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1. Introduction

Portfolio selection problem is one of the classical problems in the economics
of uncertainty. The optimal portfolios depend on agents’ characters (prefer-
ence and wealth level) and on the market’s structure (the risk-free return,
the return and risk of the risky assets). Various agents would have differ-
ent allocations of wealth between the risk-free asset and the risky assets,
due to the differences in preference and/or the differences in wealth level.
The comparative statics of the optimal portfolios with respect to preference
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and/or wealth level has first been carried out by Arrow (1963) and Pratt
(1964), for a static model with a risk-free asset and a risky asset. For this
model, if the excess return of the risky asset is positive, then (i) the more
risk-averse an agent is, the less wealth is invested in the risky asset; and
(ii) if an agent displays decreasing absolute (relative) risk aversion, then the
amount (proportion) of wealth invested in the risky asset is increasing in
wealth.

Since then, decades have passed. Except for some specific cases such as
constant absolute (relative) risk aversion in which the solutions can be ex-
plicitly worked out, few works have been reported for dynamic models, as
far as we know, until Borell (2007). For a continuous-time complete market
model, where the risky assets price process follows a joint geometric Brown-
ian motion, and for an agent who only consumes at the terminal time, Borell
(2007) has analyzed the changes of the optimal portfolios across the wealth
levels. The similar conclusions that hold for the static models have been
obtained there by showing the indirect utility function inherits the decreas-
ing absolute (relative) risk aversion from the von Neumann-Morgenstern
utility function. (The indirect utility function also inherits the increasing
relative risk aversion from the von Neumann-Morgenstern utility function.
The preservation of decreasing (increasing) absolute risk aversion has been
presented by Gollier (2001), for static and complete models.)

The purpose of this paper is to investigate how the agents’ preference
impacts the optimal portfolios for a market model with time-dependent and
deterministic coefficients. Here we compare the optimal portfolios across in-
dividuals instead of across wealth levels. As a result (see Theorem 5.3 and
Section 7), we find that the indirect utility functions inherit the order of
risk aversion from the von Neumann-Morgenstern utility functions. Observ-
ing that the vector of optimal portfolio proportions is given by the vector
of log-optimal portfolio proportions multiplied by the indirect relative risk
tolerance, we know it is enough for any agent to replace investments in all
assets with investments in the risk-free asset and a single “mutual fund”,
whose portfolio is log-optimal. Based on these facts, a continuous-time ver-
sion of comparative statics across individuals can be established: the more
risk-averse an agent is, the less wealth is invested in the log-optimal portfo-
lio, and hence, the less wealth in absolute value is invested in the risky assets.
Using the result here, almost all conclusions in Borell (2007) on comparisons
across wealth levels can be easily recovered, as special cases.

The remainder of this paper is organized as follows: Section 2 describes the
market model. Section 3 reviews the optimal solutions of portfolio selection
problems, where we present the martingale/duality approach. In particular,
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it is pointed out that the amount of wealth invested in the log-optimal
portfolio equals the indirect absolute risk tolerance. Section 4 gives some
representations of the indirect absolute risk tolerance and derives a nonlinear
parabolic PDE (partial differential equation) for the indirect absolute risk
tolerance function. Section 5 presents the main result of this paper and
Section 6 recovers the conclusions of Borell (2007). Section 7 extends the
main result to an incomplete market.

We shall make use of the following notation: M⊤ stands for transposition
of a vector or a matrix M ; |ζ| =

√

ζ⊤ζ is the usual Euclidean norm for
a vector ζ; 1 is the n-dimensional vector of which each component equals
1; and for a domain D ⊂ [0, T ] × (0,∞), C1,∞(D) denotes the set of all
functions f : D → R such that f(t, x) are continuously differentiable with
respect to t and infinitely-many times differentiable with respect to x, for
all (t, x) ∈ D; C(D) denotes the set of all continuous functions f : D → R.

2. The Financial Market

We consider the typical setup for a continuous-time financial market econ-
omy on the finite time span [0, T ]. The financial market consists of a risk-free
asset and n risky assets. The risk-free asset’s price process S0(t) evolves ac-
cording to the following equation:

dS0(t) = S0(t)r(t)dt, S0(0) = 1,

where r(t) is the interest rate process. The i-th risky asset’s price process
Si(t) satisfies the following SDE (stochastic differential equation):

dSi(t) = Si(t)



bi(t)dt +
n
∑

j=1

σij(t)dBj(t)



 , Si(0) > 0, 1 ≤ i ≤ n.

Here B(t) = (B1(t), · · · , Bn(t))⊤ is an n-dimensional standard Brownian
motion defined on a filtered probability space (Ω,F , (Ft),P). The informa-
tion structure (Ft) is the P-augmentation of the filtration generated by B(t)
and F = FT . Set b(t) = (b1(t), · · · , bn(t))⊤ and σ(t) = (σij(t))1≤i,j≤n. In
this paper, we always assume the coefficients r(t), b(t), and σ(t) satisfy the
following condition:

Assumption 2.1. (i) All of r(t), bi(t) (1 ≤ i ≤ n), and σij(t) (1 ≤ i, j ≤ n)
are deterministic and continuous functions of t, on [0, T ]; (ii) the matrix
σ(t) is non-singular for each t and there exists a constant c > 0 such that
ζ⊤σ(t)−1ζ ≥ c|ζ|2 for all t ∈ [0, T ] and ζ ∈ R

n.
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In the above setting, the financial market is complete and admits a unique
equivalent martingale measure, or risk-neutral measure, denoted by P

∗, whose

density process is dP∗

dP

∣

∣

∣

Ft

= ρ(t), where

ρ(t) := exp

{

−
∫ t

0
θ(τ)⊤dB(τ) −

∫ t

0

|θ(τ)|2
2

dτ

}

,

θ(t) := σ(t)−1(b(t) − r(t)1).

By the Girsanov’s Theorem,

B∗(t) := B(t) +

∫ t

0
θ(τ) dτ

is an n-dimensional standard Brownian motion under P
∗. Obviously, each

risky asset price process satisfies the following equation:

dSi(t) = Si(t)



r(t)dt +
n
∑

j=1

σij(t)dB∗j(t)



 , 1 ≤ i ≤ n.

The state-price deflator H is defined by

H(t) = exp

{

−
∫ t

0
r(τ)dτ

}

ρ(t).

It is well known that Si(t)H(t) is a martingale, for i = 1, . . . , n. For nota-
tional simplicity, we set

Hs
t =

H(s)

H(t)
, 0 ≤ t ≤ s ≤ T.

3. Utility Maximization

In this paper, von Neumann-Morgenstern utility functions are defined as
follows:

Definition 3.1. A von Neumann-Morgenstern utility function is a strictly
increasing, strictly concave, and twice-continuously-differentiable function
U : (0,∞) → R that satisfies the Inada condition

U ′(0) = lim
x↓0

U ′(x) = ∞ and U ′(∞) = lim
x↑∞

U ′(x) = 0.
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Given a von Neumann-Morgenstern utility function U , the Arrow-Pratt

coefficient of absolute risk aversion at x is −U ′′(x)
U ′(x) , and the absolute risk

tolerance is − U ′(x)
U ′′(x) . Accordingly, −xU ′′(x)

U ′(x) is the Arrow-Pratt coefficient of

relative risk aversion and − U ′(x)
xU ′′(x) is the relative risk tolerance. Let us in-

troduce an assumption on U that will be used.

Assumption 3.2. The absolute risk tolerance function of U satisfies the
linear growth condition, that is, there is a constant c > 0 such that

− U ′(x)

U ′′(x)
≤ c(1 + x), for all x > 0.

Following Merton (1971), we assume that (i) there are no transaction
costs, taxes, or asset indivisibility; (ii) the agents are price takers; (iii) short
sales of all assets, with full use of proceeds, are allowed; and (iv) trading in
assets takes place continuously in time.

We consider an agent who consumes only at the terminal time and whose
(von Neumann-Morgenstern) utility function for the consumption at the
terminal time is U . At any given starting time t, the preference of the agent
for the terminal consumption can be represented by the expected utility
Et[U(X(T ))], where X(T ) is the value of the terminal wealth and Et is the
conditional expectation operator at time t. The agent is allowed to allocate
the wealth between the risk-free asset and the risky assets to maximize the
expected utility. That is, the agent solves the dynamic investment problem

max
(φ(s))

Et[U(X(T ))](3.1)

subject to











dX(s) =
[

X(s)r(s) + φ(s)⊤(b(s) − r(s)1)
]

ds+ φ(s)⊤σ(s)dB(s),

X(s) ≥ 0, s ∈ [t, T ],
X(t) = x,

(3.2)

where φ(s) = (φ1(s), · · · , φn(s))⊤ is the vector of values of wealth invested
in the risky assets at time s ∈ [t, T ], x > 0 is the value of wealth at the
starting time t. The first constraint in (3.2) is the dynamic budget constraint
determining the evolution of the wealth process. The second constraint in
(3.2) is the nonnegative wealth constraint ruling out the possibility of create
something out of nothing. Here the admissibility of the portfolio process is
implicitly assumed to be the nonnegativity of the wealth process.
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Following Cox and Huang (1989), see also Karatzas, Lehoczky and Shreve
(1987) and Pliska (1986), we can transform the dynamic problem (3.1)-(3.2)
into a static one:

max
X(T )≥0

Et[U(X(T ))]

subject to Et

[

HT
t X(T )

]

≤ x.
(3.3)

In other words, the dynamic budget constraint in (3.2) can be replaced with
a static one. The strict concavity of U implies the uniqueness of the solution
of problem (3.3).

