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On Compression of Data Encrypted with Block

Ciphers
Demijan Klinc, Carmit Hazay, Ashish Jagmohan, Hugo Krawczyk, and Tal Rabin

Abstract

This paper investigates compression of data encrypted with block ciphers, such as the Advanced

Encryption Standard (AES). It is shown that such data can be feasibly compressed without knowledge

of the secret key. Block ciphers operating in various chaining modes are considered and it is shown

how compression can be achieved without compromising security of the encryption scheme. Further, it

is shown that there exists a fundamental limitation to the practical compressibility of block ciphers when

no chaining is used between blocks. Some performance results for practical code constructions used to

compress binary sources are presented.

Index Terms

Compression, encrypted data, block ciphers, CBC mode, ECB mode, Slepian-Wolf coding.

I. INTRODUCTION

We consider the problem of compressing encrypted data. Traditionally in communication systems,

data from a source is first compressed and then encrypted before it is transmitted over a channel to

the receiver. While in many cases this approach is befitting, there exist scenarios where there is a need

to reverse the order in which data encryption and compression are performed. Consider for instance a

network of low-cost sensor nodes that transmit sensitive information over the internet to a recipient. The

sensor nodes need to encrypt data to hide it from potential eavesdroppers, but they may not be able to

perform compression as that would require additional hardware and thus higher implementation cost. On

D. Klinc is with the Georgia Institute of Technology, Atlanta, GA. Email: demi@ece.gatech.edu

C. Hazay is with Bar-Ilan University, Ramat-Gan, Israel. Email: harelc@cs.biu.ac.il

A. Jagmohan, H. Krawczyk, and T. Rabin are with IBM T.J. Watson Research Labs, Yorktown Heights and Hawthorne, NY.

Email: {ashishja, talr}@us.ibm.com, hugo@ee.technion.ac.il

September 22, 2009 DRAFT

ar
X

iv
:1

00
9.

17
59

v1
  [

cs
.I

T
] 

 9
 S

ep
 2

01
0



2

the other hand, the network operator that is responsible for transfer of data to the recipient wants to

compress the data to maximize the utilization of its resources. It is important to note that the network

operator is not trusted and hence does not have access to the key used for encryption and decryption. If

it had the key, it could simply decrypt data, compress and encrypt again.

We focus on compression of encrypted data where the encryption procedure utilizes block ciphers

such as the Advanced Encryption Standard (AES) [1] and Data Encryption Standard (DES) [2]. Loosely

speaking, block ciphers operate on inputs of fixed length and serve as important building blocks that can

be used to construct secure encryption schemes.

For a fixed key a block cipher is a bijection, therefore the entropy of an input is the same as that of

the output. It follows that it is theoretically possible to compress the source to the same level as before

encryption. However, in practice, encrypted data appears to be random and the conventional compression

techniques do not yield desirable results. Consequently, it was long believed that encrypted data is

practically incompressible. In a surprising paper [3], the authors break that paradigm and show that the

problem of compressing one-time pad encrypted data translates to the problem of compressing correlated

sources, which was solved by Slepian and Wolf in [4] and for which practical and efficient codes are

known. Compression is practically achievable due to a simple symbol-wise correlation between the key

(one-time pad) and the encrypted message. However, when such correlation is more complex, as is the

case with block ciphers, the approach to Slepian-Wolf coding utilized in [3] is not directly applicable.

In this paper, we investigate if data encrypted with block ciphers can be compressed without access

to the key. We show that block ciphers in conjunction with the most commonly used chaining modes in

practice (e.g., [5], [6]) are practically compressible for some types of sources. To our knowledge this is

the first work to show that non-negligible compression gains can be achieved for cryptographic algorithms

like AES or DES when they are used in non-stream modes; in particular, this work offers a solution to

the open problem formulated in [7, Sec. 3.3].

Moreover, by using standard techniques in the cryptographic literature we prove that the proposed

compression schemes do not compromise the security of the original encryption scheme. We also show

that there exists a fundamental limitation to the compression capability when the input to the block cipher

is applied to a single-block message without chaining as in ECB mode (see Section III-B).

The outline of this paper is as follows. Section II defines the problem that we seek to solve and

summarizes existing work on the subject. Section III focuses on block ciphers and explains how they can

be compressed without knowledge of the secret key in various modes of operation. Section IV discusses

security of the proposed compression scheme, while Section V touches on the subject of compressing data
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encrypted with public-key encryption schemes. Section VI presents some simulation results for binary

memoryless sources and finally, Section VII concludes the paper.

