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Abstract 

 
In the literature of psychophysics and neurophysiology, 

many studies have shown that both global and local 
features are crucial for face representation and 
recognition. This paper proposes a novel face recognition 
method which combines both global and local 
discriminative features. In this method, global features are 
extracted from whole face images by Fourier transform and 
local features are extracted from some spatially partitioned 
image patches by Gabor wavelet transform. After this, 
multiple classifiers are obtained by applying Fisher 
Discriminant Analysis on global Fourier features and local 
patches of Gabor features. All these classifiers are 
combined to form a hierarchical ensemble by sum rule. We 
evaluated the proposed method using Face Recognition 
Grand Challenge (FRGC) experimental protocols and 
database known as the largest data sets available. 
Experimental results on FRGC version 2.0 data set have 
shown that the proposed method achieves a verification 
rate of 86%, while the best reported was 76%. 

1. Introduction 
Face recognition from still and video images has been an 

active research area due to both its scientific challenge and 
wide range of potential applications, such as biometric 
identity authentication, human-computer interaction, and 
video surveillance. Within the past two decades, numerous 
face recognition algorithms have been proposed which can 
be found in the literature surveys [1]. Even though humans 
can detect and identify faces in a scene with little effort, 
building an automated system that accomplishes such 
objectives is very challenging. The challenges mainly come 
from the large variations in the visual stimulus due to 
illumination conditions, viewing directions or poses, facial 
expressions, aging, and disguises such as facial hair, 
glasses, or cosmetics.  

While face representations based on global features, such 
as Principal Component Analysis (PCA) [2], Linear 
Discriminant Analysis (LDA) [3], Discrete Fourier 
Transform (DFT) [4, 5] and Discrete Cosine Transform 
(DCT) [6], had been popular for face recognition, more 

recently, there are more and more attempts to develop face 
recognition systems based on local features. Local features 
are believed very robust to the variations of facial 
expression, illumination, and occlusion etc. [7, 8, 9, 10, 11]. 
Some researchers have compared between global and local 
features in face recognition. For instance, in [12], B.Heisele 
et al. reported that component-based system outperforms 
global system with respect to head pose changes. Much 
recently, Local Binary Pattern (LBP) [9] and its variant [11] 
have also achieved very impressive results compared with 
the methods based on global features. Among the many 
local features, especially, Gabor wavelets have been 
recognized as one of the most successful local descriptors 
for face representation due to their biological relevance and 
computational properties. The 2D Gabor wavelets [13], 
whose kernels are similar to the 2D receptive field profiles 
of the mammalian cortical simple cells, exhibit desirable 
characteristics of spatial locality and orientation selectivity, 
and are optimally localized in the space and frequency 
domains. Typical methods based on Gabor features include 
the Elastic Bunch Graph Matching (EBGM) [8], Gabor 
Fisher Classifier (GFC) [10] and Local Gabor Binary 
Pattern (LGBP) [11].  

However, in the literature of psychophysics and 
neurophysiology, many studies [14, 15, 16] have shown 
that both global and local features are crucial for face 
perception. Furthermore, global and local features play 
different roles in the process of face perception and 
recognition. Global features describe the characteristics of 
the whole face and they are often used as coarse 
representation. On the contrary, local features reflect and 
capture more detailed variations within some local areas in 
the face. Hence, it is proper to use local features for finer 
representation.  

Following the above studies, it is natural to expect better 
performance by combining global and local information.  
In some sense, the well-known Elastic Graph Matching 
method for face recognition [8] had pioneered such an idea, 
since global topological information are modeled by the 
structural of the graph and local features are encoded as the 
attribute of the nodes. In [17], Fang et al. proposed to 
combine global features by PCA and component-based 
local features extracted by Haar wavelets. In [18], Kim et al. 
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proposed an effective face descriptor by decomposing a 
face image into several components, extracting LDA 
features from each component, and finally combining these 
component LDA features together by using a global LDA. 
In [19], Lee et al. also combined local structures extracted 
by Local Feature Analysis (LFA) into composite templates 
which show compromised aspects between kernels of LFA 
and Eigenfaces. In [20], Kim et al. proposed to combine 
both global and local features which are obtained by 
applying Linear Discriminant Analysis (LDA) to either the 
whole or part of a face image. They experimentally showed 
that the combined subspace gives smaller Bayesian error 
than the subspaces of either the global or local features. 

