well pronounced for
daily time intervals τ .

The feedback index α is related to “variation index”
µ = (1− α) /2, introduced in Ref.102 from the fractal
analysis of empirical data (local extension of the R/S
analysis103 of the Hurst exponent H). In Insert in Fig. 22
we plot estimated probability distribution of α1 − h1α0

for ∆t1 = 16 days, which is proportional to the condi-
tional probability (128). The value h1 is chosen to get
a maximum at the beginning, and it decreases with the
rise of the time interval ∆t1 from 0.99 at ∆t1 = 1 to
0.9 at ∆t1 = 16 days. The dispersion of this distribu-
tion σ0 ≃ 0.2, and from Eq. (125) we get reasonable
estimation λ2 ≃ 0.08. From second Eq. (129) we find

the dispersion σ1 = σ0

√

1− h2
1 ≃ 0.07, close to observed

value.

We can also calculate the probability to find the feed-
back index αk at time tk under the condition that it was



28

αk−1 at time tk−1, αk−2 at time tk−2, and so on:

p (αk|α0, · · · , αk−1)

≡ p (α0, · · · , αk) /p (α0, · · · , αk−1) (131)

=
1√

2πσk

exp

[

− (αk − ᾱk)
2

2σ2
k

]

,

The logarithm of this probability determines the entropy
lowering because of the knowledge about previous events
α0, · · · , αk. The conditional average ᾱk corresponds to
the maximum of entropy production, Eq. (127). It has
the meaning of average response of α on previous values
α0, · · · , αk−1:

ᾱk =
∑k−1

i=0
Kkiαi, Kki = −aki/akk, (132)

akj are adjoints of the matrix h with elements h (ti − tj).
Conditional dispersion

σ2
k = σ2

0 deth/akk (133)

estimates the accuracy of the prediction (132). Probabili-
ties (131) depend not only on index αk−1 at previous time
tk−1, but also on all α0, · · · , αk−1 – the random process
is not Markovian. As the consequence, the probability to
have the same value of all three indexes α2 = α1 = α0

(continuation of a sub- and super-diffusive regimes) grows
with increase of the initial time interval ∆t1.

8. Fluctuation corrections

The “classical trajectory” (119) predicts that the feed-
back index α (120) can be changed only because of fluctu-
ations. In this section we demonstrate, that fluctuations
lead to an additive shift of α in the super-diffusion di-
rection. Calculating the average of Vq (t) with Gaussian
weight (111) under the condition ω (0) = ω0, we find:

〈Vq (t)〉ω0
≃ 〈aq (t)〉ω0

≃ 〈Vq (0)〉ω0
(t/τ )

qα+q2β(t)
,

β (t) = λ2 [1 + h (t)] /2, (134)

where h (t) is defined in Eq. (113). The β-term describes
deviation from fractional Brownian motion because of
multifractal behavior. At q = 2 this expression can be in-
terpreted as the response on “endogenous event” ω (0)100,
while at q = 1 it gives fluctuation correction to the feed-
back index α.

Empirical study of year correlations shows104, that
financial market is really “locked” in sub- and super-
diffusive or Brownian motion states at extremely long
periods (conventions can persist up to 30 years). The
change in convention can be rather smooth, like during
the second part of the century, or occur suddenly, trig-
gered by an extreme event, like it did after 1929. From
the data, it was also observed a systematic bias towards
the persistent following convention.

D. Universality of fluctuations

Non-universal properties of market at trading times .
τk can only be described by models of agent-based strate-
gies. In this section we consider only universal properties
of price fluctuations at time scales τ > τk ≃ 1 min, see
Ref.105. At qualitative level the presence of universality
is known for a long time as “stylized facts”40. We show,
that our approach captures such stylized facts and gives
explanation for many others empirical observations.

The universality is related to self-similiarity of price
fluctuations at different time scales79,106,107: the change
of time interval τ corresponds to the change of char-
acteristic scale along the hierarchical tree in Fig. 14.
We demonstrate, that resulting time series have com-
plex non-periodic behavior with chaotic changes of usual
Brownian motion, sub- and super-diffusion, reflecting
cyclic dynamics of the market. We show, that the im-
pact function of the market logarithmically depends on
volume imbalance.