II. PRELIMINARIES

We begin with a standard formal definition of an encryption scheme as stated in [8]. A private-key

encryption scheme is a triple of algorithms (Gen,Enc,Dec), where Gen is a probabilistic algorithm that

outputs a key K chosen according to some distribution that is determined by the scheme; the encryption

algorithm Enc takes as input a key K and a plaintext message X and outputs a ciphertext EncK(X);

the decryption algorithm Dec takes as input a key K and a ciphertext EncK(X) and outputs a plaintext

DecK(EncK(X)) = X . It is required that for every key K output by Gen and every plaintext X , we

have DecK(EncK(X)) = X .

In private-key encryption schemes of concern to us in this paper the same key is used for encryption and

decryption algorithms. Private-key encryption schemes can be divided in two categories: block ciphers

and stream ciphers. Stream ciphers encrypt plaintext one symbol at a time, typically by summing it with a

key (XOR operation for binary alphabets). In contrast, block ciphers represent a different approach where

encryption is accomplished by means of nonlinear mappings on input blocks of fixed length. Common

examples of block ciphers are AES and DES. Typically, block ciphers are not used as a stand-alone

encryption procedure. Instead, they are combined to work on variable-length data using composition

mechanisms known as chaining modes or modes of operation, as specified in Section III.

We proceed with a formulation of the source coding problem with decoder side-information, which

is illustrated in Figure 1. Consider random variables X (termed the source), and S (termed the side-

information), both over a finite-alphabet and with a joint probability distribution PXS . Consider a sequence

of independent n realizations of (X,S) denoted by {Xi, Si}ni=1 .

Source 

Compress 
X C(X) 

S 

Decompress 
X 

Fig. 1. Lossless source coding with decoder side-information.

The problem at hand is that of losslessly encoding {Xi}ni=1, with {Si}ni=1 known only to the decoder. In

[4], Slepian and Wolf showed that, for sufficiently large block length n, this can be done at rates arbitrarily
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Source 

Compress Encrypt 

Key (K) 

X C(X) Y 

Decompress Decrypt 

Key (K) 

X C(X) 

Encoder 

Decoder 

(a)

Source 

Encrypt Compress 

Key (K) 

X Y C(Y) 

Joint Decryption 

and 
Decompression 

Key (K) 

X 

Encoder 

Decoder 

(b)

Fig. 2. Systems combining compression and encryption. (a) Traditional system with compression done first. (b) System with

encryption done before compression.

close to the conditional entropy H(X|S). Practical Slepian-Wolf coding schemes use constructions based

on good linear error-correcting codes [9]–[11].

In this paper, we are interested in systems that perform both compression and encryption, wherein the

compressor does not have access to the key. Typically, in such systems, encryption is performed after

compression as depicted in Figure 2(a). This is a consequence of the traditional view which considers

ciphertext data hard to compress without knowledge of the key. In [3] a system similar to Figure 2(b)

is considered instead, in which the order of the encryption and compression operations at the encoder is

reversed (note, though, that only the encryptor has access to the key). The authors consider encryption of

a plaintext X using a one-time pad scheme, with a finite-alphabet key (pad) K, to generate the ciphertext

Y , i.e.

Yi , Xi ⊕Ki.

This is followed by compression, which is agnostic of K, to generate the compressed ciphertext C(Y ).

The key insight underlying the approach in [3] is that the problem of compression in this case can be

formulated as a Slepian-Wolf coding problem. In this formulation the ciphertext Y is cast as a source,

and the shared key K is cast as the decoder-only side-information. The joint distribution of the source

and side-information can be determined from the statistics of the source. For example, in the binary case

with a uniformly distributed Ki and Xi with Pr[Xi = 1] = p, we have

Pr(Yi 6= k|Ki = k) = p. (1)

The decoder has knowledge of K and of the source statistics. It uses this knowledge to reconstruct the

ciphertext Y from the compressed message C(Y ), and to subsequently decrypt the plaintext X . This
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formulation is leveraged in [3] to show that exactly the same lossless compression rate, H(X), can be

asymptotically achieved in the system shown in Figure 2(b), as can be achieved in Figure 2(a). Further,

this can be done while maintaining information-theoretic security.

The one-time pad and stream ciphers, while convenient for analysis, are not the only forms of encryption

in practice. In fact, the prevalent method of encryption uses block ciphers, thus an obviously desirable

extension of the technique in [3] would be to conventional encryption schemes such as the popular AES

encryption method. Attempting to do so, however, proves to be problematic. The method in [3] leverages

the fact that in a one-time pad encryption scheme there exists a simple symbol-wise correlation between

the key K and the ciphertext Y , as seen in (1). Unfortunately, for block ciphers such as AES no such

correlation structure is known. Moreover, any change in the plaintext is diffused in the ciphertext, and

quantifying the correlation (or the joint probability distribution) of the key and the ciphertext is believed

to be computationally infeasible.