Since U ′(0) = ∞, the solution X̂t,x(T ) of problem (3.3) is strictly positive
and satisfies the first-order condition

U ′(X̂t,x(T )) = λ(t, x)HT
t ,(3.4)

where the Lagrangian multiplier λ(t, x) > 0. Henceforth, we use I to denote
the inverse marginal utility function U ′−1, that is, U ′(I(y)) = y, for all
y > 0. Obviously, I is strictly decreasing and continuously differentiable on
(0,∞), and

I(0) = lim
y↓0

I(y) = ∞, I(∞) = lim
y↑∞

I(y) = 0.

With this notation, the solution X̂t,x(T ) of problem (3.3) is given by

X̂t,x(T ) = I
(

λ(t, x)HT
t

)

.(3.5)

Furthermore, since U is increasing, the static budget constraint is binding:

Et

[

HT
t X̂

t,x(T )
]

= x,

that is, the Lagrangian multiplier λ(t, x) satisfies the following equation:

Et

[

HT
t I
(

λ(t, x)HT
t

)]

= x.(3.6)

For any t ∈ [0, T ] and y > 0, set

µ(t, y) = Et

[

HT
t I
(

yHT
t

)]

.(3.7)

Obviously, the independent increments of Brownian motion yield that µ is a
deterministic function defined on [0, T ]×(0,∞), and for any given t, µ(t, y) is
strictly decreasing with respect to y. Particularly, µ(T, y) = I(y), for y > 0.
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We can see from (3.6) and the definition of µ(t, y) that, for all t ∈ [0, T ] and
x > 0,

µ(t, λ(t, x)) = x.(3.8)

Hence, λ(t, x) is also a deterministic function defined on [0, T ]× (0,∞), and
for any given t, λ(t, x) is strictly decreasing with respect to x. Particularly,
λ(T, x) = U ′(x), for x > 0. Moreover, we have the following lemma:

Lemma 3.3. Under Assumptions 2.1 and 3.2, we have the following two
assertions:

(i) For any given t, µ(t, y) is strictly decreasing with respect to y, and
limy↓0 µ(t, y) = ∞, limy↑∞ µ(t, y) = 0;

(ii) For any given t, λ(t, x) is strictly decreasing with respect to x, and
limx↓0 λ(t, x) = ∞, limx↑∞ λ(t, x) = 0.

Moreover, we have

µ ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)),(3.9)

λ ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)).(3.10)

Proof: See Appendix A.

Let u(t, x) denote the value function of the problem (3.1)-(3.2), or the
indirect utility function, given that the value of wealth at the starting time
t is x. That is

u(t, x) = Et

[

U
(

I
(

λ(t, x)HT
t

))]

,(3.11)

for all (t, x) ∈ [0, T ] × (0,∞). The independent increments of Brownian
motion yield that u is a deterministic function defined on [0, T ] × (0,∞).
Moreover, we have the following lemma:

Lemma 3.4. Under Assumptions 2.1 and 3.2,

u ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)).

Proof: See Appendix A.

We now derive the feedback form of the optimal portfolio policy by the
martingale approach, following the argument in Karatzas and Shreve (1998)
Section 3.8.
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We use {X̂t,x(s), t ≤ s ≤ T} to denote the corresponding optimal wealth
process for problem (3.1)-(3.2), that is, the wealth process of the portfolio
replicating X̂t,x(T ). It is well known that {X̂t,x(s)H(s), t ≤ s ≤ T} is a
martingale. Then, for all s ∈ [t, T ],

X̂t,x(s) =
1

H(s)
Es[H(T )X̂t,x(T )]

= Es

[

HT
s I
(

λ(t, x)HT
t

)]

= Es

[

HT
s I
(

λ(t, x)Hs
tH

T
s

)]

= µ (s, λ(t, x)Hs
t ) ,(3.12)

where (3.12) follows from (3.7) and the fact that λ(t, x)Hs
t is Fs-measurable.

Therefore, by (3.8) and (3.12), we have

λ
(

s, X̂t,x(s)
)

= λ(t, x)Hs
t , s ∈ [t, T ].(3.13)

Moreover, applying Itô’s formula to (3.12) leads to

dX̂t,x(s)

= µy (s, λ(t, x)Hs
t )λ(t, x) dsH

s
t + a ds-term

= −µy (s, λ(t, x)Hs
t )λ(t, x)Hs

t θ(s)
⊤dB(s) + drift part

= −µy
(

s, λ
(

s, X̂t,x(s)
))

λ
(

s, X̂t,x(s)
)

θ(s)⊤dB(s) + drift part

= −
λ
(

s, X̂t,x(s)
)

λx

(

s, X̂t,x(s)
) θ(s)⊤dB(s) + drift part,

where the last two equalities follow from (3.13) and (3.8), respectively. Com-
paring the preceding equation and the first constraint in (3.2), we know the
optimal portfolio φ̂ satisfies

φ̂(s) = −
λ
(

s, X̂t,x(s)
)

λx

(

s, X̂t,x(s)
)(σ(s)σ(s)⊤)−1(b(s) − r(s)1).

The Lagrangian multiplier λ(t, x) gives the marginal, or shadow, value of
relaxing the static budget constraint in (3.3). It therefore equals the agent’s
marginal utility of wealth at the optimum, that is

λ(t, x) = ux(t, x).(3.14)
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Therefore, the optimal portfolio φ̂ satisfies

φ̂(s) = −
ux

(

s, X̂t,x(s)
)

uxx

(

s, X̂t,x(s)
)(σ(s)σ(s)⊤)−1(b(s) − r(s)1),

which implies that the optimal portfolio policy φ̂ is in the following feedback
form:

φ̂(s, x) = − ux(s, x)

uxx(s, x)
(σ(s)σ(s)⊤)−1(b(s) − r(s)1).

That is,

φ̂(s, x) = f(s, x)(σ(s)σ(s)⊤)−1(b(s) − r(s)1),(3.15)

where

f(s, x) = − ux(s, x)

uxx(s, x)
, for all (s, x) ∈ [t, T ] × (0,∞).

Remark 3.5. For every time s ∈ [t, T ], we have represented the optimal
portfolio φ̂(s) in feedback form on the level of wealth at time s, in terms of
the indirect utility function u(s, ·) and the instantaneous market coefficients
r(s), b(s), and σ(s). The optimal portfolio policy depends on neither the
starting time nor the starting wealth level. Thus (3.15) always gives the
optimal portfolio policy in feedback form, regardless of the specification of
starting time and the starting wealth level.

Remark 3.6. Usually, the feedback form of the optimal portfolio policy is
derived from HJB (Hamilton-Jacobi-Bellman) equation. Actually, following
Merton (1971), the principle of dynamic programming leads to the following
HJB equation for u:

max
φ

{

ut + [rx+ φ⊤(b− r1)]ux +
1

2
φ⊤σσ⊤φuxx

}

= 0,(3.16)

on [0, T ) × (0,∞), as well as the terminal condition

u(T, x) = U(x), for all x > 0.(3.17)

The first-order condition for the maximality in (3.16) yields (3.15). It, how-
ever, remains to verify the polity is optimal if it is derived from HJB equa-
tion. Here, we have just proved that the optimal portfolio policy is in the
feedback form (3.15) by the martingale approach, following the essentially
same argument as in Karatzas and Shreve (1998) Section 3.8.
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It is well known that

ux(t, x) > 0 and uxx(t, x) < 0, for all (t, x) ∈ [0, T ] × (0,∞).

Then
f(t, x) > 0, for all (t, x) ∈ [0, T ] × (0,∞).

f(t, x) is the absolute risk tolerance of the indirect utility function. In this
paper, we call it the indirect absolute risk tolerance function. Accordingly,
we call f(t,x)

x
the indirect relative risk tolerance function.

In view of (3.15), the vector of optimal portfolio proportions is

φ̂(t, x)

x
=
f(t, x)

x
(σ(t)σ(t)⊤)−1(b(t) − r(t)1),(3.18)

whose components represent the proportions of total wealth held in the risky
assets. In particular, for logarithmic utility function U(x) = log x, whose
relative risk tolerance is constant and equals 1, it is well know (see, e.g.,

Merton (1969)) that the indirect relative risk tolerance f(t,x)
x

= 1, for all
(t, x) ∈ [0, T ]× (0,∞), and hence, by (3.18), the vector of optimal portfolio
proportions is

(σ(t)σ(t)⊤)−1(b(t) − r(t)1),

which, hereafter, is called the vector of log-optimal portfolio proportions.
Notice that, for any von Neumann-Morgenstern utility function U , the

vector of optimal portfolio proportions is given by the vector of log-optimal
portfolio proportions multiplied by the indirect relative risk tolerance. This
means effectively that it is enough for any agent to replace investments
in all assets with investments in the risk-free asset and a single “mutual
fund”, whose portfolio is log-optimal. Different agents would have different
weights between the log-optimal portfolio and the risk-free asset, depending
on their indirect relative risk tolerance. The weight of total wealth invested
in the log-optimal portfolio equals the indirect relative risk tolerance. The
larger the indirect relative risk tolerance is, the larger weight is invested in
the log-optimal portfolio. Accordingly, the amount of wealth invested in the
log-optimal portfolio equals the indirect absolute risk tolerance. The larger
the indirect absolute risk tolerance is, the more wealth is invested in the
log-optimal portfolio.

4. Indirect Absolute Risk Tolerance Functions

Now we investigate the indirect absolute risk tolerance function f .
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By (3.14), the first-order condition (3.4) can be rewritten as

U ′(X̂t,x(T )) = ux(t, x)H
T
t .(4.1)

Moreover, the budget constraint is binding:

Et

[

X̂t,x(T )HT
t

]

= x.(4.2)

Lemma 4.1. Under Assumptions 2.1 and 3.2, we have for any t ∈ [0, T )
that

Et

[

∂X̂t,x(T )

∂x
HT
t

]

= 1, for all x > 0.(4.3)

Proof: We can obtain (4.3) by differentiating formally the both sides of
(4.2) with respect to x. For a rigorous proof, see Appendix B.