In this paper, following the same basic belief to combine 
global and local features, we propose a novel hierarchical 
ensemble classifier for face recognition by combining 
global Fourier features and local Gabor features 
Specifically, in our method, global features are extracted 
from whole face image firstly by 2D Discrete Fourier 
Transform, which is a strong tool to analyze face images in 
frequency domain [4, 5]. Then, real and imaginary 
components of low frequency band are concatenated to 
form a single feature set for further process. For local 
feature extraction, Gabor wavelet transform is exploited. 
Firstly, Gabor wavelets are used to extract local features 
from the whole face image. Then, these features are 
spatially partitioned into a number of feature sets, each 
corresponding to a local patch of the face image. After the 
above processes, a face image can be represented by one 
Global Fourier Feature Set (GFFS) and multiple Local 
Gabor Feature Sets (LGFSes). These feature sets contain 
different discriminative information: GFFS contains global 
discriminative information and each LGFS contains 
different local discriminative information. In order to make 
full use of all these diverse discriminative information, we 
propose to train multiple component classifiers by applying 
Fisher Discriminant Analysis (FDA) on GFFS and each 
LGFS respectively, and then combine them into one 
ensemble by the weighted sum rule.  

Though the proposed method shares the same basic idea 
to combine global and local features, this paper has made 
the following distinct contributions: 

(1) Unlike previous works combining global and local 
features, this paper exploits Fourier transform and 
Gabor wavelets as global and local features 
respectively. We show experimentally their 
combination achieves impressively results on 
FRGC database; 

(2) The proposed method is a hierarchical method 
containing two ensemble procedures: one is local 
ensemble classifier (LEC) integrating all the local 
classifiers based on LGFSes; the other is the 
ensemble of the global classifier and the LEC. Such 
an two-level hierarchical ensemble strategy leads to 
impressive generalizability for the face recognition 

system, since, in machine learning, it is well 
believed that the ensemble of diverse component 
classifiers generalizes very well to unseen data. 

(3) The proposed method is extensively evaluated on 
the FRGC 2.0 data set, and exciting results are 
reported. Especially, on FRGC Exp.4, we have 
achieved a verification rate of 86% at FAR of 0.1%, 
while the best known result was 76%. 

The remaining part of the paper is organized as follows: 
in section 2, face representation based on global and local 
features is introduced. In section 3, we present the 
construction of hierarchical ensemble classifier. 
Experiments and analysis are conducted in section 4, 
followed by conclusion and discussion in the last section. 

2. Face Representation by Global and Local 
Features 

As mentioned above, global and local facial features play 
different roles in face perception, and both of them contain 
discriminative information for face recognition. Therefore 
it is necessary to combine them together. Intuitively, local 
information is embedded in the detailed local variations of 
the facial appearance, while global information means the 
overall structural configuration of the facial organs, as well 
as the face contour. Hence, from the viewpoint of 
frequency analysis, global features should correspond to 
the lower frequencies, while the higher frequencies contain 
more detailed local information. So, in this paper, global 
information is extracted as the lower frequency band of the 
Fourier transform, and local information is obtained by 
using the multi-scale and multi-orientation Gabor wavelets. 
In some sense, Gabor wavelets can enhance edges, which 
implies that they extract information of high frequencies. 

In this section, we first illuminate the different roles of 
global and local features. Then, the detailed process of 
global and local feature extraction is introduced. 

2.1. Different Roles of Global and Local Features 
In this subsection, different roles of global and local 

features are illustrated intuitively using two interesting 
example images. As shown in Fig.1, the leftmost two input 
images are artificial with the same components (eye, nose, 
and mouth) but different external contour, hair and clothes. 
Therefore, they look globally very different in terms of the 
overall structural configuration, hair and face contour. 
Consequently, the classifier based on global features will 
report them as different persons. However, the classifier by 
comparing their local components is apt to reporting them 
the same person, since their components are almost the 
same. The conflicts of the two classifiers interestingly 
reflect the above-mentioned different roles of global and 
local information, which suggests that ideal classifier 
should be the combination of the two “experts”.  
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Figure 1: Different roles of global and local features in face 
perception. See text for detailed explanation. 
2.2. Global Fourier Features 

2D Discrete Fourier Transform (DFT) is used to extract 
global facial features. An image can be transformed by 2D 
DFT into frequency domain as follow: 
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= =
= − +∑∑      (1) 

where ( , )f x y  represents an 2D image of size M by N 
pixels, 0 1u M≤ ≤ −  and 0 1v N≤ ≤ −  are frequency 
variables. When the Fourier transform is applied to a real 
function, its output is complex, that is  

                ( , ) ( , ) ( , )F u v R u v jI u v= +                     (2) 
where ( , )R u v ψand ( , )I u v  are the real and imaginary 
components of ( , )F u v  respectively. Hence, after Fourier 
transform, a face image is represented by the real and 
imaginary components of all the frequencies.  