In the remainder of this paper, we show how this problem can be circumvented by exploiting the

chaining modes popularly used with block ciphers. Based on this insight, we present an approach for

compressing data encrypted with block ciphers, without knowledge of the key. As in [3], the proposed

methods are based on the use of Slepian-Wolf coding.

Before continuing, we formalize the notion of a “post-encryption compression” which is used througout

this paper with the following definition:

Definition 1 (Post-Encryption Compression (PEC) Scheme): Let E = (Gen,Enc,Dec) be an encryp-

tion scheme, as defined above, with plaintext domain X and ciphertext range Q, and let P be a probability

distribution over X . Let C be a compression function defined over Q, and D be a (possibly probabilistic)

decoding function with the property that, for any key K generated by Gen, DK(C(EncK(X)) = X

with probability 1− δ. We call the pair (C,D) an (E ,P, δ)-PEC scheme.

Note that in this definition, D is given access to the encryption key while C works independently

of the key. Both C and D may be built for a specific distribution P (in particular, correct decoding

may be guaranteed, with high probability, only for plaintexts chosen according to a specific P). We

often assume that the plaintext distribution P is efficiently samplable, which means that there exists an

efficient randomized algorithm whose output distribution is P . The probability of error δ is taken over

the choice of X and the choice of random coins if D is randomized. To simplify notation, we shall omit

the (E ,P, δ) parameters in the exposition if they are irrelevant or evident from the context, and use the

term PEC scheme.
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PEC schemes may be tailored to a specific cipher, say AES or DES. Most often, however, one is

interested in schemes that can support different ciphers, for instance both AES and DES, or even a full

family of encryption schemes. All PEC schemes presented in this paper can work with any block cipher,

therefore we call them generic PEC schemes. A generic PEC scheme cannot be tailored to the specific

details of the underlying cipher but rather handles the cipher as a black box. That is, it is not necessary

that the decoder D knows the specifics of the encryption scheme or even its encryption/decryption key.

Rather, it suffices that D has access to a pair of encryption and decryption oracles, denoted by Enc

and Dec, that provide D with encryptions and decryptions, respectively, of any plaintext or ciphertext

queried by D.

III. COMPRESSING BLOCK-CIPHER ENCRYPTION

In contrast to stream ciphers, such as the one-time pad, block ciphers are highly nonlinear and the

correlation between the key and the ciphertext is, by design, hard to characterize. If a block cipher operates

on each block of data individually, two identical inputs will produce two identical outputs. While this

weakness does not necessarily enable an unauthorized user to understand contents of an individual block

it can reveal valuable information; for example, about frequently occurring data patterns. To address this

problem, various chaining modes, also called modes of operation, are used in conjunction with block

ciphers. The idea is to randomize each plaintext block, by using a randomization vector derived as a

function of previous encryptor inputs or outputs. The randomization prevents two identical plaintext

blocks from being encrypted into two identical ciphertext blocks, thus preventing leakage of information

about data patterns.

We are interested in the following problem. Consider a sequence of plaintext blocks Xn = {Xi}ni=1,

where each block Xi is drawn from the set Xm = {0, 1}m. Further, we assume that the blocks Xi

are generated by an i.i.d. source with a distribution PX . The blocks in Xn are encrypted with a block-

cipher based private-key encryption scheme (Gen,Enc,Dec). In most cases of interest, block-cipher

based encryption schemes use an initialization vector IV that is drawn uniformly at random from Xm by

the encryption algorithm EncK . Let the encryption algorithm be characterized by the mapping EncK :

(Xm)n → Xm × (Xm)n. For a sequence of plaintext blocks Xn at input, the encryption algorithm

generates EncK(Xn) = {IV,Yn}, where Yn = {Yi}ni=1 denotes a sequence of ciphertext blocks and

each block Yi ∈ Xm. The problem at hand is to compress EncK(Xn) without knowledge of K.

In the remainder of this section we focus on the cipher block chaining (CBC) mode and the electronic

code book (ECB) mode. The CBC mode is interesting because it is the most common mode of operation
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used with block ciphers (e.g. in Internet protocols TLS and IPsec), while our treatment of the ECB

mode provides fundamental insight about the feasibility of performing compression on data compressed

with block ciphers without chaining. Two other modes of operation associated with block ciphers are

worth mentioning: the output feedback (OFB) mode and the cipher feedback (CFB) mode. The solution

to compressing the latter two modes is a relatively straightforward extension of the methods from [3],

therefore it is presented in Appendix A.

A. Cipher Block Chaining (CBC)

The most common mode of operation is CBC. Depicted in Figure 3, block ciphers in CBC mode are

employed as the default mechanism in widespread security standards such as IPSec [5] and TLS/SSL [6]

and hence it is a common method of encrypting internet traffic.

X1 

Block cipher 

X2 Xn 

Y1 

K K K 

IV 

Block cipher Block cipher 

.  .  . 