Differentiating (4.1) with respect to x yields

U ′′(X̂t,x(T ))
∂X̂t,x(T )

∂x
= uxx(t, x)H

T
t ,

and consequently, by (4.1) once again,

− U ′(X̂t,x(T ))

U ′′(X̂t,x(T ))
= − ux(t, x)

uxx(t, x)

∂X̂t,x(T )

∂x
= f(t, x)

∂X̂t,x(T )

∂x
.(4.4)

Proposition 4.2. Under Assumptions 2.1 and 3.2, for all t ∈ [0, T ] and
x > 0,

f(t, x) = Et

[

− U ′(X̂t,x(T ))

U ′′(X̂t,x(T ))
HT
t

]

(4.5)

= Et



−
U ′
(

I
(

λ(t, x)HT
t

))

U ′′
(

I
(

λ(t, x)HT
t

)) HT
t



 .(4.6)

Moreover, f(t, x) is uniformly linearly growing in x, that is, there exists a
constant c′ > 0 such that :

f(t, x) ≤ c′(1 + x), for all (t, x) ∈ [0, T ] × (0,∞).(4.7)
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Proof: We can obtain (4.5) from (4.4) and Lemma 4.1. From (3.5), we get
(4.6) as well. Moreover, by (4.5) and Assumption 3.2,

f(t, x) ≤ cEt

[

(1 + X̂t,x(T ))HT
t

]

= ce
−
∫ T

t
r(s)ds + cx,

which with Assumption 2.1 clearly leads to (4.7).

Remark 4.3. Gollier (2001) obtained the same conclusion as in the pre-
ceding proposition, for static models.

Proposition 4.4. Under Assumptions 2.1 and 3.2,

{f(s, X̂t,x(s))H(s), s ∈ [t, T ]}

is a martingale, for every t ∈ [0, T ) and every x > 0.

Proof: By (4.6), for all s ∈ [t, T ],

f(s, X̂t,x(s))

= Es



−
U ′
(

I
(

λ
(

s, X̂t,x(s)
)

HT
s

))

U ′′
(

I
(

λ
(

s, X̂t,x(s)
)

HT
s

))HT
s



 (by X̂t,x(s) ∈ Fs)

= Es



−
U ′
(

I
(

λ (t, x)HT
t

))

U ′′
(

I
(

λ (t, x)HT
t

)) HT
s



 (by (3.13))

= Es

[

− U ′(X̂t,x(T ))

U ′′(X̂t,x(T ))
HT
s

]

(by (3.5))

= Es

[

f(T, X̂t,x(T ))
H(T )

H(s)

]

.

Thus {f(s, X̂t,x(s))H(s), s ∈ [t, T ]} is a martingale.

Remark 4.5. It was first pointed out by Cox and Leland (1982) that

{f(s, X̂t,x(s))H(s), s ∈ [t, T ]}

is a local martingale when the risky asset price process is a geometric Brow-
nian motion. By differentiating HJB equations, He and Huang (1994) ob-
served it is a general property of an optimal consumption-portfolio policy.
Here, we have shown it is a martingale, by a simple and pure probabilistic
method, based on Proposition 4.2.

Based on the martingale property in the preceding proposition, the in-
direct absolute risk tolerance function f turns out to satisfy a nonlinear
parabolic PDE, as shown in the next proposition.
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Proposition 4.6. Under Assumptions 2.1 and 3.2,

f ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)),

and f satisfies PDE

1

2
|θ|2f2fxx + rxfx + ft − rf = 0,(4.8)

on [0, T ) × (0,∞), as well as the terminal condition

f(T, x) = − U ′(x)

U ′′(x)
, for all x > 0.(4.9)

Proof: See Appendix B.

Remark 4.7. Just as in the present paper, the indirect absolute risk toler-
ance function also plays a fundamental role in the analysis in Kramkov and Ŝırbu
(2006, 2007), Musiela and Zariphopoulou (2006, 2008), Zariphopoulou and Zhou
(2007).

5. Comparisons Across Individuals

Apart from an agent with (von Neumann-Morgenstern) utility function U

as described in the previous sections, we consider another agent whose (von
Neumann-Morgenstern) utility function is V . Just like the arguments in the
previous sections, we will use the following assumption:

Assumption 5.1. The absolute risk tolerance function of V satisfies the
linear growth condition, that is, there is a constant c > 0 such that

− V ′(x)

V ′′(x)
≤ c(1 + x), for all x > 0.

The agent whose (von Neumann-Morgenstern) utility function is V solves
the following dynamic investment problem:

max
(ψ(s))

Et[V (X(T ))](5.1)

subject to











dX(s) =
[

X(s)r(s) + ψ⊤(s)(b(s) − r(s)1)
]

ds+ ψ⊤(s)σ(s)dB(s),

X(s) ≥ 0, for s ∈ [t, T ],
X(t) = x,

(5.2)
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where ψ(s) = (ψ1(s), · · · , ψn(s))⊤ is the vector of values of wealth invested
in the risky assets at time s ∈ [t, T ].

Let v(t, x) denote the indirect utility function for problem (5.1)-(5.2).
From Lemma 3.4, we know

v ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)),

provided Assumptions 2.1 and 5.1 are satisfied. The corresponding indirect
absolute risk tolerance function is

g(t, x) = − vx(t, x)

vxx(t, x)
,

and the optimal portfolio policy ψ̂ is in the following feedback form:

ψ̂(t, x) = g(t, x)(σ(t)σ(t)⊤)−1(b(t) − r(t)1).(5.3)

Given two utility functions U and V , we say U is more risk-averse than

V , or U is less risk-tolerant than V , if −U ′′(x)
U ′(x) ≥ −V ′′(x)

V ′(x) , that is, − U ′(x)
U ′′(x) ≤

− V ′(x)
V ′′(x) , for every x > 0. It is well known that U is more risk-averse than

V if and only if there exists an increasing concave function F such that
U(x) = F (V (x)), for all x; that is, U is a concave transformation of V (In
other words, U is “more concave” than V .)

Remark 5.2. Obviously, if V satisfies Assumption 5.1 and U is more risk-
averse that V , then U satisfies Assumption 3.2.

Now we are ready to report the main result of this paper.

Theorem 5.3. Under Assumptions 2.1 and 5.1, assume further that U is
more risk-averse than V , then f(t, x) ≤ g(t, x), for all t ∈ [0, T ) and x > 0.

Proof: See Appendix D.

Remark 5.4. It seems that we could apply the techniques of maximum prin-
ciples for parabolic PDEs to prove f ≤ g. However, due to the nonlinearity
of PDE (4.8) and the unboundedness of the domain [0, T )× (0,∞), the tech-
niques of maximum principles can not be directly applied to f and g. In order
to overcome this point, we approximate f with a sequence {f (m), m ≥ 2} of
functions, which satisfy the PDEs with bounded domains. For these PDEs
with bounded domains, we can use the techniques of maximum principles to
show f (m) ≤ g, then by approximation, we have f ≤ g. The approximat-
ing sequence is constructed in Appendix C, and the proof of the theorem is
completed in Appendix D. Although what we want is to prove a comparison
theorem of PDE, the method here is mainly probabilistic.
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The preceding theorem shows: If the agent with utility function U(x) is
more risk-averse than the agent with utility function V (x), then, for each
time t ∈ [0, T ), the corresponding indirect utility function u(t, x) is more
risk-averse than v(t, x) as well. According to the discussion at the end of
Section 3, at each time t ∈ [0, T ), if the agents have the same value of
wealth, then the former agent invests less in the log-optimal portfolio (and
hence, less in absolute value of wealth in the risky assets) than the later. So,
we have established a continuous-time version of the comparative statics of
the optimal portfolios across individuals.

Remark 5.5. The conclusion of Theorem 5.3 also holds for incomplete
markets with deterministic coefficients, see Section 7.

6. Comparisons Across Wealth Levels

In this section, we recover the conclusions in Borell (2007), based on Propo-
sition 4.2 and Theorem 5.3.

A utility function U is called to exhibit decreasing absolute risk aver-
sion (henceforth, DARA) [resp. increasing absolute risk aversion (hence-

forth, IARA)], if −U ′′(x)
U ′(x) is decreasing [resp. increasing] with respect to x.

Accordingly, U is called to exhibit decreasing relative risk aversion (hence-
forth, DRRA) [resp. increasing relative risk aversion (henceforth, IRRA)] if

−xU ′′(x)
U ′(x) is decreasing [resp. increasing] with respect to x.

Theorem 6.1. Under Assumptions 2.1 and 3.2, if U exhibits DARA, then
for each t, u(t, ·) exhibits DARA, namely, f(t, x) is increasing with respect
to x.

Proof: We have known that I is strictly decreasing, and for each t, λ(t, x)
is strictly decreasing with respect to x. Then the assertions follows from
(4.6).

Remark 6.2. The preservation of DARA has already been reported by Borell
(2007), for a continuous-time complete model; see (Gollier, 2001, pp.209-
210), for a static complete model. The method used here is same to that of
Gollier (2001). For a static complete model, Gollier (2001) has also showed
the preservation of IARA. But in our settings, as observed by (Borell, 2007,
p.144), the assumption U ′(0) = ∞ totally eliminates utility functions U ex-
hibiting IARA (see also Lemma A.1). We believe, in our continuous-time
setting, the preservation of IARA can be proved as well, by considering the
utility functions defined on the whole real line (−∞,∞), instead of the pos-
itive real line (0,∞).
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We can see from the preceding theorem and the discussion at the end of
Section 3 that, if the utility function of the agent exhibits DARA, then the
amount of wealth invested in the log-optimal portfolio is increasing as the
total wealth rises.