Fluctuations on financial market have unexpected
physical interpretation, reflecting the unified nature of
physics. The effective Hamiltonian (111) can be rewrit-
ten as

H {ω} =
η

2π

∫∫
(

ω (t)− ω (t′)

t− t′
)2

dtdt′.

This expression describes diffusion of quantum Brownian
particle with the coordinate ω (t) and the coefficient of
linear friction η = 1/

(

2πλ2
)

.
A microscopic model of quantum diffusion is based

on coupling to a termostat – the reservoir of harmonic
oscillators108, presenting the “army” of traders in the
case of the market. The resulting dynamics is intrinsi-
cally non-Markovian in that the evolution depends on his-
tory rather than just on present state109. Brownian parti-
cle can respond to a very wide range of reservoir frequen-
cies, and this is the origin of time-irreversive behavior and
slow relaxation after fluctuation cast, see Eq. (112). The
production of information entropy (see Eq. (127) and Ap-
pendix A) is related to enviroment-induced decoherence
of the quantum particle110, and it is at the peak of many
recent studies.

V. CONCLUSION

Many concepts of equilibrium macroeconomic (re-
sources, unemployers, different firm dynamics at small-
and long- time horizons, taxes and so on) naturally
enter into proposed coalescent theory, which integrates
both physical and economic concepts of essentially non-
equilibrium market in one unique approach. We also de-
veloped new approach to study fluctuations on the mar-
ket, well describing empirical data of both firm grow rates
and price increments on financial markets. We propose
the set of Langeven equations, describing multi-time dy-
namics of price and volume fluctuations at different time



29

scales on the market. Using these equations, we de-
rived analytically equations of multifractal random walk
model.

In the end we discuss physical meaning of our theory:
a) What is physics of extreme events on the market

(problem of fat tails)?
There are two sources of fluctuations: macroeconomic

events – news, and traders activity because of uncertainty
of equilibrium prices at different time scales, which gen-
erate two types of large price jumps: News jumps are
created by the inflow of news, while stock jumps are gen-
erated during random concurrence of different fluctuation
modes. We show, that the decay of volatility observed af-
ter news jumps is related to the effect, similar to “aging”
effect in spin glasses.

Fluctuations on the market are characterized by the
normalized noise ξ and its amplitude a (volatility). New
key idea of our approach is that ξ and a are independent
complex random variables, separated on time scale: the
noise is generated by hot degrees of freedom on times
small with respect to observation time interval τ , while
evolution of the amplitude is determined by cold degrees
of freedom on times large with respect to τ .

In stochastic volatility and multifractal models jumps
are predicted as the result of volatility fluctuations, and
characterized by large non-universal tail exponent µ≫ 1,
while the noise is assumed to be Gaussian uncorrelated
random variable. In fact, the noise is strongly correlated,
and can experience large non Gaussian jumps. We cal-
culate the contribution of such jumps to PDF and show,
that the distribution of stock jumps is characterized by
the tail exponent µ = 3, while the distribution of news
jumps has tail exponent µ = 2. The exponent µ remains
stable with the rise of τ (recall, that Levy distribution
with µ > 2 is unstable).

b) Why market dynamics is so complex: can it be de-
scribed by simple Markovian or Gaussian processes?

We show, that local equilibriums on the market are
self-organized in the hierarchical tree, according to their
relaxation times. The amplitude a of the noise at given
time scale is determined by cumulative signal from all
“parent” time scales, and its dynamics is complex multi-
fractal process. But the information about the amplitude
can be “erased” from time series considering only signs of
price fluctuations. The resulting Markovian process de-
scribes propagation of positive and negative signals, and

determines conditional double dynamics of the market.

Typical noise ξ and amplitude a are determined by sig-
nals from large number of, respectively, short and long
(with respect to τ ) time scales, and they have asymptot-
ically Gaussian statistics. We propose and solve Dou-
ble Gaussian model of market fluctuations, and show
good agreement with empirical data for different groups
of stocks.

c) What physics stands behind “random trading time”
in Multifractal models101?

At large time intervals the price randomly cycles
between Brownian motion, sub- and super-diffusive
regimes, which change each other because of liquidity
fluctuations. The virtual trading time is proportional to
the real time for Brownian motion and experiences time
shifts in sub- and super-diffusive regimes. The theory
predicts systematic bias to persistent behavior, observed
for many markets and exchange rates.

d) And finally, can price behavior be described by uni-
versal physical lows or it is dictated only by the zoo of
microstructures of markets (see Refs.111,112)?

