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ABSTRACT

When the appearances of the tracked object and surrounding 
background change during tracking, fixed feature space 
tends to cause tracking failure. To address this problem, we 
propose a method to embed adaptive feature selection into 
mean shift tracking framework. From a feature set, the most 
discriminative features are selected after ranking these fea-
tures based on their Bayes error rates, which are estimated 
from object and background samples. For the selected fea-
tures, a criterion is proposed to evaluate their stability for 
tracking and to guide feature reselection. The selected fea-
tures are used to generate a weight image, in which mean 
shift is employed to locate the object. Moreover, a simple 
yet effective scale adaptation method is proposed to deal 
with object changing in size. Experiments on several video 
sequences show the effectiveness of the proposed method. 

Index Terms— Visual Tracking, Mean Shift, Feature Selec-
tion, Bayes Error Rate, Scale Adaptation 

1. INTRODUCTION

Visual tracking has been a hot research topic in the past 
decade, since it is a core component in many computer vi-
sion applications ranging from video surveillance, human 
computer interaction, traffic monitoring to robotics. Among 
a large body of tracking algorithms, mean shift algorithm 
has gained much attention due to its computational effi-
ciency and its robustness to non-rigid deformation. The al-
gorithm was first introduced in the seminal work of Fuku-
naga and Hostetler [1] in 1975, and was almost neglected 
until Cheng’s paper [2] rekindled interest in it. Mean shift is 
a nonparametric density gradient estimation approach to 
local mode seeking. Through iteratively shifting kernel 
window towards current mean location, local mode can be 
sought at last. In blob tracking scenario, tracking is per-
formed by running mean shift on the weight image which is 
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generated either explicitly (e.g. Bradski [3]) or implicitly 
(e.g. Comaniciu et al. [4]). Both methods derive the weight 
image from color histogram in a fixed color space. However, 
a color space working well in one condition may not per-
form properly in other conditions, especially when sur-
rounding background continuously changes during tracking. 

Recently, Collins et al. [5] proposed to online select dis-
criminative tracking features from linear combinations of 
RGB values. In the previous frame, the features are ranked 
according to two-class (i.e. foreground vs. background) 
variance ratio and the top N features are selected. In the 
current frame, each selected feature produces a weight im-
age, in which mean shift is employed to locate the object. 
The median location is selected as the final object location. 
By treating tracking as a foreground/background discrimi-
nation problem, the method can adapt to appearance 
changes of the tracked object and surrounding background. 
Therefore, the weight image more suitable for tracking can 
be generated. However, the scale problem is not taken into 
account in this approach. When the object changes in size, 
some background samples will be involved in the object 
sample set and vice versa. This may cause tracking failure. 
Moreover, performing feature selection in every frame is 
inefficient for a large feature set. Though they deal with this 
problem by selecting features every tenth frame, this is also 
dangerous when the appearance of the tracked object or 
surrounding background changes remarkably in between 
two adjacent feature-selection frames. 

In this paper, we extend the work of Collins et al. by in-
troducing adaptive feature selection and scale adaptation. 
Moreover, a new feature selection method based on Bayes 
error rate is proposed. 

2. THE PROPOSED APPROACH 

First, Adaptive feature selection is introduced in section 2.1. 
Then, Weight image generation is provided in section 2.2. 
Finally, scale adaptation and tracking algorithm are detailed 
in section 2.3. 

2.1. Adaptive Feature Selection 
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The feature set [5] which consists of linear combinations of 
RGB values is adopted. The coefficients of RGB are given 
by 3-tuple set 1 2 3 1 2 3{( , , ) | , , { 2, 1,0,1,2}}Tc c c c c c .After dis-
carding redundant features; we are left with a set of 49 fea-
tures. We denote it as F . All features are scaled into the 
range from 0 to 255 and further uniformly discretized into 
histograms of m ( 32m in our experiments) bins. 

The center-surround approach is used to sample pixels 
from the object and background. A w h  rectangular set of 
pixels covering the object is selected as object pixels, while 
a larger surrounding ring of pixels with the width of 
0.5 max( , )w h is selected as background pixels. To elimi-
nate the influence of background pixels when the object can 
not be accurately represented as a rectangle, only those pix-
els whose weights (see section 2.2 for details) are above 
some threshold (0.5 in our experiments) are selected as ob-
ject pixels. Given a feature f F , denote pt

f  as the normal-

ized feature histogram of the object and q t
f as the normal-

ized feature histogram of the background in frame t . When 
the object is not accurately located, sampling in this manner 
will introduce model drift problem and will cause tracking 
failure. To avoid this problem, we simply average object 
feature histogram in the current frame and the one in the 
first frame like [5]. 