As for the relative risk aversion, we have the following theorem, whose
conclusion has already been reported by Borell (2007). The methodology
here, however, is different from there. According to the method of Borell
(2007), the IRRA case is much more complicate than the DRRA case. Ac-
cording to the method here, however, both cases can be easily dealt with,
based on Theorem 5.3.

Theorem 6.3. Under Assumptions 2.1 and 3.2, we have the following two
assertions:

(i) If U exhibits DRRA, then for each t, u(t, ·) exhibits DRRA, namely,
f(t,x)
x

is increasing with respect to x;

(ii) If U exhibits IRRA, then for each t, u(t, ·) exhibits IRRA, namely, f(t,x)
x

is decreasing with respect to x.

Proof: Suppose U exhibits DRRA. For any constant γ > 1, consider the
utility function V defined by V (x) = U(γx), for all x > 0. Obviously, we
have

−xV
′′(x)

V ′(x)
= −γxU

′′(γx)

U ′(γx)
≤ −xU

′′(x)

U ′(x)
,

which yields U is more risk averse than V . Then by Theorem 5.3,

f(t, x) ≤ g(t, x), for all (t, x) ∈ [0, T ] × (0,∞).(6.1)

Moreover, it is easy to see v(t, x) = u(t, γx), for all t ∈ [0, T ] and x > 0. By

computation, g(t, x) = f(t,γx)
γ

. Thus we get from (6.1) that f(t,x)
x

≤ f(t,γx)
γx

,
for all t ∈ [0, T ] and x > 0. By the arbitrariness of γ > 1, we have proved
assertion (i). Assertion (ii) can be proved by letting γ ∈ (0, 1) and by the
same way.

We can see from the preceding theorem and the discussion at the end
of Section 3 that, if the utility function of the agent exhibits DRRA (resp.
IRRA), then the weight of wealth invested in the log-optimal portfolio is
increasing (resp. decreasing) as the total wealth rises.

7. Extension to an Incomplete Market

In a complete market, the optimal portfolio is given by (3.15). If the excess
expected rate of return of asset i is zero, that is, bi(t) − r(t) = 0, then no
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wealth will be invested in asset i. Based on this observation, the extension
to an incomplete market with deterministic coefficients is straightforward.

Instead of a financial market with n risky assets and driven by an n-
dimensional standard Brownian motion, we now consider an incomplete fi-
nancial market with n risky assets and driven by a d-dimensional standard
Brownian motion, d > n. The i-th risky asset’s price process Si(t) satisfies
the following equation:

dSi(t) = Si(t)



bi(t)dt +
d
∑

j=1

σij(t)dBj(t)



 , Si(0) > 0, 1 ≤ i ≤ n.

Here B(t) = (B1(t), · · · , Bd(t))⊤ is a d-dimensional standard Brownian
motion defined on a filtered probability space (Ω,F , (Ft),P). Set b(t) =
(b1(t), · · · , bn(t))⊤ and σ(t) = (σij(t))1≤i≤n,1≤j≤d. We assume the coeffi-
cients b(t) and σ(t) are deterministic, and rank(σ(t)) = n.

Now we consider other (d−n) risky assets whose price processes satisfies

dSi(t) = Si(t)



r(t)dt +
d
∑

j=1

σij(t)dBj(t)



 , Si(0) > 0, n+ 1 ≤ i ≤ d,

where the expected instantaneous rate of return of each asset is the risk-free
rate r(t) and the coefficient (σij(t))n+1≤i≤d,1≤j≤d makes the enlarged matrix

(σij(t))1≤i≤d,1≤j≤d

non-singular. If we add these (d − n) risky assets into the original market,
then we have a larger market with d risky assets. Obviously, the larger mar-
ket is complete. The larger market will not make an agent better off than the
original market: no wealth will be invested in asset i, i = n+ 1, . . . , d, since
the expected instantaneous rate of return of each asset i, i = n + 1, . . . , d,
is the risk-free rate r(t). In the larger market, an agent will have the same
optimal portfolio as in the original market. Consequently, the conclusion of
Theorem 5.3 also holds for incomplete market with deterministic coefficients.
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Appendix A: Supplementary Data for Section 3

Lemma A.1. If U ′(0) = ∞, then lim infx↓0 − U ′(x)
U ′′(x) = 0.

Proof: Suppose otherwise that lim infx↓0 − U ′(x)
U ′′(x) = A > 0, then there exists

a x0 ∈ (0, 1) such that, − U ′(x)
U ′′(x) >

A
2 , for all x ∈ (0, x0). Then we have

(logU ′(x))′ =
U ′′(x)

U ′(x)
> − 2

A
, for x ∈ (0, x0),

and therefore,

logU ′(1) − logU ′(x) =

∫ 1

x

U ′′(z)

U ′(z)
dz >

2(x− 1)

A
, for x ∈ (0, x0).

Thus U ′(x) < U ′(1)e
2(1−x)

A , for x ∈ (0, x0), which is impossible, since U ′(0) =
∞.

Lemma A.2. For any von Neumann-Morgenstern utility function U , there
exist constants c0 > 0 and c1 > 0 such that

|U(I(y))| ≤ max{c0 + y, c0 + c1I(y)}, for all y > 0.(A.1)

Proof: The concavity of U implies

U(I(y)) ≤ U(1) + U ′(1)(I(y) − 1), for all y > 0.(A.2)

On the other hand, it is well know that U(I(y))−yI(y) = supx>0[U(x)−yx].
Then

−U(I(y)) ≤ −yI(y) − U(1) + y ≤ −U(1) + y, for all y > 0.(A.3)

Finally, a combination of (A.2) and (A.3) yields the assertion.

Lemma A.3. If von Neumann-Morgenstern utility function U satisfies As-
sumption 3.2, then we have

U ′(x) ≤ U ′(1)

(

1 + x

2

)− 1
c

, for all x > 1,(A.4)

I(y) ≤ 2(U ′(1))cy−c − 1, for all y ∈ (0, U ′(1)).(A.5)
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Proof: By Assumption 3.2,

(logU ′(x))′ =
U ′′(x)

U ′(x)
≤ − 1

c(1 + x)
, for all x > 0.

Then for all x > 1,

logU ′(x) − logU ′(1) =

∫ x

1
(logU ′(z))′dz

≤ −
∫ x

1

dz

c(1 + z)

= −1

c
log

1 + x

2
,

yielding (A.4). Suppose y < U ′(1), then I(y) > 1, and therefore, by (A.4),

y = U ′(I(y)) ≤ U ′(1)

(

1 + I(y)

2

)− 1
c

,

which implies (A.5).

Lemma A.4. If von Neumann-Morgenstern utility function U satisfies As-
sumption 3.2, then we have for all a > 0 that

∫ ∞

−∞
ezI(ez) e−az

2
dz <∞,(A.6)

∫ ∞

−∞
|U(I(ez))| e−az2 dz <∞.(A.7)

Proof: By Lemma A.3, we have

I(ez) ≤
{

2(U ′(1))c e−cz − 1, if ez < U ′(1);
1, if ez ≥ U ′(1),

(A.8)

which obviously yields (A.6). A combination of (A.1) and (A.8) leads to
(A.7).

We refer to (Karatzas and Shreve, 1991, pp.254-255) for the following
lemma:

Lemma A.5. Suppose k : R → R is a Borel-measurable function satisfying
the condition

∫ ∞

−∞
|k(z)|e−az2dz <∞,
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for some a > 0. Set

κ(t, z) = E[k(z +
√
t ξ)], (t, z) ∈

[

0,
1

2a

)

× R,

where ξ ∼ N (0, 1), the standard normal distribution. Then κ has continuous

derivatives of all orders, for all t ∈
(

0, 1
2a

)

and z ∈ R. Moreover, if k is

continuous at z0 ∈ R, then κ is continuous at (0, z0). Particularly, if k is

continuous on R, then κ is continuous on
[

0, 1
2a

)

× R.

Proof of Lemma 3.3:

Assertions (i) and (ii) are clear. It remains to show (3.9) and (3.10).
Let k(z) = ezI(ez), for all z ∈ R. Obviously, k(z) > 0, for all z ∈ R. By

Lemma A.4,
∫∞
−∞ k(z)e−az

2
dz <∞, for all a > 0. Set

κ(t, z) = E[k(z +
√
t ξ)], (t, x) ∈ [0,∞) × R,

where ξ ∼ N (0, 1). Then by Lemma A.5, κ has continuous derivatives of all
orders, for all t ∈ (0,∞) and z ∈ R, and is continuous on [0,∞) × R. Since

log
(

yHT
t

)

= log y −
∫ T

t
r(s)ds− 1

2
Θ(t) −

∫ T

t
θ(s)⊤dB(s),

where

Θ(t) =

∫ T

t
|θ(s)|2ds, for all t ∈ [0, T ],

we can see from (3.7) that

µ(t, y) =
1

y
Et

[

k
(

log
(

yHT
t

))]

=
1

y
κ

(

Θ(t), log y −
∫ T

t
r(s)ds− 1

2
Θ(t)

)

,

and therefore, (3.9) follows. Here we have used the fact that Θ is continuously
differentiable on [0, T ], which is obvious under Assumption 2.1.

Now we prove λ ∈ C1,∞([0, T ) × (0,∞)), using the Implicit Function
Theorem (see Zorich (2004)). To this end, we extent the definition of µ to
a open domain containing [0, T ) × (0,∞). Let β : (−∞, T ] → [0,∞) and
γ : (−∞, T ] → R be defined as follows:

β(t) =

{

Θ(t), for t ∈ [0, T ],
Θ(0) − |θ(0)|2t, for t < 0,

γ(t) =

{

∫ T
t r(s)ds, for t ∈ [0, T ],
∫ T
0 r(s)ds− r(0)t, for t < 0.
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Obviously, β and γ are continuously differentiable on (−∞, T ]. Let µ̃ be
defined by

µ̃(t, y) =
1

y
κ

(

β(t), log y − γ(t) − 1

2
β(t)

)

, for (t, y) ∈ (−∞, T ] × (0,∞).