The universality of price fluctuations on financial mar-
kets was demonstrated at time scales from a minute
to tenths years in many studies, see for example,
Refs.28,36,37. We show, that it is related to the self-
similarity of the underlying hierarchical tree of ampli-
tudes, see Fig. 14 (we do not give here lists of all stocks,
used for comparison with our theory, since they are shown
in corresponding references). In contrast, statistics of
trades and volumes is not universal, and strongly de-
pends on details of market microstructure.

Our theory can also be used to study other time series,
such as variations of cloudiness, temperature, earthquake
frequencies, rate of traffic flow and so on. It looks attrac-
tive to apply analytical approach of this paper for the
description of social processes, which are driven by frus-
trations at turning points of the mankind history. Events
between these points support the social activity, but do
not change the state of the society.
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37 M. Boguñá and J. Masoliver, Eur. Phys. J. B 40, 347
(2004).

38 F. Lillo and R.N. Mantegna, Physica A, 299, 161, (2001).
39 A. Leonidov, V. Trainin, S. Zaitsev, A. Zaitsev,

arXiv:physics/0601098.
40 R. Cont, Quant. Finance, 1, 223 (2001).
41 A.C. Silva, R.E. Prange, V.M. Yakovenko, Physica A 344,

227 (2004).
42 A. Leonidov, V. Trainin, S. Zaitsev, A. Zaitsev,

arXiv:physics/0603103.

43 A. Leonidov, V. Trainin, A. Zaitsev,
arXiv:physics/0506072.

44 J. Perello, J. Masoliver, Phys. Rev. E, 67, 037102 (2003).
45 A. Leonidov, V. Trainin, S. Zaitsev, A. Zaitsev,

arXiv:physics/0701158; Physica A, 386, 240 (2007).
46 M. Bartolozzi and A.W. Thomas, Physical Review E 69,

046112 (2004).
47 R. Cont, arXiv:cond-mat/9705075v3.
48 B. Rosenow, Int. J. Mod. Phys. C, 13, 419 (2002).
49 P. Weber and B. Rosenow, Quant. Finance, 5, 357 (2005).
50 See web page: http://www.unifr.ch/econophysics/

minority/
51 R. Peschanski, arXiv:hep-ph/0610019v1.
52 K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801

(1986).
53 Y. Balasko and D. Cass, Econometrica, 57, 135 (1989).
54 B. Biais, P. Hilton, C. Spatt, Journal of Finance, 50, 1655

(1995).
55 J.-P. Bouchaud, M. Mezard, M. Potters, Quantitative Fi-

nance, 2, 251 (2002).
56 S. Maslov, M. Millis, Physica A, 299, 234 (2001).
57 R. Mantegna, H. E. Stanley, An Introduction to Econo-

physics, Cambridge University Press, Cambridge, 1999.
58 M.M. Dacorogna, R. Gencay, U.A. Muller, R.B. Olsen,

O.V. Pictet, An Introduction to High-Frequency Finance,
Academic Press, San Diego, 2001.

59 R. Cont, Quantitative Finance, 1, 223 (2001).
60 J.-P. Bouchaud and R. Cont, Eur. Phys. J., B6, 543

(1998).
61 I. Giardina and J-P. Bouchaud, Eur. Phys. J. B, 31, 421

(2003).
62 A. Krawiecki, J.A. Ho lyst, and D. Helbing, Phys. Rev.

Lett., 89, 158701 (2002).
63 R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995).
64 S.J. Taylor. Modelling Financial Time Series. Chichester,

Wiley (1986).
65 R. Engle, Econometrica, 50, 987 (1982).
66 P. Carr, H. Geman, D. Madan, M. Yor, Math. Finance,

13, 345 (2003).
67 L. Calvet and A. Fisher, J. Financ. Econometrics, 2, 49

(2004).
68 B. Mandelbrot, A. Fisher, L. Calvet, Cowles Foundation

Disc. Paper, 1164 (1997).
69 V.S. Dotsenko, J. Phys. C 20, 5473 (1987); J. Phys.:

Condens. Matter., 2, 2721 (1990).
70 V.S. Dotsenko, J. Phys. C 18, 6023 (1985).
71 P. Bak, M. Paczuski, and M. Shubik, Physica A, 246, 430

(1997).
72 M.G. Daniels, J. D. Farmer, G. Iori, E. Smith, Phys. Rev.