X1 

~ X2 

~ 

Y2 Yn 

Xn 

~ 

IV 

Fig. 3. Cipher block chaining (CBC).

In the CBC mode, each plaintext block Xi is randomized prior to encryption, by being XOR-ed with

the ciphertext block corresponding to the previous plaintext block Yi−1, to obtain X̃i. Ciphertext block

Yi is generated by applying the block cipher with key K to the randomized plaintext block X̃i

Yi = BK

(
Xi ⊕ Yi−1

)
, (2)

where Y0 = IV and BK : Xm → Xm is the block cipher mapping using the key K. At the output of the

encryption algorithm we have EncK(Xn) = (IV,Yn).

Notice that, contrary to modes OFB and CFB, ciphertext blocks in Yn are not obtained by means of a

bitwise XOR operation. Instead, they are obtained as outputs of highly nonlinear block ciphers, therefore

the methods from [3] cannot be applied directly to compress in CBC mode.
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The key insight underlying the proposed approach for compression can now be described. The statistical

relationship between the key K and the i-th ciphertext block Yi is hard to characterize. However, the

joint distribution of the randomization vector Yi−1 and the i-th input to the block cipher, X̃i, is easier

to characterize, as it is governed by the distribution of the plaintext block Xi. For example, in the i.i.d

source case we are considering, Yi−1 and X̃i are related through a symbol-wise model governed by the

distribution PX . The correlation induced by the use of the chaining mode can be exploited to allow

compression of encrypted data using Slepian-Wolf coding, as we will now show.

Let (CCBC, DCBC) denote a Slepian-Wolf code with encoding rate R and block length m. The Slepian-

Wolf encoding function is defined as CCBC : Xm → {1, . . . , 2mR}, and the Slepian-Wolf decoding

function as DCBC : {1, . . . , 2mR}×Xm → Xm. The proposed compression method is illustrated in Figure

4. The input to the compressor is EncK(Xn) = (IV,Yn). Since Yi ∈ Xm, the total length of the input

Compressor 
IV, Y1, Y2, … Yn-1, Yn C(IV), C(Y1), C(Y2)  

… C(Yn-1), Yn 

Compressor 

Fig. 4. Compressor.

sequence is (n+1) ·m · log |X | bits. The compressor applies the Slepian-Wolf encoding function CCBC to

the IV and each of the first n−1 ciphertext blocks independently, while the n-th block is left unchanged.

Thus, the output of the compressor is the sequence (CCBC(IV), CCBC(Y1), . . . CCBC(Yn−1), Yn). The length

of the output sequence is n ·m ·R+m · log |X | bits. Thus, the compressor achieves a compression factor

of

lim
n→∞

(n+ 1) ·m · log |X |
n ·m ·R+m · log |X |

=
log |X |
R

for large n. Note that the compressor does not need to know the key K. Also, note that this approach only

requires a compressed IV, which by itself is incompressible, therefore no performance loss is inflicted

by the uncompressed last block.

The joint decompression and decryption method is shown in Figure 5. The received compressed

sequence is decrypted and decompressed serially, from right to left. In the first step Yn, which is received

uncompressed, is decrypted using the key K to generate X̃n. Next, Slepian-Wolf decoding is performed

to reconstruct Yn−1 using X̃n as side-information, and the compressed bits CCBC(Yn−1). The decoder

computes Ŷ , DCBC(CCBC(Yn−1), X̃n), such that Ŷ = Yn−1 with high-probability if the rate R is high
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Xn 

Decryption 
K 

Xn-1 

Decryption 
K 

… 

X1 

Decryption 

Slepian-Wolf 

Decoder 

K 

IV 

Yn C(Yn-1) C(Yn-2) C(IV) 

Yn-1 Yn-2 

Xn-1 

~ Xn 

~ X1 

~ 

Slepian-Wolf 

Decoder 

Slepian-Wolf 

Decoder 

Fig. 5. Joint decryption and decoding at the receiver. It is performed serially from right to left.

enough. Once Yn−1 has been recovered by the Slepian-Wolf decoder, the plaintext block can now be

reconstructed as Xn = Yn−1 ⊕ X̃n. The decoding process now proceeds serially with Yn−1 decrypted to

generate X̃n−1, which acts as the new Slepian-Wolf side-information. This continues until all plaintext

blocks have been reconstructed.

For large m, it follows from the Slepian-Wolf theorem that the rate required to ensure correct recon-

struction of the (i− 1)-th block with high probability is given as

mR = H
(
Yi−1|X̃i

)
= H

(
Yi−1|Yi−1 ⊕Xi

)
= H

(
Yi−1, Yi−1 ⊕Xi|Yi−1 ⊕Xi

)
= H

(
Yi−1, Xi|Yi−1 ⊕Xi

)
= H

(
Xi|Yi−1 ⊕Xi

)
≤ H(Xi). (3)

It is assumed that the IV is drawn uniformly at random, therefore Yi is uniformly distributed for all i.