Then µ̃ ∈ C1,∞((−∞, T ) × (0,∞)). It is not difficult to see that, for each
t ∈ (−∞, T ],

µ̃(t, y) = E

[

e−γ(t)−
1
2
β(t)+

√
β(t) ξI

(

ye−γ(t)−
1
2
β(t)+

√
β(t) ξ

)]

is strictly decreasing with respect to y, on (0,∞). Let λ̃ be defined by

µ̃(t, λ̃(t, x)) = x, for (t, x) ∈ (−∞, T ] × (0,∞).

Then by the Implicit Function Theorem, λ̃ ∈ C1,∞((−∞, T )×(0,∞)). More-
over, it is easy to see that µ̃ = µ, on [0, T ]× (0,∞), and therefore, recalling
(3.8), λ̃ = λ, on [0, T ] × (0,∞). Thus we have λ ∈ C1,∞([0, T ) × (0,∞)).

It remains to show λ is continuous at (T, x), for all x > 0. Let sequence
(tn, xn) ∈ [0, T ] × (0,∞) converge to (T, x), for some x > 0, we shall prove
limn→∞ λ(tn, xn) = U ′(x). Suppose lim infn→∞ λ(tn, xn) < U ′(x), then there
exists some y0 ∈ (0, U ′(x)) such that lim infn→∞ λ(tn, xn) < y0, then

x = lim
n→∞

µ(tn, λ(tn, xn)) ≥ lim inf
n→∞

µ(tn, y0) = µ(T, y0) = I(y0) > x,

which leads to a contradiction. Thus lim infn→∞ λ(tn, xn) < U ′(x) is impos-
sible. Similarly, we can prove lim supn→∞ λ(tn, xn) > U ′(x) is impossible. So
we complete the proof.

Lemma A.6. Suppose Assumption 2.1 is satisfied and q : (0,∞) → R is a
Borel-measurable function satisfying the condition

∫ ∞

0
|q(ez)| exp

{

− z2

2(Θ(0) + ε)

}

dz <∞, for some ε > 0,

where Θ(t) =
∫ T
t |θ(s)|2ds, for all t ∈ [0, T ]. Let ν be defined by

ν(t, y) = Et

[

q
(

yHT
t

)]

, (t, y) ∈ [0, T ] × (0,∞).

Then ν ∈ C1,∞([0, T )× (0,∞)). Moreover, if q is continuous at y0 > 0, then
ν is continuous at (T, y0). Particularly, if q is continuous on (0,∞), then
ν ∈ C([0, T ] × (0,∞)).
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Proof: It is just similar to the proof of (3.9).

Based on the previous lemmas, we are ready to prove Lemma 3.4.

Proof of Lemma 3.4:

Let q(y) = U(I(y)) and

ν(t, y) = Et

[

q
(

yHT
t

)]

= Et

[

U
(

I
(

yHT
t

))]

,

then by Lemmas A.4 and A.6,

ν ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)).

Moreover, recalling (3.11), u(t, x) = ν(t, λ(t, x)). Then by Lemma 3.3, we
finish the proof.

Appendix B: Supplementary Data for Section 4

Proof of Lemma 4.1:

We can rewrite (4.1) as

X̂t,x(T ) = I
(

ux(t, x)H
T
t

)

.

Differentiating the preceding equality with respect to x yields

∂X̂t,x(T )

∂x
= I ′

(

ux(t, x)H
T
t

)

uxx(t, x)H
T
t .(B.1)

Obviously, ∂X̂t,x(T )
∂x

> 0 almost surely, for each x > 0. Let function l be
defined by

l(t, y) = Et

[

I ′
(

yHT
t

) (

HT
t

)2
]

,(B.2)

for all (t, y) ∈ [0, T ] × (0,∞). Then (see Lemma B.1 below )

l ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)).

Therefore, by Lemma 3.4 and (B.1), we have for every t ∈ [0, T ] that

Et

[

∂X̂t,x(T )

∂x
HT
t

]

= uxx(t, x)l(t, ux(t, x))
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is continuous with respect to x, on (0,∞). Moreover, for any z > z0 > 0, we
have

∫ z

z0

Et

[

∂X̂t,x(T )

∂x
HT
t

]

dx

= Et

[

∫ z

z0

∂X̂t,x(T )

∂x
HT
t dx

]

(by Fubini’s Theorem)

= Et

[

(X̂t,z(T ) − X̂t,z0(T ))HT
t

]

= z − z0, (by (4.2))

which leads to (4.3).

Lemma B.1. Under Assumptions 2.1 and 3.2, let function l be defined by
(B.2), then

l ∈ C1,∞([0, T ) × (0,∞)) ∩C([0, T ] × (0,∞)).

Proof: Obviously, I ′(y) < 0, for all y > 0. For each y > 0,

−I ′(y) = − 1

U ′′(I(y))
= − U ′(I(y))

yU ′′(I(y))
≤ c

1 + I(y)

y
,

where the inequality follows from Assumption 3.2. Thus, for any z ∈ R,

0 < −e2zI ′(ez) ≤ c(ez + ezI(ez)).

By Lemma A.4,
∫∞
−∞ q(ez) e−az

2
dz < ∞, for all a > 0, where q(y) =

−y2I ′(y). Since

l(t, y) = −
Et

[

q
(

yHT
t

)]

y2
,

the proof can be finished by using Lemma A.6.

Proof of Proposition 4.6:

By (3.17), (4.9) is obvious. Lemma 3.4 clearly implies that f ∈ C1,∞([0, T )×
(0,∞)). Now we show f ∈ C([0, T ] × (0,∞)). Noting I ′(y) = 1

U ′′(I(y)) , we

have from (4.6) that

f(t, x) = Et

[

−λ(t, x)HT
t I

′
(

λ(t, x)HT
t

)

HT
t

]

,

that is, f(t, x) = −λ(t, x)l(t, λ(t, x)), where l is defined by (B.2). Lemmas
B.1 and 3.3 combined lead to f ∈ C([0, T ]× (0,∞)). To conclude the propo-
sition, it remains to show f satisfies PDE (4.8) on [0, T )× (0,∞). For nota-
tional simplicity, we use X̂(s) to denote X̂0,x(s), the optimal wealth process
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with initial time t = 0 and initial wealth x. We have known that the op-
timal portfolio policy is given by (3.15). Then the optimal wealth process
{X̂(s), s ∈ [0, T ]} satisfies the following SDE:

dX̂(s) = X̂(s)r(s)ds+ f(s, X̂(s))|θ(s)|2ds+ f(s, X̂(s))θ(s)⊤dB(s).

Applying Itô’s formula to f(s, X̂(s))H(s) yields that

d
[

f(s, X̂(s))H(s)
]

= H(s)
[

−f(s, X̂(s))r(s) + fs(s, X̂(s)) + fx(s, X̂(s))X̂(s)r(s)

+
1

2
fxx(s, X̂(s))f2(s, X̂(s))|θ(s)|2

]

ds + diffusion part.

By Proposition 4.4, f(s, X̂(s))H(s) is a martingale. Thus its drift part must
be zero. On the other hand, H(s) is log-normally distributed, and then by
Lemma 3.3, by (3.12) and by taking t = 0, P(X̂(s) ∈ G) > 0 for every open
set G ⊂ R and every s ∈ (0, T ). Therefore, we know f satisfies (4.8) on
(0, T ) × (0,∞). Moreover, by the fact that f ∈ C1,∞([0, T ) × (0,∞)), we
know f satisfies (4.8) on [0, T ) × (0,∞).

Appendix C: Approximation

We construct the approximating sequence {f (m), m ≥ 2} in this appendix,
by considering a sequence of expected utility maximization problems with
constraints.

C.1. Expected Utility Maximization with Constraints

Given a (von Neumann-Morgenstern) utility function U , for every m ≥ 2
and for every t ∈ [0, T ), we consider the following problem with a constraint:

max
(φ(s))

Et[U(X(T ))](C.1)

subject to















dX(s) =
[

X(s)r(s) + φ⊤(s)(b(s) − r(s)1)
]

ds+ φ⊤(s)σ(s)dB(s),

1
m
e
−
∫ T

s
r(τ)dτ ≤ X(s) ≤ me

−
∫ T

s
r(τ)dτ

, for s ∈ [t, T ],
X(t) = x,

(C.2)
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where φ(s) = (φ1(s), · · · , φn(s))⊤ is the vector of values of wealth invested

in risky assets at time s ∈ [t, T ], and 1
m
e
−
∫ T

t
r(s)ds

< x < me
−
∫ T

t
r(s)ds.

We can see the dynamic problem (C.1)-(C.2) can be transformed into a
static one:

max
1
m
≤X(T )≤m

Et[U(X(T ))]

subject to Et

[

HT
t X(T )

]

≤ x.
(C.3)

By a similar discussion as in Section 3, the solution X̂(m),t,x(T ) is given by

X̂(m),t,x(T ) =
1

m
∨ I

(

λ(m)(t, x)HT
t

)

∧m,(C.4)

where the Lagrangian multiplier λ(m)(t, x) > 0 and we use the following
notation:

1

m
∨ x ∧m =











1
m
, for x ≤ 1

m
;

x, for x ∈
(

1
m
,m
)

;

m, for x ≥ m.