Lett. 90, 108102 (2003).
73 E. Smith, J. D. Farmer, L. Gillemot, S. Krishnamurthy,

Quant. Finance, 3, 481, (2003).
74 E.F. Fama, J. of Finance 25, 383 (1970).
75 R.J. Schiller, Am. Econ. Rev., 71, 421 (1981).
76 D. Cass and K. Shell, J. Polit. Econ., 92, 193 (1983).
77 A. Joulin, A. Lefevre, D. Grunberg, J-P. Bouchaud,

arXiv:0803.1769v1 [physics.soc-ph].
78 J.F. Muzy, J. Delour and E. Bacry, Eur. Phys. J. B 17,

537 (2000).
79 E. Bacry, J. Delour and J.F. Muzy, Phys. Rev. E 64,

026103 (2001).
80 J.-P. Bouchaud, Chaos, 15, 026104 (2005).
81 P. Bak, How Nature Works: The Science of Self-

Organized Criticality, Copernicus Springer, New York,



31

(1996).
82 M. Youssefmir, B.A. Huberman and T. Hogg, Comp.

Econ. 12, 97 (1998).
83 M. Marsili, Physica A, 299, 93 (2001).
84 Z. Eisler, Ph.D. thesis, “Fluctuation Phenomena on the

Stock Market”, Budapest, (2007).
85 A. Shleifer, Inefficient Markets, An Introduction to Be-

havioral Finance, Oxford University Press (2000).
86 R. J. Schiller, Amer. Econ. Rev., 71, 421 (1981).
87 Y.I. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C-K.

Peng, and H.E. Stanley, Phys. Rev. E, 60, 1390 (1999).
88 V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer

and H.E. Stanley, Phys. Rev. E 60, 6519 (1999).
89 F. Schmitt, Eur. J. Phys. B, 34, 85 (2003).
90 J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Quant.

Finance, 4, 176 (2004).
91 F. Lillo, J.D. Farmer, R.N. Mantegna, Nature, 421, 123

(2003).
92 V. Plerou, P. Gopikrishnan, X. Gabaix and H.E. Stanley,

Phys. Rev. E 66, 027104 (2002).
93 R.N. Mantegna, Europ. Phys. J. B 11, 193 (1999).
94 X. Gabaix, P. Gopikrishnan, V. Plerou and H.E. Stanley,

Physica A 324, 1 (2003).
95 F. Lillo, J.D. Farmer and R.N. Mantegna, Nature 421,

129 (2003).
96 M. Potters and J.-P. Bouchaud, Physica A 324, 133

(2003).
97 P. Cizeau, Y. Liu, M. Meyer, Ci-K. Peng, H.E. Stanley,

Physica A, 245, 441 (1997).
98 P. Gopikrishnan, V. Plerou1, L.A.N. Amaral1, M.

Meyer1, and H.E. Stanley, Phys. Rev. E 60, 5305 (1999).
99 R. Carvalho and A. Penn, Physica A, 332, 539 (2003).

100 D. Sornette, Y. Malevergne and J.-F. Muzy,
arXiv:cond-mat/0204626v1.

101 B. Mandelbrot, J. of Business, 36, 307 (1963).
102 M.M. Dubovikov, N.V. Starchenko, M.S. Dubovikov,

Physica A, 339, 591 (2004).
103 Jens Feder, Fractals. New York, NY: Plenum Press, 1988.
104 M. Wyart and J.-P. Bouchaud,

arXiv:cond-mat/0303584v2.
105 A.P. Nawroth and J. Peinke, Eur. Phys. J. B, 50, 147

(2006).
106 M.M. Dacorogna, R. Gençay, U.A. Műller, R.B. Olsen,
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APPENDIX A: ENTROPY FORMULATION

In order to reveal the economic meaning of Master
equation (10), it is convenient to rewrite it in the form

dG

dt
= pc (G)− pd (G) , (A1)

where pc (G) and pd (G) are probabilities of job creation
and destruction per unit time in the firm of G people. In
the absence of any external supply, U = 0, the probabil-
ity of job creation is zero. In the main order in “concen-
tration” U (we use physical term to emphasize the anal-
ogy with coalescence) pc (G) is proportional to U , while
the probability of job destruction pd (G) is determined
mainly by internal firm structure, and do not depend of
U . Comparing Eqs. (A1) and (10) we find explicit ex-
pressions for these probabilities for our model

pc (G) = qUG, pd (G) = qU∗G+ pG1−β . (A2)