To evaluate the discriminating power of each feature, 
Bayes error rate is employed. Intuitively, smaller Bayes 
error rate demonstrates better discriminating power. By us-
ing histogram to approximate the likelihood function and by 
assuming that the two classes are equally likely, Bayes error 
rate can be estimated by equation (1) as pointed out in [6]. 

1

1 min(p ( ),q ( ))
2

m
t t t
f f f

i

e i i                      (1) 

Bayes error rate for feature selection has several advantages. 
First, Bayes error rate can deal with multimodal feature dis-
tributions, while variance ratio fails to work when feature 
distributions are multimodal. To tackle this problem, Collins 
et al. [5] apply variance ratio to the log likelihood ratio of 
feature distributions of the object and background. Second, 
given feature distributions, Bayes error rate is easy to com-
pute. Only several comparison and addition operations are 
needed. Third, Bayes error rate has a good theoretical foun-
dation. 

After ranking features based on their Bayes error rates, 
the top N features are selected. We denote the selected fea-
ture set as sF . Since Bayes error rate of each feature is a 
function of the appearances of the object and background, 
we can believe that it changes not too much when the ap-
pearances of the object and surrounding background change 
slowly. Here we model { | }t

f se f F as Gaussians and use 
equations (2) and (3) to incrementally estimate their means 
and variances. 0t denotes the frame number of the last fea-
ture selection. 0 1t t t , 0 0f  and 0 0f . If one of t

fe

satisfies 1 1t t t
f f fe , perform feature reselection. is

set to be 2.5 in our experiments. 
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2.2. Weight Image Generation 

Each feature sf F produces a weight image t
fW with the 

same size as current search window. We denote 
(u) {1, , }t

fb m  as the bin index associated with feature 
f at pixel location u ( , )x y in frame t . Each pixel value 

(u)t
fW is computed as follows 
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b
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Equation (4) is actually a Bayesian classifier with the as-
sumption of equal priors of the two classes and with feature 
histogram to approximate the likelihood function. The final 
weight image is computed as the weighted sum of weight 
images corresponding to the top N selected features. Denote 

0.5t t
f fe and /t t t

f f ff
 (hence, 1t

ff
), the 

final weight image is given as follows. 
(u) (u)t t

t f ff
W W                           (5) 

To eliminate the influence of background pixels, pixel value 
below 0.5 is set to be 0 as shown in equation (6). 
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                 (6) 

2.3. Scale Adaptation 

When the object changes in size, the scale should be 
adapted. Collins [7] dealt with this problem in scale space 
when the aspect ratio of the object’s bounding rectangle is 
fixed. When this condition is violated, the method may not 
work well. To tackle this problem, a simple yet effective 
scale adaptation method is presented. The basic idea is 
based on the observation that pixel values in weight image 
change sharply across object’s boundaries. We introduce 
four kinds of correlation templates LC and RC with the size of 
3 h , TC and BC with the size of 3w  to locate left, right, 
top and bottom boundaries, respectively, as shown in Fig.1 
(a)-(d), where h and w are the height and width of the ob-
ject’s bounding rectangle in the previous frame. Each tem-
plate can be viewed as a summation of two templates, just 
taking (a) as an example as shown in Fig.1 (e). Ideally, 
these correlation templates will achieve locally maximal 
responses on the object’s boundaries. Denote ( , )c cx y as the 
object’s location found by mean shift in the current frame, 
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then initial locations of left, right, top and bottom bounda-
ries Lx , Rx , Ty ,and By  can be obtained. The final locations 
of these boundaries are achieved by equations (7)-(10), 
where 0.1 in our experiments.  

| | ,

ˆarg max ( , )
L c

L L t
x x w y y

x C W x y                    (7) 

| | ,

ˆarg max ( , )
R c

R R t
x x w y y

x C W x y                    (8) 

,| |
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x x y y h
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denotes the cross correlation operator, and is defined in 
equation (11), where { , , , }I L R T B , w and h are the 
width and height of the correlation template, respectively. 

/ 2 / 2

/ 2 / 2

ˆ ˆ( , ) ( , ) ( , )
w h

I t I t
i w j h

C W x y C i j W x i y j (11)

The proposed tracking algorithm is summarized in Fig.2.  

3. EXPERIMENTS 

We perform experiments on public data set [8] and our own 
collected data set. The tracker is initialized manually, and 
the top three features are selected. Actually using either 
three or five features has little difference in the tracking 
results in our experiments, which is also verified in [5]. 
Moreover, video frames are down-sampled by a factor of 
two to eliminate noises in video frames and for computa-
tional efficiency. Three challenging tracking examples are 
presented in this section. 