Consequently, the equation 3 holds with equality and we have R = 1
mH(Xi).

In practice, as we will see in Section 4, m is typically small. In this case, the required rate R is a

function of PX , m, the acceptable decoding error probability, and the non-ideal Slepian-Wolf codes used.
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B. Electronic Code Book (ECB)

We have seen that ciphertexts generated by a block cipher in OFB, CFB, and CBC modes can be

compressed without knowledge of the encryption key. The compression schemes that we presented rely

on the specifics of chaining operations. A natural question at this point is to what extent can the output

of a block cipher be compressed without chaining, i.e. when a block cipher is applied to a single block of

plaintext. This mode of operation, depicted in Figure 6, is called the electronic code book (ECB) mode.

X1 

Block cipher 

X2 Xn 

Y1 

K K K 

Block cipher Block cipher .  .  . 

Y2 Yn 

Fig. 6. Electronic Codebook (ECB).

Block cipher with a fixed key is a permutation, therefore the entropy of the ciphertext is the same as

the entropy of the plaintext. In effect, compression in ECB mode is theoretically possible. The question

is, whether it is possible to design a generic and efficient post-encryption compression scheme such as

with other modes of operation.

We claim the answer to this question is negative, except for some low-entropy distributions or very low

compression rates (e.g., compressing a ciphertext by a few bits). We show that for a given compressed

ciphertext C(Yi), the decoder cannot do significantly better than to operate in one of the following two

decoding strategies, which we refer to as exhaustive strategies:

1) enumerate all possible plaintexts in decreasing order of probability and compute a ciphertext for

each plaintext until the ciphertext that compresses to C(Yi) is found;

2) enumerate all ciphertexts that compress to C(Yi) and decrypt them to find the original plaintext.

More precisely, we show that a generic compression scheme that compresses the output of a block cipher

and departs significantly from one of the above strategies can be converted into an algorithm that breaks

the security of the block cipher. In other words, a scheme that compresses the output of a secure block
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cipher either requires an infeasible amount of computation, i.e. as much as needed to break the block

cipher, or it must follow one of the above exhaustive strategies.

Definition 2: If (C,D) is a PEC scheme that follows any of the above exhaustive strategies, we say

that (C,D) is an exhaustive PEC scheme.

Our result on the compressibility of block ciphers in ECB mode can now be stated.

Theorem 3: Let B be a secure block cipher1, let E = (Gen,Enc,Dec) be an encryption scheme,

where Gen chooses K uniformly from K and Enc = BK , Dec = B−1K , and let P be an efficiently-

samplable plaintext distribution. Let (C,D) be a (E ,P, δ)-PEC scheme. If (C,D) is generic for block

ciphers, then (C,D) is either exhaustive or computationally infeasible (or both).

The exact computational bounds are omitted in the Theorem’s statement for simplicity. More details

on the computational bounds are given in Appendix C (Lemma 11), where Theorem 3 is also proven.

The following remarks are worth noting:

(a) The exhaustive strategies are infeasible in most cases. However, for very low-entropy plaintext

distributions or for very low compression rates (e.g., when compressing a ciphertext by just a few

bits) these strategies can be efficient. For example, consider a plaintext distribution consisting of a set

X of 1,000 128-bit values uniformly distributed. In this case, one can compress the output of a 128-bit

block cipher applied to this set by truncating the 128-bit ciphertext to 40 bits. Using a birthday-type

bound one can show that the probability of two values in X being mapped to the same ciphertext

is about 2−20. Hence, exhaustive strategy 1 above would succeed in recovering the correct plaintext

with probability 1 − 2−20. In general, the compression capabilities under this strategy will depend

on the guessing entropy [12], [13] of the underlying plaintext distribution. Another compression

approach is to drop some of the bits in the ciphertext and let the decoder search exhaustively, as in

the strategy 2 above, for the original ciphertext until the correct plaintext is recovered. This would

assume that the number of dropped bits allows for almost-unique decodability and that the decoding

procedure can identify the right plaintext. The fact that these exhaustive compression strategies may

be efficient for some plaintext distributions shows that our theorem cannot exclude the existence of

efficient generic coding schemes for some plaintext distributions. Rather, the theorem says that if

there exists an efficient generic coding scheme for a given distribution, then it must follow one of

the exhaustive strategies.