We define the “entropy” S (G) of the firm of size G
as logarithm of equilibrium distribution function of firms
over their sizes, feq (G). Since equilibrium values do not
depend of a way how the system is assembling, consider
the process when the sizeG is varying by one. In this case
feq (G) is determined by the detailed balance condition,
pc (G) feq (G) = pd (G+ 1) feq (G+ 1). The solution of
this equation at G≫ 1 relates firm entropy with proba-
bilities of job creation and destruction:

feq (G) = eS(G), S (G) =

∫

dG ln
pc (G)

pd (G)
. (A3)

As one can naively expect, the entropy of the firm in-
creases with the rise of the probability to get a job and
decreases with the rise of the probability to loose it. In
the case of overheated market U < U∗ the entropy S (G)
monotonically grows with the firm size G, while in the
“supersaturated” case U > U∗ it initially decreases with
G, reaching its minimum for firms of critical size, G = Gc,
Eq. (14).

Calculating this integral (A3) with functions (A2), we
find

S (G) ≃ µG−G ln
[

U∗/U0 + (G/e)
−β
]

+ const,

where U0 = p/g and µ = ln (U/U0) has the meaning of
chemical potential. The entropy of the whole market

S = −U ln
U

eU0
+

∫

dGS (G) f (G, t)− µ (Q− U) (A4)

is the sum of the entropy of the “ideal gas” of unemploy-
ments, the entropy of all firms and the term ∼ µ, which
takes into account the supply of external resources (1).
By analogy with thermodynamics, there is maximum
principle for the entropy: maximizing it with respect to U
we reproduce the balance condition (1). Using Eqs. (A3)
– (A4) one can check that in the case when Q (t) is not
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(quickly) decreasing function, the market entropy always
increases with time

dS/dt > 0. (A5)

Since the variation of entropy ∆S is opposite to the vari-
ation of information, ∆I = −∆S, Eq. (A5) means, that
the activity of the market leads to “erasing” of initial in-
formation – the effect, well known for some “laundering”
schemes.

APPENDIX B: SOLUTION OF COALESCENCE

EQUATIONS

To find PDF of coalescent model (10) we use the
method of Ref.113. We define dimensionless time τ and
introduce the function u (τ ):

τ = ln [Gc (t) /Gc (t0)] , u (τ ) = G (t) /Gc (t) ,

where t0 is coalescent time. In new variables the Master
equation (10) takes the form

du/dτ = v (u) = γ (τ)
(

u− u1−β
)

− u, (B1)

where

γ (τ) = p
dt

Gβ−1
c dGc

. (B2)

The balance equation (5) can only be satisfied if the plot
of function v (u) lays below the axis u, and touches it at
one point u = u0. Such locking point u = u0, γ = γ0, for
Eq. (B1) is determined by equations

v (u0) = 0, dv (u0) /du0 = 0, d2v (u0) /du
2
0 < 0,

and we find that u0 →∞ and γ0 = 1.
From Eq. (B2) we get that the critical size Gc (t) grows

and “supersaturation” ∆ (t) (we use physical terms here)
decreases with time as

Gc (t) =

(

βqt

γ0

)1/β

, ∆(t) =
γ0

qβt
. (B3)

PDF of firms can be rewritten through PDF of vari-
ables u and τ : f (G, t) = ϕ (u, τ) /Gc (t), and neglecting
the diffusion inflow of new firms we find

∂ϕ

∂τ
+

∂

∂u
[v0 (u)ϕ] = 0, (B4)

where the velocity v0 (u) = du/dτ = −u1−β is given by
Eq. (B1) with γ = γ0.

General solution of Eq. (B4) is

ϕ (u, τ) = uβ−1χ [τ − τ (u)] , τ (u) = −uβ/β (B5)

with arbitrary function χ (τ ). To find χ (τ ) substitute
this expression into the balance equation (1) and (5) with
Q (t)≫ U (t):

Q0

(

γ0

βh

)m

Gm−1
c (t0) e

τ(βm−1) =

∫ ∞

0

duuϕ (u, τ) .