Moreover, the static budget constraint is binding:

Et

[

HT
t X̂

(m),t,x(T )
]

= x,

that is,

Et

[

HT
t

(

1

m
∨ I

(

λ(m)(t, x)HT
t

)

∧m
)]

= x.(C.5)

For any y > 0, define

µ(m)(t, y) = Et

[

HT
t

(

1

m
∨ I

(

yHT
t

)

∧m
)]

.(C.6)

The independent increments of Brownian motion yield µ(m) is a determin-
istic function defined on [0, T ] × (0,∞). Obviously, for any given t ∈ [0, T ),
µ(m)(t, y) is continuous and strictly decreasing with respect to y, on (0,∞),
and

lim
y↓0

µ(m)(t, y) = me
−
∫ T

t
r(s)ds

, lim
y↑∞

µ(m)(t, y) =
1

m
e
−
∫ T

t
r(s)ds

.

By (C.5) and the definition of µ(m),

µ(m)(t, λ(m)(t, x)) = x,(C.7)
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for any x ∈
(

1
m
e
−
∫ T

t
r(s)ds

, me
−
∫ T

t
r(s)ds

)

. Therefore, λ(m) is a deterministic

function defined on D(m) ∪ T (m), where

D(m) =

{

(t, x) :
1

m
e
−
∫ T

t
r(s)ds

< x < me
−
∫ T

t
r(s)ds

, t ∈ [0, T )

}

,

T (m) =

{

(T, x) :
1

m
< x < m

}

.

Moreover, for any given t ∈ [0, T ), λ(m)(t, x) is continuous and strictly de-

creasing with respect to x, on

(

1
m
e
−
∫ T

t
r(s)ds

, me
−
∫ T

t
r(s)ds

)

, and

lim

x↓ 1
m
e
−

∫ T

t
r(s)ds

λ(m)(t, x) = ∞, lim

x↑me
−

∫ T

t
r(s)ds

λ(m)(t, x) = 0.(C.8)

In view of (C.4), the indirect utility function of problem (C.3) is given by

u(m)(t, x) = Et

[

U

(

1

m
∨ I

(

λ(m)(t, x)HT
t

)

∧m
)]

.(C.9)

The independent increments of Brownian motion yield that u(m) is a deter-
ministic function defined on D(m) ∪ T (m).

Lemma C.1. Under Assumption 2.1, for each m ≥ 2, we have

µ(m) ∈ C1,∞([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)),(C.10)

λ(m) ∈ C1,∞(D(m)) ∩C(D(m) ∪ T (m)),(C.11)

u(m) ∈ C1,∞(D(m)) ∩C(D(m) ∪ T (m)).(C.12)

Proof: Firstly, for each m ≥ 2, the function 1
m

∨ I(y) ∧m is bounded and
continuous. Then a similar discussion as in the proof of Lemma 3.3 leads to
(C.10) and (C.11). Finally, (C.12) can be obtained by the same method to
prove Lemma 3.4.

The Lagrangian multiplier λ(m)(t, x) turns out to be the agent’s marginal
utility of wealth at the optimum, as shown by the next proposition, whose
proof is deferred after two technical lemmas.

Proposition C.2. Under Assumption 2.1, for all m ≥ 2, λ(m)(t, x) =

u
(m)
x (t, x) on D(m) ∪ T (m).



J. Xia/Risk Aversion and Portfolio Selection 27

In what follows, we use 1A to denote the indicator function of a set A.
For each m ≥ 2, let ν(m) be defined by

ν(m)(t, y) = Et

[

q(m)
(

yHT
t

)]

,(C.13)

for all (t, y) ∈ [0, T ] × (0,∞), where

q(m)(y) = − U ′(I(y))

U ′′(I(y))
y 1{ 1

m
<I(y)<m},(C.14)

for all y > 0.

Lemma C.3. Under Assumption 2.1, for all m ≥ 2,

ν(m) ∈ C1,∞([0, T ) × (0,∞)),

and ν(m) is continuous at (T, y), for all y ∈ (0,∞) \
{

U ′(m), U ′
(

1
m

)}

.

Proof: Obviously, for each m ≥ 2, q(m) is bounded on (0,∞) and is con-

tinuous on (0,∞) \
{

U ′(m), U ′
(

1
m

)}

. Then Lemma A.6 leads to the asser-

tion.

Lemma C.4. Set

α(m)(t, x)

= λ(m)
x (t, x) Et

[

(

HT
t

)2
I ′
(

λ(m)(t, x)HT
t

)

1{ 1
m
<I(λ(m)(t,x)HT

t )<m}
]

.

Then under Assumption 2.1, α(m)(t, x) = 1, for every m ≥ 2 and every
(t, x) ∈ D(m) ∪ T (m).

Proof: Let q(m) and ν(m) be defined by (C.14) and (C.13), respectively.
Then

q(m)(y) = −y2I ′(y)1{ 1
m
<I(y)<m},

and therefore,

ν(m)(t, y) = −y2
Et

[

(

HT
t

)2
I ′
(

yHT
t

)

1{ 1
m
<I
(

y
H(T )
H(t)

)

<m
}

]

.

Thus

α(m)(t, x) = −λ
(m)
x (t, x)ν(m)(t, λ(m)(t, x))

(λ(m)(t, x))2
.

Lemmas C.1 and C.3 combined imply α(m) ∈ C(D(m) ∪ T (m)).
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On the other hand, for any given t ∈ [0, T ], and any z0 and z such that

1

m
e
−
∫ T

t
r(s)ds

< z0 < z < me
−
∫ T

t
r(s)ds

,

we have
∫ z

z0

α(m)(t, x) dx

= Et

[∫ z

z0

λ(m)
x (t, x)

(

HT
t

)2
I ′
(

λ(m)(t, x)HT
t

)

1{ 1
m
<I(λ(m)(t,x)HT

t )<m} dx
]

= Et

[

HT
t

∫ z

z0

1{ 1
m
<I(λ(m)(t,x)HT

t )<m} dI
(

λ(m)(t, x)HT
t

)

]

= Et

[

HT
t

∫ I(λ(m)(t,z)HT
t )

I(λ(m)(t,z0)HT
t )

1{ 1
m
<y<m} dy

]

= Et

[

HT
t

(

1

m
∨ I

(

λ(m)(t, z)HT
t

)

∧m− 1

m
∨ I

(

λ(m)(t, z0)H
T
t

)

∧m
)]

= z − z0,

where the first equality follows from the Fubini’s theorem, and the last
equality follows from (C.5). Therefore, the assertion follows.

Proof of Proposition C.2:

For every t ∈ [0, T ], and any z0 and z such that

1

m
e
−
∫ T

t
r(s)ds

< z0 < z < me
−
∫ T

t
r(s)ds

,

we have

u(m)(t, z) − u(m)(t, z0)

= Et

[

U

(

1

m
∨ I

(

λ(m)(t, z)HT
t

)

∧m
)

− U

(

1

m
∨ I

(

λ(m)(t, z0)H
T
t

)

∧m
)]

= Et

[

∫ I(λ(m)(t,z)HT
t )

I(λ(m)(t,z0)HT
t )

1{ 1
m
<y<m} dU(y)

]

= Et

[∫ z

z0

1{ 1
m
<I(λ(m)(t,x)HT

t )<m} dU
(

I
(

λ(m)(t, x)HT
t

))

]

= Et

[∫ z

z0

1{ 1
m
<I(λ(m)(t,x)HT

t )<m} λ
(m)(t, x)

(

HT
t

)2
I ′
(

λ(m)(t, x)HT
t

)

λ(m)
x (t, x)dx

]

=

∫ z

z0

λ(m)(t, x)α(m)(t, x)dx

=

∫ z

z0

λ(m)(t, x)dx,
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where the first equality follows from (C.9), the last two equalities follows
from Fubini’s theorem and Lemma C.4, respectively. Therefore, the assertion
follows.

In what follows, we derive the feedback form of the optimal portfolio
policy, following the same argument as in Section 3. We use {X̂(m),t,x(s), t ≤
s ≤ T} to denote the corresponding optimal wealth process for problem
(C.1)-(C.2). It is easy to see that

{X̂(m),t,x(s)H(s), t ≤ s ≤ T}

is a martingale. Then, for all s ∈ [t, T ],

X̂(m),t,x(s) =
1

H(s)
Es[H(T )X̂(m),t,x(T )]

= Es

[

HT
s

(

1

m
∨ I

(

λ(m)(t, x)HT
t

)

∧m
)]

= Es

[

HT
s

(

1

m
∨ I

(

λ(m)(t, x)Hs
tH

T
s

)

∧m
)]

= µ(m)
(

s, λ(m)(t, x)Hs
t

)

,(C.15)

where (C.15) follows from (C.6) and the fact that λ(m)(t, x)Hs
t is Fs-measurable.

Therefore, by (C.7) and (C.15),

λ(m)
(

s, X̂(m),t,x(s)
)

= λ(m)(t, x)Hs
t , s ∈ [t, T ].(C.16)

Based on (C.15)-(C.16) and Proposition C.2, by a similar way to (3.15), we
can see that the optimal portfolio policy φ̂(m) for problem (C.1)-(C.2) is in
the following feedback form:

φ̂(m)(s, x) = f (m)(s, x)(σ(s)σ(s)⊤)−1(b(s) − r(s)1),(C.17)

where

f (m)(s, x) = −u
(m)
x (s, x)

u
(m)
xx (s, x)

, for all (s, x) ∈ D(m) ∪ T (m).

C.2. Indirect Absolute Risk Tolerance Functions f (m)

We now derive the PDEs satisfied by indirect absolute risk tolerance func-
tions f (m).
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Lemma C.5. Under Assumption 2.1, for each m ≥ 2,

f (m)(t, x)

= Et



−
U ′
(

I
(

λ(m)(t, x)HT
t

))

U ′′
(

I
(

λ(m)(t, x)HT
t

)) HT
t 1{ 1

m
<I(λ(m)(t,x)HT

t )<m}



(C.18)

= Et

[

− U ′(X̂(m),t,x(T ))

U ′′(X̂(m),t,x(T ))
HT
t 1{ 1

m
<X̂(m),t,x(T )<m}

]

,(C.19)

for all (t, x) ∈ D(m) ∪ T (m).