1For a definition of block cipher security please refer to Appendix B.
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(b) Compressing the ciphertext is theoretically possible. If efficiency is not of concern, one could

consider a brute-force compression algorithm that first breaks the block cipher by finding its key2,

uses the key to decrypt, and then compresses the plaintext. If several blocks of plaintext are

compressed sequentially, they can be re-encrypted by the compression algorithm resulting in an

effective ciphertext compression. This idea might be impractical, but it shows that if the existence of

generic compressors is ruled out, this must be tied to the efficiency of the PEC scheme. Moreover, the

above approach could work efficiently against an insecure block cipher (in which case one may find

the key by efficient means), thus showing that both efficiency and security are essential ingredients

to our result.

(c) Theorem 3 holds for generic compressors that do not use the internals of an encryption algorithm

or the actual key in the (de)compression process. It does not rule out the existence of good PEC

schemes for specific secure block ciphers, like for instance AES. To achieve compression, though,

the PEC scheme would have to be contingent on the internal structure of a block cipher.

IV. SECURITY OF THE CBC COMPRESSION SCHEME

In this section we formally prove that compression and decompression operations that we introduced

on top of the regular CBC mode do not compromise security of the original CBC encryption. The

proof follows standard techniques in the cryptographic literature, showing that any efficient attack against

secrecy of a PEC scheme can be transformed into an efficient attack against the original CBC encryption.

Please refer to Appendix B for background on cryptographic definitions that are used in this section.

We start by formalizing the notion of security of a PEC scheme as a simple extension of the standard

definition of chosen plaintext attack (CPA) security recalled in Appendix B. The essence of the extension

is that in the PEC setting the adversary is given access to a combined oracle (EncK +C)(·) which first

encrypts the plaintext and then compresses the resultant ciphertext.

Definition 4 (CPA-PEC Indistinguishability Experiment): Consider an encryption scheme (Gen,Enc,

Dec) and a PEC scheme (C,D). The CPA-PEC indistinguishability experiment Exptcpa−pecA is defined

as follows:

1) a key K is generated by running Gen;

2 This can be done by exhaustive search based on a known plaintext-ciphertext pair or (for suitable plaintext distributions) by

decrypting a sequence of encrypted blocks and finding a key which decrypts all blocks to elements in the underlying probability

distribution.
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2) the adversary A has oracle access to (EncK + C)(·), and queries it with a pair of test plaintexts

X0, X1 of the same length;

3) the oracle randomly chooses a bit b← {0, 1} and returns the compressed ciphertext c← (EncK +

C)(Xb), called the challenge, to A;

4) the adversary A continues to have oracle access to (EncK+C)(·) and is allowed to make arbitrary

queries. Ultimately it makes a guess about the value of b by outputting b′;

5) the output of the experiment, Exptcpa−pecA , is defined to be 1 if b′ = b, and 0 otherwise. If

Exptcpa−pecA = 1, we say that A succeeded.

Definition 5 (Post-Encryption Compression Security): A PEC scheme (C,D) is called (T, ε)-indistin-

guishable under chosen plaintext attacks (CPA-PEC-secure) if for every adversary A that runs in time

T ,

Pr
[
Exptcpa−pecA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins used in the

experiment.

We now formulate the security of our CBC compression scheme by the following theorem.

Theorem 6: Let E = (Gen,Enc,Dec) be a CBC encryption scheme that is (T, ε)-indistinguishable

under chosen plaintext attacks, let P be an efficiently-samplable plaintext distribution, and let (C,D)

be a (E ,P, δ)-PEC scheme. Then (C,D) is (T/TC , ε)-indistinguishable under chosen plaintext attacks,

where TC is an upper bound on the running time of C.

Proof: Our proof employs a reduction to the security of E . Specifically, we show that if there exists

an adversary AC that runs in time T/TC and is able to distinguish between two compressed encryptions,

then there exists an adversary AE that runs in time T and compromises the security of E . Note that the

latter implies a break of security of the underlying block cipher using the well-known result by Bellare

et al. [14].

Assume, for contradiction, the existence of such an adversary AC . We construct an adversary AE as

follows. AE invokes AC and emulates its oracle (EncK+C)(·). That is, for every query X made by AC ,

AE uses its oracle EncK(·) to compute EncK(X). Subsequently, it applies the compression algorithm

C on EncK(X) and forwards C(EncK(X)) to AC . When AC outputs the two test messages X0, X1,

AE outputs these messages to its own oracle EncK(·). Let c∗ denote the challenge ciphertext that its

oracle returns. AE computes c = C(c∗) and forwards c to AC . When AC outputs a bit b′, AE outputs

the same value.
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Given that AC makes at most T/TC queries and that the running time of C is upper-bounded by TC ,

AE ’s running time is at most T . Let 1
2 + ε denote the probability that AC distinguishes successfully in its

game. Clearly, it holds that AE distinguishes successfully in its game with the same probability, which

is in contradiction to the security of E .