In the first video, the car being tracked loops around on a 
runway, then drives straight, speeds up and overtakes others. 
The car changes in size remarkably during tracking. With-
out feature selection (here, we mean that features are se-

lected in the first frame only and are kept unchanged during 
tracking) and scale adaptation, the tracker drifts away from 
the car in frame 533, for surrounding background shows 

Fig.2. The proposed tracking algorithm.

Algorithm 1 The proposed tracking algorithm 
Input: Video frames 1 2, , , TI I I and initial minimal 
bounding rectangle (MBR) of the tracked object. 
Output: MBRs of the tracked object in 2 , , TI I .

Initialization: Generate feature histogram 1p f and 1q f for
each feature f F , set 1t .

1. Perform feature selection to obtain sF as shown in 

section 2.1, set 0t t  and 1t , set 0tt
f fe and

0t
f  for each sf F ;

2. Set 1t t and 1t t . If t T then exit, or else 
generate weight image ˆ

tW  for local search window 
in tI as shown in section 2.2; 

3. Run mean shift algorithm in ˆ
tW initialized by MBR 

in frame 1tI ;
4. Perform scale adaptation to find the MBR in 

frame tI  as shown in section 2.3; 
5. Sample object and background pixels to estimate 

pt
f , qt

f  and t
fe for each sf F as shown in section 

2.1; 
6. If none of t

fe is above 1 1t t
f f or 2t , then 

update t
f and t

f as shown in section 2.1 and go to 
step 2. Otherwise, go to step 1. 

Fig.3. Sample frames (80, 245, 306, 460, 762, 1025, 1373, 
1625, and 1820) of egtest01 [8] sequence are shown. 
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Fig.1. Correlation templates are used to locate the left (a), 
right (b), top (c), and bottom (d) boundaries of the object’s 
bounding rectangle. Each template can be viewed as a 
summation of two templates, just taking (a) as an example
as shown in (e).
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similar appearance to the car. With adaptive feature selec-
tion and scale adaptation, our tracker successfully tracks the 
car in the whole sequence. The sequence has 1820 frames, 
and the times of feature selection is only 47. Some sample 
frames are shown in Fig.3. Note though there is a strong 
reflection of sunlight in frame 306, our tracker accurately 
obtains the location and scale of the car through adaptive 
feature selection and scale adaptation.

The second video has many challenges as shown in Fig. 4. 
There is some defocusing at times (e.g. frame 485) and 
short occlusion by trees. Sensor recording dropped some 
frames, which is manifested in the sequence as duplicated 
frames followed by a sudden discontinuity (e.g. frame 181). 
Our tracker successfully tracks the car until it is occluded by 
trees in frame 740. The times of feature selection is 46. 
Without scale adaptation, the tracker drifts away from the 
car after frame 181, because the mean-shift window and the 
basin of attraction of the car do not overlap at all in frame 
181. However, due to scale adaptation our tracker success-
fully re-locks on the car in frame 182.  

In the third video, a player is successfully tracked from 
shadow through sunshine as shown in Fig.5, until he totally 
disappears in frame 473. The times of feature selection is 27. 
Note the non-rigid motion of the player and the changes of 
the illumination add many challenges to the tracker. Thanks 
to adaptive feature selection and scale adaptation, our 

tracker successfully tracks the player. Without feature selec-
tion the tracker drifts away from the player when he moves 
from shadow to sunshine. 

4. CONCLUSIONS 

In this paper, adaptive feature selection is embedded into 
mean shift tracking framework. From a feature set, the most 
discriminative features are selected based on evaluating 
their Bayes error rates, which are estimated from object and 
background samples. Hence, a weight image more suitable 
for tracking can be generated, in which mean shift is em-
ployed to locate the object. We model the Bayes error rate 
of each selected feature as a Gaussian, and perform feature 
reselection when any one of them does not match Gaussian 
well. This adaptive feature selection scheme can greatly 
decrease the times of feature reselection. Furthermore, 
based on the observation that pixel values in weight image 
change sharply across object’s boundaries, we introduce 
four kinds of correlation templates to locate boundaries of 
the object’s bounding rectangle. Experimental results show 
that it can work well when surrounding background is not 
very cluttered. 
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Fig.5. Sample frames (2, 141, 177, 201, 254, and 432) of 
player sequence are shown. 

Fig.4. Sample frames (40, 180, 181, 182, 485, and 727) of 
egtest04 [8] sequence are shown. 
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