Proof: In view of (C.4), we only need to prove (C.18). From the facts that

λ(m)(t, x) = u
(m)
x (t, x) and that

U ′
(

I
(

λ(m)(t, x)HT
t

))

U ′′
(

I
(

λ(m)(t, x)HT
t

)) = λ(m)(t, x)HT
t I

′
(

λ(m)(t, x)HT
t

)

,

by Lemma C.4, we can have (C.18).

In analogy with Proposition 4.4, Lemma C.5 implies the following propo-
sition, whose proof is omitted.

Proposition C.6. Under Assumption 2.1, set

Y (m),t,x(s) = f (m)(s, X̂(m),t,x(s)), s ∈ [t, T ),

and

Y (m),t,x(T ) = − U ′(X̂(m),t,x(T ))

U ′′(X̂(m),t,x(T ))
1{ 1

m
<X̂(m),t,x(T )<m}.

Then {Y (m),t,xH(s), s ∈ [t, T ]} is a martingale, for every (t, x) ∈ D(m).

Based on the preceding proposition, we can derive the PDEs for f (m) as
shown in the next proposition, whose proof is deferred after two technical
lemmas.

Proposition C.7. Under Assumptions 2.1 and 3.2, for each m ≥ 2,

f (m) ∈ C1,∞(D(m)) ∩ C(D(m) ∪ T (m)),

and satisfies PDE

1

2
|θ|2(f (m))2f (m)

xx + rxf (m)
x + f

(m)
t − rf (m) = 0,(C.20)
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on D(m), subject to terminal condition

f (m)(T, x) = − U ′(x)

U ′′(x)
, for x ∈

(

1

m
,m

)

,(C.21)

and boundary conditions


























lim

(s,x)→(t,me
−

∫ T

t
r(s)ds

)

f (m)(s, x) = 0, for t ∈ [0, T );

lim

(s,x)→

(

t, 1
m
e
−

∫ T

t
r(s)ds

)

f (m)(s, x) = 0, for t ∈ [0, T ).(C.22)

Moreover, we have

lim sup
(s,x)→(T, 1

m)
f (m)(s, x) = −

U ′
(

1
m

)

U ′′
(

1
m

) ,(C.23)

lim sup
(s,x)→(T,m)

f (m)(s, x) = − U ′(m)

U ′′(m)
.(C.24)

Remark C.8. (C.23) and (C.24) imply that f (m) is upper semi-continuous

on the closure D(m), which is essential in proving Lemma D.1 and hence
Theorem 5.3.

Lemma C.9. Under Assumption 2.1, for each given m ≥ 2 and t ∈ [0, T ),

lim

(s,x)→

(

t, 1
m
e
−

∫ T

t
r(s)ds

)

λ(m)(s, x) = ∞,(C.25)

lim

(s,x)→

(

t,me
−

∫ T

t
r(s)ds

)

λ(m)(s, x) = 0.(C.26)

Proof: We only prove (C.26), since the proof of (C.25) is similar. Suppose,
to the contrary, that

lim sup

(s,x)→

(

t,me
−

∫ T

t
r(s)ds

)

λ(m)(s, x) > 0,(C.27)

then there exist a constant ε > 0 and a sequence {(sk, xk), k ≥ 1} ⊂ D(m) ∪
T (m) converging to

(

t,me
−
∫ T

t
r(s)ds

)

such that λ(m)(sk, xk) > ε, for all k.

Thus, by relation (C.7),

xk = µ(m)(sk, λ
(m)(sk, xk)) < µ(m)(sk, ε).
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By (C.10), letting k → ∞ yields

me
−
∫ T

t
r(s)ds ≤ µ(m)(t, ε) < me

−
∫ T

t
r(s)ds

,

which leads to a contradiction. So, (C.27) is impossible, and therefore, (C.26)
is proved.

Lemma C.10. Under Assumption 2.1, for each given m ≥ 2,

lim inf
(s,x)→(T, 1

m)
λ(m)(s, x) ≥ U ′

(

1

m

)

,(C.28)

lim sup
(s,x)→(T,m)

λ(m)(s, x) ≤ U ′(m).(C.29)

Proof: We only prove (C.29), since the proof of (C.28) is similar. Suppose,
to the contrary, that

lim sup
(s,x)→(T,m)

λ(m)(s, x) > U ′(m),(C.30)

then there exist a constant ε > 0 and a sequence {(sk, xk), k ≥ 1} ⊂ D(m) ∪
T (m) converging to (T,m) such that U ′(m)+ε < U ′

(

1
m

)

and λ(m)(sk, xk) >

U ′(m) + ε, for all k. Thus, by relation (C.7),

xk = µ(m)(sk, λ
(m)(sk, xk)) < µ(m)(sk, U

′(m) + ε).

By (C.10), letting k → ∞ yields

m ≤ µ(m)(T,U ′(m) + ε) = I(U ′(m) + ε) < m,

which leads to a contradiction. So, (C.30) is impossible, and therefore, (C.29)
is proved.

Proof of Proposition C.7:

From Lemma C.1, we can see f (m) ∈ C1,∞(D(m)). By Proposition C.6 and
by a similar way to prove Proposition 4.6, we can show f (m) satisfies PDE
(C.20), on D(m), as well as terminal condition (C.21). So, it suffices to show

f (m) is continuous at (T, x), for all x ∈
(

1
m
,m
)

, satisfies boundary conditions

in (C.22), and satisfies (C.23) and (C.24).
Let ν(m) be defined by (C.13), then by Lemma C.5,

f (m)(t, x) =
ν(m)(t, λ(m)(t, x))

λ(m)(t, x)
, for all (t, x) ∈ D(m) ∪ T (m).
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From (C.11) and Lemma C.3, we can see f (m) is continuous at (T, x), for all

x ∈
(

1
m
,m
)

.

In view of (C.18), we can obtain (C.22) from a combination of Lemma
C.9 and the Dominated Convergence Theorem.

From Lemma C.10, we have

lim sup
(s,x)→(T,m)

λ(m)(s, x)HT
s ≤ U ′(m), almost surely,

and therefore,

lim inf
(s,x)→(T,m)

I
(

λ(m)(s, x)HT
s

)

≥ m, almost surely.

Recalling (C.4), we can see the preceding inequality implies

lim
(s,x)→(T,m)

X̂(m),s,x(T ) = m, almost surely.

Then from (C.19) and the Fatou’s Lemma, we can get

lim sup
(s,x)→(T,m)

f (m)(s, x) ≤ − U ′(m)

U ′′(m)
.

Moreover, (C.21) yields

lim
x↑m

f (m)(T, x) = − U ′(m)

U ′′(m)
.

Thus (C.24) is obtained. The proof of (C.23) is similar.

The sequence f (m) constructed above is indeed approximating f , as the
next proposition shows, whose proof is deferred after two technical lemmas.

Proposition C.11. Under Assumptions 2.1 and 3.2,

lim
m→∞

f (m)(t, x) = f(t, x),

for all (t, x) ∈ [0, T ) × (0,∞).

Lemma C.12. Under Assumptions 2.1 and 3.2, limm→∞ µ(m)(t, y) = µ(t, y),
for any (t, y) ∈ [0, T ) × (0,∞).

Proof: For any m ≥ 2,

HT
t

(

1

m
∨ I

(

yHT
t

)

∧m
)

≤ HT
t +HT

t I
(

yHT
t

)

.

Then in view of (C.6) and (3.7), the assertion can be obtained from the
Dominated Convergence Theorem.
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Lemma C.13. Under Assumptions 2.1 and 3.2, limm→∞ λ(m)(t, x) = λ(t, x),
for any (t, x) ∈ D(m).

Proof: Given (t, x) ∈ D(m), suppose, to the contrary, that either

lim inf
m→∞

λ(m)(t, x) < λ(t, x)

or
lim sup
m→∞

λ(m)(t, x) > λ(t, x).

If lim infm→∞ λ(m)(t, x) < λ(t, x), then there exist a constant ε > 0 and a
subsequence of {λ(m)(t, x),m ≥ 2}, which is still denoted by {λ(m)(t, x),m ≥
2}, such that λ(t, x)−ε > 0 and λ(m)(t, x) < λ(t, x)−ε for any m. Therefore,
by relation (C.7),

x = µ(m)(t, λ(m)(t, x)) > µ(m)(t, λ(t, x) − ε).

By Lemma C.12, letting m→ ∞ yields x ≥ µ(t, λ(t, x)−ε) > x, which leads
a contradiction. Thus lim infm→∞ λ(m)(t, x) < λ(t, x) is impossible. By the
same way, we can show lim supm→∞ λ(m)(t, x) > λ(t, x) is also impossible.

Proof of Proposition C.11:

First of all, for any given (t, x) ∈ [0, T ) × (0,∞), we can see from Lemma
C.13 that

−
U ′
(

I
(

λ(m)(t, x)HT
t

))

U ′′
(

I
(

λ(m)(t, x)HT
t

)) HT
t 1{ 1

m
<I(λ(m)(t,x)HT

t )<m}

→ −
U ′
(

I
(

λ(t, x)HT
t

))

U ′′
(

I
(

λ(t, x)HT
t

)) HT
t , almost surely,

as m→ ∞. Then by Assumption 3.2,

−
U ′
(

I
(

λ(m)(t, x)HT
t

))

U ′′
(

I
(

λ(m)(t, x)HT
t

)) HT
t 1{ 1

m
<I(λ(m)(t,x)HT

t )<m}

≤ c
(

1 + I
(

λ(m)(t, x)HT
t

))

HT
t

≤ c
(

1 + I
(

y0H
T
t

))

HT
t ,

where y0 = infm≥2 λ
(m)(t, x) > 0. Finally, (C.18) and the Dominated Con-

vergence Theorem combined yield

f (m)(t, x) → Et



−
U ′
(

I
(

λ(t, x)HT
t

))

U ′′
(

I
(

λ(t, x)HT
t

)) HT
t



 = f(t, x),
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as m→ ∞.