(B6)

This condition can be satisfied only if the function χ
has the form χ[τ − τ (u)] = Ae(βm−1)[τ−τ(u)]. Substitut-
ing this function into Eq. (B5), we find

ϕ (u, τ) = A (1− βm)
−1
e(βm−1)τdF (u) /du, (B7)

with

F (u) = e−(1/β−m)uβ

, A ≃ Q0

(

γ0

βp

)m

Gm−1
c (t0) .

(B8)

APPENDIX C: MACROECONOMIC

INTERPRETATION

To get better understanding of coalescent model, con-
sider its microeconomic interpretation. Optimal firm
size, G = Gc, is determined from the maximum of the
profit function

π (G) = Py (G)− wG, (C1)

where y (G) is the number of units produced by firm
of G peoples, P is the price of one unit, and w is the
average wage per one man. The technology is usu-
ally characterized by the standard Cobb-Douglas func-
tion y (G) = KηG1−η, where K is the firm capital and
the exponent η > 0. Both the price P and the capi-
tal K are reduced to initial time. Maximizing the profit
function (C1) we get Gc ∼ w−1/η.

Variation of wages w (t) with the time is determined
by the Fillips low114:

1

w (t)

dw (t)

dt
≃ a [U∗ − U (t)] = −a∆(t) , (C2)

with positive constant a > 0. Substituting expres-
sion (B3) for ∆ (t) in Eq. (C2), we find its solution
w (t) = const × t−ζ with ζ = a/ (βq). Substituting this
function into Gc ∼ w−1/η, we get the optimal firm size
Gc ∼ tζ/η. Comparing this dependence with Eqs. (14)
and (B3), we find the Fillips parameter in Eq. (C2):
a = ηq. We conclude, that coalescent approach is consis-
tent with the maximum profit principle and the Fillips
low.

Notice that while the parameter q = a/η of Master
equation (A1), (A2) is determined by technology (η) and
market structure (a), economic analysis do not impose
any restrictions on the second parameter p of Master
equation. Therefore, p can depend on management abil-
ity of firm head, relations between firm staff, industry
shocks and so on, and can experience strong random
fluctuations ∆p. This observation explains the empirical
fact, that there is much more variance in job destruc-
tion than in job creation time series115 (as was noted by
Lev Tolstoy: all fortunate families are happy alike – each
unfortunate family is unhappy in own way).
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APPENDIX D: PDF OF DOUBLE GAUSSIAN

MODEL

It is convenient in Eq. (62) to use instead of
{

a0
i

}

Gaus-
sian random variables {αi}:

a0
i = ciαi, εi =

∑

j
cijαj ,

such as α2
i = 1, (α1,α2) = ν. Averaging over fluctuating

Gaussian variables ξ
0
i and αi, we get general expression

for inverse Fourier component of PDF:

G−1 (k, p) = 1 + k2σ11/2 + p2σ22/2 + kpσ12+
(

1− ν2
) (

κ11k
2 + κ22p

2 + κ12kp
)2

with

σ11 = c21 + c212 + c211 + 2νc11c12,

σ22 = c22 + c221 + c222 + 2νc22c21,

σ12 = c1c21 + c2c12 + ν (c1c22 + c2c11) ,

κ11 = c1c12, κ22 = c2c21,

κ12 = c1c2 − c11c22 + c12c21.

An important relation between elements of matrixes σ

and κ follows from the condition of stationarity of PDF,
which leads to physical constraint G (k, 0) = G (0, k) on
Fourier components of univariate PDFs of ∆τP (t) and
∆τP (t+ τ ), and we get σ11 = σ22 = σ2,κ2

11 = κ
2
22.

Here σ is the dispersion of price fluctuations,

〈∆τP 2 (t)〉 = 〈∆τP 2 (t+ τ)〉 = σ2,

〈∆τP (t)∆τP (t+ τ )〉 = σ12 = εσ2. (D1)

We conclude, that in addition to σ and ε, our model is
characterized by dimensionless constant ν and the angle
φ:

G−1 (k, p) = 1 +
[(

k2 + p2
)

/2 + εkp
]

σ2 +
(

1− ν2
)

×
σ4

4

[

k2 − p2

2
sin (2φ) /2− kp cos (2φ)

]2

.