Person 1 Person 2  
Figure 2: Reconstruction of the input face images by using 30% of 
the low-frequency Fourier features.  

Though all the frequencies contain information about the 
input image, different bands of frequency play different 
roles. We know that generally low frequencies reflect the 
holistic attributes of the input image. This can be illustrated 
intuitively by observing the effects of inverse transform 
with part of the frequency band. Fig.2 gives some examples 
of inverse transform by using only the lower frequencies 
(30% of all the energy). From Fig.2, one can safely 

conclude that the lower frequencies indeed mainly contain 
information about the globally structural configuration of 
the facial organs and the contour of the input face. And it is 
also apparent that these low-frequency features are very 
robust to the detailed local variations in appearance due to 
facial expressions, noise, and so on.  

Consequently, in our method, only the Fourier features 
in the low-frequency band are reserved as global features. 
Specifically, for a face image, we concatenate its real and 
imaginary components in the low-frequency band into a 
single feature set, named Global Fourier Feature Set 
(GFFS). As shown in Fig.3, for both real and imaginary 
components, only those within the lower frequency band 
are reserved, as denoted by the white squares in the figure.  

DFT
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Global Fourier 
Feature Set  
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Figure 3: Global Fourier features extraction.   

2.3. Local Gabor Features 
In recent years, face descriptors based on Gabor wavelets 

have been recognized as one of the most successful face 
representation methods. Gabor wavelets are in many ways 
like Fourier transform but have a limited spatial scope. 2D 
Gabor wavelets are defined as follows [13]: 
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u
 gives the orientation. From the 

definition, we can see that Gabor wavelet consists of a 
planar sinusoid multiplied by a two dimensional Gaussian. 
The sinusoid wave is activated by frequency information in 
the image. The Gaussian insures that the convolution is 
dominated by the region of the image close to the center of 
the wavelet. That is, when a signal is convolved with the 
Gabor wavelet, the frequency information near the center 
of the Gaussian is captured and frequency information far 
away from the center of the Gaussian has a negligible effect. 
Therefore, compared with Fourier transform which extracts 
the frequency information in the whole face region, Gabor 
wavelets only focus on some local areas of the face and 
extract information with multi-frequency and 
multi-orientation in these local areas.  

Gabor wavelets can take a variety of different forms with 
different scales and orientations. Fig.4 shows 40 Gabor 
wavelets of 5 scales and 8 orientations. It is obvious that 
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Gabor wavelets with a certain orientation respond to the 
edges and bars in this orientation, and Gabor wavelets with 
a certain scale extract the corresponding frequency 
information. Hence, Gabor wavelets exhibit desirable 
characteristics of spatial locality and orientation selectivity. 
Thus, Gabor wavelets can extract more details in some 
important facial areas such as eyes, nose and mouth, which 
are very useful for face representation. 

 
Figure 4: 2D Gabor wavelets of 5 scales and 8 orientations. 

As Gabor features are calculated by convolving Gabor 
wavelets with the whole face image, it covers all the 
positions of the face image. Thus, the local information 
provided by the spatial locations of Gabor features is lost 
when they are integrated to form one single feature vector. 
In order to reserve more location information, Gabor 
features are spatially partitioned into a number of feature 
sets named Local Gabor Feature Set (LGFS), each of which 
corresponds to a local patch of the face image. In addition, 
since each LGFS is relatively low dimensional, this can 
greatly facilitate the sequent feature extraction and pattern 
classification. Fig.5 illustrates the idea of feature partition 
and the construction of LGFSes. In Fig.5, N LGFSes, 
corresponding to N non-overlapping local patches in the 
face image, are constructed. 

GWT LGFS 1 (L 1)

Spatially 
Partitioning 

GWT 

GWT 
LGFS 2 (L 2)

LGFS N (L N)

. 

. 

. 

.

.

.

GWT 

… 

… 

… 
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Figure 5: The procedure of  LGFS extraction. Please note that, 
actually in our method, Gabor Wavelet Transform (GWT) is 
firstly applied to the whole face image, and then the resulting 
Gabor features are spatially partitioned into N LGFSes.  

