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Generalization of the equipartition theorem is presented for a broad range of po-
tentials U(x) with quadratic minimum. It is shown, that the equipartition of energy
in its standard form appears at the low temperatures limit. For potentials demon-
strating the quadratic behavior for large displacements from the equilibrium the
equipartition holds also in the high temperature limit. The temperature range of ap-
plicability of the equipartition theorem for the potential U = ax’ + bx* was estab-
lished.

Key words: equipartition of energy, saddle point method, quadratic potential,
potential U(x) = ax’ + bx?

Introduction

The equipartition theorem serving as a basis for the classical thermodynamics and sta-
tistical physics states that in thermal equilibrium energy is shared equally among all of its vari-
ous forms [1-7]. The equipartition theorem is grounded on two main assumptions: (1) the classi-
cal version of the canonical probability distribution is applicable and adequate; (2) the classical
expression for the total energy of the particle splits additively into two parts: one part depends
quadratically on a single variable (say x), and the other is entirely independent of that variable
U= ax* + Uy a = const (see [2]). Under aforementioned assumptions the estimated value of
energy E is kT/2 per one degree of freedom (% is the Boltzmann constant, 7 is the temperature).
Obviously the equipartition theorem holds for kinetic energy in its natural form.

The equipartition theorem was revisited recently within the non-extensive thermody-
namics formalism [8, 9]. Possible violation of the equipartition theorem attracted attention of
both experimentalists and theorists recently [10-12].

The reasonable question to be addressed: what kind of functions U(x) will give rise to
the equipartition of energy? We will demonstrate that a broad range of functions will provide the
equipartition of energy at the low temperature limit.

Applicability and generalization of the equipartition theorem

The proof of the equipartition theorem for U = ax?, a = const. is quite simple. Indeed,
the partition function Z = X,exp(—-8U) in this case equals:

* Corresponding author; e-mail: edward@ariel.ac.il



Bormashenko, E., Gendelman, O.: On the Applicability of the Equipartition Theorem
856 THERMAL SCIENCE: Year 2010, Vol. 14, No. 3, pp. 855-858

const

(1)
VB

Z=Yexp(-Bax?) = | exp(~Bax?)dx =
where f= 1/kT. Thus the estimated value of energy equals:
10Z 1 _kT

E_ = e —
Zop 2B 2
_ The reasonable question which could be asked is: what class of functions U(x) will
give E = kT/2? Generally the problem is reduced to the solution of the integral equation:
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The solution of eq. (2) is an extremely complicated task; hence, we will start from spe-
cific examples where integral (2) could be calculated explicitly. Let us start from the function
U(x) = ax? + bx, a = const., b = const., which in fact is displaced parabola. Now working out the
partition function Z is reduced the calculation of the integral (3):
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The calculation of E yields:
Fo_Ll0Z_1 0% K b°
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and quite naturally the equipartition of energy takes place in the whole range of temperatures.
The displacement of the minimum of a parabolic function results in addition of constant to the
average energy, which has no physical manifestation. Therefore the equipartition holds in its
classical form for any temperature.
Now let us try more complicated potential U(x) = ax*+ b/x?, a = const, b = const. In this
case the estimation of the partition function Z is reduced the calculation of the integral (5) (see

[13]):
J‘exp{—ﬁ(axz +iﬂdx:l‘/£exp(—2ﬁ\/z) )
J x2 2\ Ba

It is clear that when 2B(ab)"? < 1, integral (5) yields:

e b 1 [t const
:[oexp{—ﬁ(axz +x—2ﬂdx = ba :W (6)

and, the equipartition of energy occurs under high temperatures defined according to:

2Jab
k

It is noteworthy, that U(x) = ax? + b/x? represents somewhat specific potential demon-
strating quadratic behavior for large values of displacement x. Large displacements from equi-
librium correspond to high temperatures, this explains the equipartition at high temperatures.
Aforementioned examples clear up the role of quadratic behavior of potential in the
equipartition of energy.
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Now we consider the more general potential U(x) demonstrating minimum at x,,. The
partition function Z could be estimated using the saddle point method [14]. It is supposed that
U(z) is the analytical function of a complex variable z and the only significant quadratic contri-
bution to the integral (8) comes from the vicinity of the saddle point z = z, (see [14]).

const’ exp (—ﬂ|U (xg )|

VB

Formula (8) supplies the asymptotic expression for the partition function for large 3, i. e.
for low temperatures. Substitution of eq. (8) into E =—(1/Z)(0Z/dB) yields E = 1/28 + | Ulx,) | =
=kT2+ | U(x,) | and the equipartition takes place; the constant does not contribute to any physical
phenomenon. Indeed, at low temperatures the particle does not move far away from equilibrium. It
was supposed that in the vicinity of equilibrium U(x) could be approximated by quadratic func-
tion, thus, the equipartition holds naturally.

To get an estimation of the range of the equipartition, one should consider higher order
terms in expansion (8), which is somewhat cumbersome task. It is possible to demonstrate the ef-
fect of these terms, if one considers yet another model potential U(x) = ax? + bx*, a = const, b =
= const. Direct computation of the statistical sum yields (see [13]):

Zzexp{%]Kw(%] )

where K is McDonald function. In the limit of low temperatures fa%/8b > 1 and therefore in line
with the equipartition theorem we obtain:

2 2 —
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In the opposite limit case of high temperatures Sa2/8b < 1 one obtains:

Z =const | exp[-BU (x)]dx = (8)

2
Ku{ﬂi]zL:E:lkT + const (11)
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The value of the temperature 7 * = a?/8b corresponds to a crossover between two re-
gimes. It should be mentioned that for a system comprising NV particles exerted to potential U(x) =
= ax? + bx* the thermal capacity under constant volume defined as C;,= (OF, /0T)y, will be differ-
ent but temperature insensitive in both high and low temperature limits:

. 1 . 1
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Compact expressions could be also derived for any potential U= ax", n> 0 (see also [4,
5]). Taking into account [jexp(—(rx)" )dx = (1/nr)['(1/n), whereis the gamma-function, we ob-
tain for the partition function Z ~ const 8", This yields for the estimated value of energy:

L = k_T (13)
n n

In accordance with eq. (13) the thermal capacity under constant volume will be given
by: Cp, = Nik/n.

E:
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Conclusions

It is demonstrated that a broad range of potentials U(x) quadratic in the vicinity of min-

imum will provide the equipartition of energy at the low temperatures. Potentials demonstrating
the same quadratic behavior for large displacements from the equilibrium provide the
equipartition of energy in the high temperature limit. For the potential U(x) = ax* + bx* the
equipartition holds in its traditional form, i. e. E= kT/2 in the low temperature limit, defined by
T" < a?/8b.
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