(D2)
The quadratic part of this expression can be diagonal-

ized by changing variables, K = k cosψ − p sinψ′, P =
k sinψ + p cosψ′, with ψ′ = φ − 1

2 arcsin ε, ψ = φ +
1
2 arcsin ε. In new variables Eq. (D2) takes the form

G−1 (k, p) = 1 +
σ2

2

(

K2 + P 2
)

+

1− ν2

(1− ε2)2
σ4

4
[KP − τ (K,P )]

2
,

with

τ (K,P ) =
ε

2
cos (2φ)

(

K2 + P 2
)

+
1

2

(

1−
√

1− ε2
)

× sin (2φ)
[

2KP sin (2φ) +
(

K2 − P 2
)

cos (2φ)
]

.

Eq. (D2) can be simplified if we note, that correlations of
price increments, Eq. (D1), are always very small, |ε| ≪
1. In polar coordinates K = |K| cosϕ, P = |K| sinϕ we
have in the main order in ε

[KP − τ (K,P )]
2 ≃ 1

4 |K|
4
[sin (2ϕ)− ε cos (2φ)]

2

≃ 1
4 |K|

4
sin2

[

2
(

ϕ− ε
2 cos (2φ)

)]

= (K ′P ′)2 ,

where we introduced new orthogonal rotated coor-
dinate system K ≃ K ′ − (ε/2)P ′ cos (2φ) , P ≃
P ′ + (ε/2)K ′ cos (2φ). Changing integration variables
(k, p) → (K ′, P ′) in the integral (48) in the main or-
der in the small parameter ε we get Eq. (63), where an-
gles φ+ and φ− are defined by φ− = φ − ε cos2 φ, φ+ =

φ + ε sin2 φ, and functions Pl (x) are determined by
Eqs. (58) and (67).

APPENDIX E: PDF OF VOLATILITY

FLUCTUATIONS

PDF of the volatility variable V1 (t) (108) at q = 1
can be expressed through the n-point PDF P {∆Pk} of
variables ∆Pk,

Pn (V1) ≡
n
∏

k=1

∞
∫

0

d∆Pkδ

(

V1 −
1

n

n
∑

k=1

|∆Pk|
)

P {∆Pk}

(E1)
Asymptotes of Pn (V1) can be found both for V1 ≪ σ
and for V1 ≫ σ. At V1 ≪ σ only small |∆Pk| ≪ σ
contribute to the integral (E1) and we have Pn (V1) ∼
V n−1

1 . In the opposite case of large V1 ≫ σ the integral
is dominated by the power tail of PDF P {∆Pk} with
typical |∆Pk| ∼ V1 ≫ σ. From dimension consideration

we find for such ∆Pk that P {∆Pk} ∼ V −n−µ
1 , where

µ is the exponent of one-point PDF, Eq. (36), and the

integral (E1) is estimated as Pn (V1) ∼ V −1−µ
1 .

Both these limits are matched by the function

Pn (V1) = V −1
0 N−1

0 f (V1/V0) , (E2)

f (z) = z−1
(

z−n/s + zµ/s
)−s

with V0 ∼ σ. The dependence of a new parameter s >
0 on n will be found later from the condition that at
large n the distribution Pn (V1) should not depend of n.
Momentums of this distribution

〈

V k
1

〉

= V k
0 Nk/N0 are

determined by normalization integrals,

Nk =
∞
∫

0

zkf (z)dz = mB [m (n+ k) ,m (µ− k)] ,
m = s/ (n+ µ) ,

where B is the Beta-function.
The function f (z) (E2) reaches its maximum at zmax =

(n− 1)
m
/ (µ+ 1)

m
. The central part of the distribution

is obtained by expanding the probability Pn (V1) over
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ln (V1/Vmax) near its maximum at Vmax = zmaxV0, and
it has log-normal form:

lnPn (V1) = const− 1

2

n− 1

s
(µ+ 1)

(

ln
V1

Vmax

)2

. (E3)

Since the distribution Pn (V1) (E3) should not depend on

n at large n, we find s = c (n− 1) with certain constant
c. In the limit n → ∞ Pn (V1) becomes universal func-
tion of V1/Vmax, Eq. (110) with q = 1. Repeating our
calculations for general q > 0, we find that it is given
by the substitution µ → µ/q and n → n/q in the above
expressions.