V. PUBLIC-KEY ENCRYPTION SCHEMES

After a feasibility study of post-encryption compression in the symmtric key setting, where sender and

receiver share a key used for both encryption and decryption, one may wonder whether these results can

be extended to the public-key setting. Loosely speaking, in the public-key approach the key generation

algorithm produces two different keys (PK,SK) where PK is publicly distributed, yet SK is kept a secret.

Thereafter, any party who knows PK can encrypt messages and only the owner of the secret key can

decrypt.

Since public key operations for known public-key schemes are computationally expensive, one typically

encrypts streams of data by using a public-key scheme to encrypt a symmetric key (e.g., a AES key) and

then using this key with a symmetric cipher to encrypt the data. In this case, it is clear that the results in this

paper can be applied to the symmetric (bulk) encryption of the data. Yet, the question remains of whether

we can compress the PK part of the ciphertext. For the reader familiar with the El Gamal cryptosystem

[15], we note that one can compress one of the two components of the ciphertext if, for example, one

uses XOR to combine the ephemeral El-Gamal key with the message. In the case of El Gamal over

elliptic curves another well-known technique is “point compression” [16] which reduces the ciphertext

to half its length. Yet, one could hope for better post-encryption compression (in particular, given that

often the ciphertexts are longer than the plaintext). One result in this direction is Gentry’s technique for

compressing Rabin’s ciphertexts [17]. However, this technique can be applied before encryption, not

post-encryption. Interestingly, the related result by Gentry regarding compression of Rabin’s signatures

does allow for compression after the signature generation, without the need for the signing key.

In conclusion, the question of post-encryption compressibility of ciphertexts produced by public-key

schemes is essentially unresolved.

VI. COMPRESSION PERFORMANCE

Codes that are used to compress stream ciphers can be chosen to have arbitrary block lengths, since

the method itself does not directly impose any constraints on the block length. On the other hand,
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the compression methods that we propose for CFB and CBC mode must operate block-wise since

decompression occurs serially and depends upon a previously decompressed block. In effect, the block

length of Slepian-Wolf codes must be m. We choose AES as a representative of a widely used block

cipher and present our results under assumption that AES is used as the encryption scheme.

The efficiency of Slepian-Wolf compression depends on the performance of underlying Slepian-Wolf

codes. It was shown in [18], [19] that Slepian-Wolf compression approaches entropy with speed O(
√

logn
n ),

which is considerably slower than O( 1n) of arithmetic coding. It follows that for efficient Slepian-Wolf

compression, the block length of Slepian-Wolf codes must be long.

Slepian-Wolf codes over finite block lengths have nonzero frame-error rates (FER), which implies that

the receiver will sometimes fail to recover EK(Xi−1) correctly. Such errors must be dealt with on the

system level, as they can have catastrophic consequences in the sense that they propagate to all subsequent

blocks. In the following it is assumed that as long as the FER is low enough, the system can recover

efficiently, for instance by supplying the uncompressed version of the erroneous block to the receiver.

The compression performance depends on the target FER.

We consider a binary i.i.d source with a probability distribution Pr(X = 1) = p and Pr(X = 0) = 1−p

which produces plaintext bits. A sequence of plaintext bits is divided into blocks of size m, which are

encrypted and compressed as described in Section III. The receiver’s task is to reconstruct EK(Xi−1) from

X̃i and side information C(EK(Xi−1)). For the source considered, Slepian-Wolf decoding is equivalent

to error-correction over a binary symmetric channel (BSC), thus the underlying codes should yield a FER

that is lower or equal to the target FER over the BSC. Compression efficiency can be evaluated in two

ways:

a) fix p and determine the compression rate of a Slepian-Wolf code that satisfies the target FER;

b) pick a well-performing Slepian-Wolf code and determine the maximum p for which target FER is

satisfied.

We use low-density parity-check (LDPC) codes [20], which are known to be very powerful and we

evaluate compression performance according to method b). In our simulations we used two LDPC codes3:

the first yields compression rate 0.5 and has degree distribution λ(x) = 0.3317x+0.2376x2+0.4307x5,

ρ(x) = 0.6535x5+0.3465x6 and the second yields compression rate 0.75 and degree distribution λ(x) =

0.4249x + 0.0311x2 + 0.5440x4, ρ(x) = 0.8187x3 + 0.1813x4. All codes were constructed with the

Progressive Edge Growth algorithm [21], which is known to yield good performance at short block

3The degree distributions were obtained at http://lthcwww.epfl.ch/research/ldpcopt/
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lengths. Belief propagation [20] is used for decoding and the maximum number of iterations was set to

100.

p Target FER Compression Rate Source Entropy

0.026 10−3 0.50 0.1739

0.018 10−4 0.50 0.1301

0.068 10−3 0.75 0.3584

0.054 10−4 0.75 0.3032

TABLE I

ATTAINABLE COMPRESSION RATES FOR m = 128 BITS.