Appendix D: Proof of Theorem 5.3

In this section, we use the results in Appendix C to finish the proof of
Theorem 5.3.

Under the conditions of Theorem 5.3, from Proposition 4.6, we know the
indirect absolute risk tolerance function

g ∈ C1,∞([0, T ) × (0,∞)) ∩C([0, T ] × (0,∞)),

and satisfies PDE

1

2
|θ|2g2gxx + rxgx + gt − rg = 0,(D.1)

on [0, T ) × (0,∞), with terminal condition

g(T, x) = − V ′(x)

V ′′(x)
, for all x > 0.(D.2)

Since V satisfies Assumption 5.1 and U is more risk averse than V , we know
U satisfies Assumption 3.2. Let the approximating sequence {f (m),m ≥ 2}
of f be constructed as in Appendix C.

Lemma D.1. Under Assumptions 2.1 and 5.1, if − U ′(x)
U ′′(x) < − V ′(x)

V ′′(x) , for all

x > 0, then for each m ≥ 2, f (m)(t, x) ≤ g(t, x), on D(m).

Proof: For each m ≥ 2, set

B(m)
0 =

{(

t,
1

m
e
−
∫ T

t
r(s)ds

)

: t ∈ [0, T ]

}

,

B(m)
1 =

{

(t,me−
∫ T

t
r(s)ds) : t ∈ [0, T ]

}

,

then
D(m) = D(m) ∪ ∂∗D(m),

where D(m) denotes the closure of D(m) and

∂∗D(m) = B(m)
0 ∪ T (m) ∪ B(m)

1 .

The function f (m) is originally defined on D(m) ∪ T (m). Now we extend its

definition to D(m) as follows: f (m)(t, x) = 0, for all (t, x) ∈ B(m)
0 ∪B(m)

1 such
that t < T , and

f (m)
(

T,
1

m

)

= −
U ′
(

1
m

)

U ′′
(

1
m

) , f (m)(T,m) = − U ′(m)

U ′′(m)
.
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With this extension, we can see from Proposition C.7 that f (m) is an upper
semi-continuous function on D(m) (cf. Appendix E).

Let h = f (m)−g, then h is upper semi-continuous on D(m). Since − U ′(x)
U ′′(x) <

− V ′(x)
V ′′(x) , for all x > 0, we know h < 0 on ∂∗D(m). Obviously, ∂∗D(m) is a

compact set, and therefore, from Proposition E.2, we can see on ∂∗D(m), h
attains its maximum at some (t0, x0) ∈ ∂∗D(m), which implies

h(t, x) ≤ −ε < 0, for all (t, x) ∈ ∂∗D(m),

where ε = −h(t0, x0) > 0. Moreover, there exists a constant δ > 0 such that

h(t, x) < −ε
2
< 0, for all (t, x) ∈ O(m)(δ) ∩ D(m),

where

O(m)(δ) = O(m)
1 (δ) ∪ O(m)

2 (δ) ∪ O(m)
3 (δ),

O(m)
1 (δ) =

{

(t, x) : t ∈ [0, T ],
1

m
e
−
∫ T

t
r(s)ds ≤ x <

1

m
e
−
∫ T

t
r(s)ds + δ

}

,

O(m)
2 (δ) = (T − δ, T ] ×

(

1

m
,m

)

,

O(m)
3 (δ) =

{

(t, x) : t ∈ [0, T ], me−
∫ T

t
r(s)ds − δ < x ≤ me

−
∫ T

t
r(s)ds

}

.

Otherwise, for each k ≥ 1, there exists a (tk, xk) ∈ O(m)( 1
k
) ∩ D(m) such

that h(tk, xk) ≥ − ε
2 . It is not difficult to see that there is a subsequence

of {(tk, xk), k ≥ 1}, which is still denoted by {(tk, xk), k ≥ 1}, converging
to some (s, y) ∈ ∂∗D(m). From the upper semi-continuity of h, we have
h(s, y) ≥ lim supk→∞ h(tk, xk) ≥ − ε

2 , which is impossible, since −ε is the

maximum of h on ∂∗D(m).
Obviously, D(m) \ O(m)(δ) is a compact set, then there exists a constant

α such that

−α+
1

2
|θ|2(f (m) + g)gxx − r < 0, on D(m) \ O(m)(δ).

Suppose, to the contrary, that f (m) > g somewhere in D(m). Consider
function w defined by w = heαt, then w < 0 on O(m)(δ) ∩ D(m) and w > 0
somewhere in D(m). Obviously, w is upper semi-continuous, and therefore, by
Proposition E.2, w attains its positive maximum at (t1, x1) ∈ D(m)\O(m)(δ).
So, at (t1, x1), w > 0, wx = 0, wxx ≤ 0, and wt = hte

αt + αheαt ≤ 0.



J. Xia/Risk Aversion and Portfolio Selection 37

Consequently, at (t1, x1), h > 0, hx = 0, hxx ≤ 0, and ht ≤ −αh. Thus, at
(t1, x1), we have from (C.20) and (D.1) that

0 =
1

2
|θ|2[(f (m))2f (m)

xx − g2gxx] + rx(f (m)
x − gx)

+(f
(m)
t − gt) − r(f (m) − g)

=
1

2
|θ|2(f (m))2hxx + rxhx + ht +

[

1

2
|θ|2(f (m) + g)gxx − r

]

h

≤
[

−α+
1

2
|θ|2(f (m) + g)gxx − r

]

h

< 0,

which leads to a contradiction.

Lemma D.2. Under Assumptions 2.1 and 5.1, if − U ′(x)
U ′′(x) < − V ′(x)

V ′′(x) , for all

x > 0, then f(t, x) ≤ g(t, x), on [0, T ) × (0,∞).

Proof: Proposition C.11 and Lemma D.1 combined yield the assertion.

Now we prove Theorem 5.3 as follows.

Proof of Theorem 5.3:

For any ε > 0, let U ε : (0,∞) → R be a function such that its derivative

(U ε)′(x) = U ′(x)e−εx,

for all x ∈ (0,∞). Obviously, U ε is a utility function and

− (U ε)′(x)

(U ε)′′(x)
=

U ′(x)

−U ′′(x) + εU ′(x)
, for all x > 0,

which implies

− (U ε)′(x)

(U ε)′′(x)
< − U ′(x)

U ′′(x)
≤ − V ′(x)

V ′′(x)
, for all x > 0.(D.3)

Corresponding to utility function U ε, the indirect absolute risk tolerance
function is denoted by f ε(t, x). By Lemma D.2, we have

f ε(t, x) ≤ g(t, x), for all (t, x) ∈ [0, T ) × (0,∞).

In order to complete the proof, it suffices to show limε↓0 f
ε(t, x) = f(t, x),

for all t ∈ [0, T ) and x > 0.
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Actually, it is clear that (U ε)′(x) ↑ U ′(x) and − (Uε)′(x)
(Uε)′′(x) ↑ − U ′(x)

U ′′(x) as ε ↓ 0,
for all x > 0. Let Iε denote the inverse marginal utility function of U ε, that
is, (U ε)′(Iε(y)) = y for all y > 0, then Iε(y) ↑ I(y) as ε ↓ 0, for all y > 0.

Let µε(t, y) = Et

[

Iε
(

yHT
t

)

HT
t

]

, then µε(t, y) ↑ µ(t, y) as ε ↓ 0, for all

(t, y) ∈ [0, T ) × (0,∞). Let λε be defined by

µε(t, λε(t, x)) = x, for all (t, x) ∈ [0, T ) × (0,∞),

then λε(t, x) ↑ λ(t, x) as ε ↓ 0, for all (t, x) ∈ [0, T ) × (0,∞). Consequently,
we have

−
(U ε)′

(

Iε
(

λε(t, x)HT
t

))

(U ε)′′
(

Iε
(

λε(t, x)HT
t

)) HT
t → −

U ′
(

I
(

λ(t, x)HT
t

))

U ′′
(

I
(

λ(t, x)HT
t

)) HT
t

almost surely as ε ↓ 0, for all (t, x) ∈ [0, T )×(0,∞). Moreover, by Proposition
4.2, we have

f ε(t, x) = Et



−
(U ε)′

(

Iε
(

λε(t, x)HT
t

))

(U ε)′′
(

Iε
(

λε(t, x)HT
t

)) HT
t



 .

Then by the same way to prove Proposition C.11, using the Dominated
Convergence Theorem, we can have limε↓0 f

ε(t, x) = f(t, x), for all t ∈ [0, T )
and x > 0.

Appendix E: Upper Semi-Continuous Functions

Let M be a normed space, and | · | denote the norm. A function f defined on
M is said to be upper semi-continuous at x0 ∈ M if, given ε > 0, there exists
a δ > 0 such that f(x) − f(x0) < ε, for all x ∈ M such that |x − x0| < δ.
A function f is said to be upper semi-continuous on M if it is upper semi-
continuous at every point of M.

We refer to (Luenberger, 1969, p.40) for the following two propositions:

Proposition E.1. A function f defined on M is upper semi-continuous at
x0 if and only if lim supx→x0

f(x) ≤ f(x0).

Proposition E.2. An upper semi-continuous function achieves its maxi-
mum on any compact subset.
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