3. Hierarchical Ensemble Classifier 
Combining Global and Local Features  

After feature extraction, we obtain N+1 feature sets, that 
is, one GFFS G and N LGFSes Li (i=1,…,N). Then, N+1 
classifiers can be trained by applying FDA to each feature 
set. As explained above, these feature sets contain different 
discriminant information for face recognition. Hence, the 
classifiers trained on these feature sets should have large 

diversity in error. Considering that the ensemble-based 
classifier is generally superior to the single classifier when 
the predictions of the component classifiers have enough 
error diversity, we combine the classifiers trained on each 
feature set into a hierarchical ensemble to improve the 
system performance.   

The hierarchical ensemble consists of two layers. In the 
first layer, N Local Component Classifiers (LCCs) 

iLC trained on Li (i=1,…,N) are combined to form a Local 
Ensemble Classifier (LEC) LC , which is formulated as 
follow: 

                          
1

i i

N

L L L
i

C w C
=

= ⋅∑                            (4) 

where 
iLw is the weight of 

iLC . In the second layer, 

LEC LC  is combined with Global Classifier (GC) GC  
trained on G to form the Hierarchical Ensemble Classifier 
(HEC) HC , as shown in Eq.5: 

                (1 )H G G G LC w C w C= + −                          (5) 

where Gw  is the weight of GC . As can be seen, in each 
step, sum rule, the most typical combination rule, is 
exploited to combine classifiers. The whole hierarchical 
combination process is shown in Fig.6.   

CL1 

wL1 wL2 wLN

wG 1-wG

DFT GWT

L 1 

CL2 

L 2 

CLN 

L N
…

 

CL CG 

CH 

G

 
Figure 6: Construction of hierarchical ensemble classifier.  

As mentioned above, global features and local features 
play different roles in face perception. While global 
features describe the characteristics of the whole face, thus 
better for coarse representation, local features capture more 
details in local face areas, thus better for finer 
representation. Therefore, in our method, global and local 
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features are extracted from normalized face images of 
different size. As shown in Fig.6, the global Fourier 
features are extracted from the face image of lower 
resolution, but covering both external and internal facial 
features, especially the face contour information. On the 
contrary, the local Gabor features are extracted from the 
face image of higher resolution, which contains only the 
internal facial features, i.e. the main facial organs, but 
excluding the face contour. The reason using this strategy 
lies in the sensitivity of Gabor features to the possible 
“background” introduced along with the contour, to which 
the Fourier features are very robust.  

4. Experiments 
In this section, we validate the proposed method on the 

FRGC version 2.0 dataset, which is known as the largest 
face dataset publicly available [21]. Besides the 
performance of HEC, the performances of the component 
classifiers in each layer are also given. We also investigate 
the effect of different weights for the classifier combination. 
In addition, we compare the performance of our method 
with the baseline and the best known results. 

4.1. FRGC Experimental Protocols 
The experiments in FRGC version 2.0 are designed to 

advance face recognition in general with emphasis on 3D 
and high resolution still imagery. In our experiments, only 
the still images are considered. Some example face images 
in FRGC data set are shown in Fig.7. 

 
Figure 7: Example face images in the FRGC data set. The top row 
shows training images: the first four images are controlled and the 
remaining four are uncontrolled. The middle row displays 
controlled target images and the bottom row displays uncontrolled 
query images. 

FRGC provides six experimental protocols among which 
Experiment 1, 2 and 4 are designed for still images. The 
training set for still images experiments consists of 12,776 
images of 222 individuals. We use this training set for 
training FDA and take Experiment 1 and 4 for evaluations. 
While Experiment 1 measures performance on 16,028 
frontal facial images taken under controlled illumination, 
Experiment 4 is designed to measure performance on 8,014 
uncontrolled query images versus 16,028 controlled target 
images. Configurations of the two experiments are 
summarized in Table 1. Note that, Experiment 4 is more 
challenging because of serious illumination changes, 
blurring effect, and partial occlusions.  

TABLE 1 
Experiment Target Set Size Query Set Size 

1 16028 [C] 16028 [C] 
4 16028 [C] 8014 [U] 

Database sizes in FRGC experiments. [C] and [U] mean 
controlled and uncontrolled illumination condition, respectively. 

The performance is reported as Verification Rates (VR) 
at 0.1% False Acceptance Rate (FAR). In addition, for each 
experiment, three Receiving Operator Characteristic (ROC) 
curves are generated by BEE system. ROC I is 
corresponding to the images collected within semesters, 
ROC II within a year, and ROC III between semesters.  

4.2. Performances of Global and Local Classifiers 
In our experiments, face images are aligned according to 

the manually located eye positions. For Fourier feature 
extraction, the face image is normalized to 64 by 80 pixels 
with the eye center distance being 28 pixels. In order to 
apply FFT, image must be extended to 128 by 128. So, the 
full bandwidth available is 64 due to the symmetry of the 
Fourier coefficients. As explained above, we need only the 
low-frequency Fourier coefficients. In practice, keeping 
how many low-frequency features can be determined by 
checking the percentage of the reserved energy. In this 
paper, about 50% of the low-frequency energy (bandwidth 
is 16) is reserved for constructing GC. Thus, referring to 
Fig.3, the dimension of the GFFS is 16x16x4=1024.   

 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

17 18 19 20 
 

Figure 8: Indexes of the LCC. 

For Gabor features, the size of the face image is 128 by 
160 pixels with the eye distance being 72 pixels. After 
Gabor transformation on this “fine” face image, the 
magnitudes of the resulting Gabor coefficients are spatially 
partitioned into 20 non-overlapping patches of size 32 by 
32 pixels, as shown in Fig.8. Thus, 20 LGFSes can be 
obtained. In our system, 40 Gabor wavelets (5 scales and 8 
orientations) are used with the same parameters in [8], so 
the dimension of each LGFS is 32x32x5x8=40,960. As it is 
very difficult for FDA to deal with that high dimensionality, 
the features are uniformly down-sampled by averaging the 
Gabor features in an 8x8 grid. So the dimension of each 
LGFS is reduced from 40,960 to 640 (=4x4x5x8), which is 
then further processed by FDA. Finally, 20 LCCs are 
obtained and combined together to form the LEC.  
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(a) Results on FRGC Experiment 1 
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(b) Results on FRGC Experiment 4 

Figure 9: Performances of ROC III for both LCCs and LECs in 
Experiment 1 and 4. In (a) and (b), 1-20 are the indexes of the 
LCCs whose positions are shown in Fig.8. C represents LEC.  

Figure 9 (a) and (b) give the performances of each of the 
20 LCCs, as well as the performance of their ensemble, i.e. 
LEC. From Fig.9, one can see that LCCs in different 
positions have quite different discriminant capacities, 
which is intuitively reasonable. And, it is easy to 
understand that the LCCs located in the eye, nose and 
mouth area have relative better discriminant capacities. In 
addition, since each LCC exploits only part of the 
information in different facial regions, they may 
misclassify different patterns; therefore their performances 
are commonly not good enough. However, attribute to their 
diversity in prediction error, they should be mutually 
complementary. Hence, their combination, i.e. LEC, should 
greatly outperform any of them, which can be clearly 
observed in Fig.9 (a) and (b). The improvement is 
especially significant for Experiment 4: the best 
verification rate of LCCs is 38.5%, while that of LEC is as 
high as 79.9%. In our experiments, we notice that, in our 
case, weighting different LCCs has only very trivial effect 
on the performance of the LEC. Therefore, equal weights 
are assigned to all the LCCs for simplicity.   

In Fig.10, three ROC curves of both GC and LEC are 
given. It is obvious that local features have much better 
discriminative ability than global features. Note that, both 
GC and LEC performs much better than FRGC baseline 
algorithm (basically  PCA). 
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(a) Results on FRGC Experiments 1 

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

Ve
rif

ic
at

io
n 

R
at

e

ROC I of GC

ROC II of GC

ROC III of GC

ROC I of LEC

ROC II of LEC

ROC III of LEC

10-3 10-2 10-1 100

 
(b) Results on FRGC Experiments 4 

Figure 10: ROC curves of GC and LEC on Experiment 1 (a) and 
Experiment 4 (b). 

4.3. Performance of Hierarchical Ensemble 
Classifier 

In order to make full use of both global and local 
discriminant information and further improve the 
performance, GC and LEC are combined to form a unified 
ensemble classifier (HEC), as formulated in Eq.5. In Eq.5, 
the weight for GC WG can actually balance the importance 
of global and local information. This is evidently necessary 
because we have noticed that the performances of GC and 
LEC are quite different, as can be seen from Fig.10. And 
the performance of GC is relatively worse than LEC. So, it 
is natural to assign a smaller weight for GC.  

In this paper, taking FRGC Experiment 4 (ROC III) as 
example, experiments are conducted to check the influence 
of WG on the performance of the HEC. How the 
performance changes with the varying WG is shown in 
Fig.11. From this figure, we know that, at least for FRGC 
Experiment 4, the best result appears when WG is about 0.2. 
Though, this parameter is not necessarily a generalized 
good setting for any database, at least it illustrates that the 
local features should be more emphasized than the global 
features. More importantly, another conclusion we can 
draw is that the combination of global and local features 
can further improve the recognition performance. For 
instance, in Experiment 4 (ROC III), the VR of GC is only 
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50.7% and VR of LEC is 79.9%. But, their combination 
with WG=0.2 achieves a VR of 85.8%, which shows that 
global and local features are indeed mutually 
complementary.  
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Figure 11: The effect of different WG on the performance of HEC 
on Experiment 4 (ROCIII). 

In Fig.12, we show three ROC performances of GC, LEC 
and HEC on both Experiment 1 and 4. 
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(a) Results on FRGC Exp.1 
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(b) Results on FRGC Exp.4 

Figure12: Three ROC performances of GC, LEC and HEC on 
Experiment 1 (a) and 4 (b). 

We also compare our method with the FRGC baseline 
algorithm (basically PCA) and the best known results [4, 22] 
in Experiment 1 and 4, as shown in Fig.13 and Table 2. In 
[4], Hwang et al. proposed a Fourier-based face recognition 
system, in which Fourier features with different frequency 
bands and face models are projected into some linear 
discriminant subspaces by LDA and they are merged. In 
[22], Liu presented a pattern recognition framework which 
integrates Gabor image representation, multi-class Kernel 
Fisher Analysis (KFA) using fractional power polynomial 
models for improving FRGC performance. So far, the 
results in [4] and [22] are the reported best results on FRGC 
data set.  
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Figure 13: ROC performances comparison between our method 
and Liu’s method in [22] on Experiment 4.  

TABLE 2 
Method Exp.1 Exp.4 

FRGC Baseline 66% 12% 
Method in [4] 91% 74% 
Method in [22] 92% 76% 

GC 81% 51% 
LEC 97% 80% Our 

Methods HEC 98% 86% 
Performances comparison on Experiment 1 and 4 of FRGC data 
set (ROC III).  

From Table 2, one can see that the proposed method has 
further improved the verification rates on FRGC especially 
on Exp.4. Taking ROC III as an example, on Exp.4, a 
verification rate of 86% is achieved, 10 percents higher 
than the best known results. We also notice that, the local 
ensemble classifier itself also outperforms the best known 
results on both experiments. These comparisons show that 
the proposed method achieves significant improvement on 
FRGC Exp.1 and Exp.4, especially attribute to the 
combination of global and local features expressed by 
Fourier and Gabor filters respectively.  

5. Conclusion and Discussion 
We human beings recognize faces relying on both global 

face features and local details of the facial organs. A 
hierarchical ensemble of global and local classifiers is 
proposed to simulate the observations in bionic sense by 
exploiting both global features and local features. In the 
proposed method, global features are extracted from whole 
face images by Fourier transform, and local features are 
extracted from some spatially partitioned image patches by 
Gabor wavelet transform. By applying FDA on Fourier 
features and Gabor feature patches, multiple classifiers are 
obtained and then combined into a hierarchical ensemble 
classifier by sum rule. We validate our method on FRGC 
version 2.0 data set designed for face identification. 
Experimental results show that the ensemble classifier 
greatly outperforms its component classifiers which have 
large error diversity. By the proposed method, we have 
achieved verification rates of 98% in Experiment 1 and 
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86% in Experiment 4 respectively. Compared with the 
baseline and best known results, the proposed method 
demonstrates significant improvement especially on 
Experiment 4. 

The success of the proposed method comes from several 
aspects. First of all, we should mention the ensemble 
process in the method. Ensemble learning has been widely 
recognized as an important method with excellent 
generalizability. In our method, ensemble lies in two stages: 
the combination of local classifiers, and the combination of 
the global and local classifiers. Both ensemble procedures 
improve impressively the performance of the component 
classifiers. Another critical success point is of course the 
usage of both global and local features extracted by Fourier 
and Gabor respectively. Especially, the local features 
themselves based on Gabor filtering can achieve excellent 
performance better than the best known results.  

Though we have shown that the Fourier-based global 
features are not as efficient as the Gabor-based local 
features, we must point out that it is still too early to 
conclude that global features are less important than local 
features. Therefore, it is one of our future efforts to study 
better representation methods for global feature. In our 
opinion, more overall structure information should be 
considered.  
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