Simulation results for block length, m, 128 and 1024 bits are shown in Tables I and II, respectively.

First, consider the current specification of the AES standard [22], where m is 128 bits. At FER of 10−3

the maximum p that can be compressed to rate 0.5 is 0.026, while the entropy for that p is 0.1739. The

large gap is a consequence of a very short block length. Notice that for higher reliability, i.e. lower FER,

the constraints on the source are more stringent for a fixed compression rate.

p Target FER Compression Rate Source Entropy

0.058 10−3 0.50 0.3195

0.048 10−4 0.50 0.2778

0.134 10−3 0.75 0.5710

0.126 10−4 0.75 0.5464

TABLE II

ATTAINABLE COMPRESSION RATES FOR m = 1024 BITS.

When the m is increased to 1024 bits (see Table II) the improvement in performance is considerable.

For instance, at FER = 10−3 and compression rate 0.5, the source can now have p up to 0.058. In

future block-cipher designs one could consider larger blocks, in particular as a way to allow for better

post-encryption compression.

VII. CONCLUSION

We considered compression of data encrypted with block ciphers without knowledge of the key.

Contrary to a popular belief that such data is practically incompressible we show how compression can
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be attained. Our method is based on Slepian-Wolf coding and hinges on the fact that chaining modes,

which are widely used in conjunction with block ciphers, introduce a simple symbol-wise correlation

between successive blocks of data. The proposed compression was shown to preserve the security of the

encryption scheme. Further, we showed the existence of a fundamental limitation to compressibility of

data encrypted with block ciphers when no chaining mode is employed.

Some simulation results are presented for binary memoryless sources. The results indicate that, while

still far from theoretical limits, considerable compression gains are practically attainable with block

ciphers and improved performance can be expected as block sizes increase in the future.

APPENDIX A

COMPRESSING OFB AND CFB MODE

The main part of the paper describes how compression can be performed on data encrypted with block

ciphers when they operate in the CBC mode. This section outlines how compression is achieved in other

two common modes associated with block ciphers, output feedback (OFB) and cipher feedback (CFB).

A. Output Feedback (OFB)

The mode depicted in Figure 7 is called output feedback (OFB). Plaintext blocks in Xn are not directly

encrypted with a block cipher. Rather, the block cipher is used to sequentially generate a sequence of

pseudorandom blocks K̃n = {K̃i}ni=1 which serve as a one-time pad to encrypt the plaintext blocks. At

the output of the encryption algorithm we have EncK(Xn) = (IV,Yn).

Block cipher 

Y1 

K 

IV 

.  .  . 

X1 

IV 

Block cipher 

Y2 

K 

X2 

Block cipher 

Yn 

K 

Xn 

K1 
~ 

K2 
~ 

Kn 
~ 

Fig. 7. Output feedback (OFB).
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Notice that each block K̃i is independent of plaintext blocks, therefore the OFB mode is analogous to

the one-time pad encryption scheme and Yn can be compressed in the same manner as described in [3].

Most importantly, K̃n and Xn are independent, therefore the block length of Slepian-Wolf codes that are

used to compress Yn can be chosen arbitrarily. The IV is uniformly distributed and thus incompressible.

Formally, the compression and decompression algorithms can be described as follows. Let (COFB, DOFB)

denote a Slepian-Wolf code with encoding rate R and block length nm. The Slepian-Wolf encoding

function is defined as COFB : (Xm)n → {1, . . . , 2mnR}, and the Slepian-Wolf decoding function as

DOFB : {1, . . . , 2mnR}× (Xm)n → (Xm)n. Given an output sequence from the encryptor EncK(Xn) =

(IV,Yn), compression is achieved by applying the Slepian-Wolf encoder function COFB to Yn, so that

at the output we have (IV, COFB(Y
n)). Note that COFB does not require knowledge of K.

Decompression and decryption are performed jointly. The receiver has (IV, COFB(Y
n)) and knows the

secret key K, thus it can generate the sequence of pseudorandom blocks K̃n using the IV. Subsequently,

it applies the Slepian-Wolf decoder function DOFB to (COFB(Y
n), K̃n) to recover Yn. The original

sequence of plaintext blocks Xn then equals K̃n ⊕Yn.

By the Slepian-Wolf theorem, the compression rate approaches entropy of the source asymptotically

in nm. That is, even if m is finite, entropy can still be achieved if n→∞.

B. Cipher Feedback (CFB)

Next, we discuss the cipher feedback (CFB) mode, which is depicted in Figure 8. Similarly as in

OFB, the plaintext blocks are not subject to block cipher encryption and Yn is obtained by XOR-ing

plaintext blocks Xn with pseudorandom blocks K̃n. At the output of the encryption algorithm we have

EncK(Xn) = (IV,Yn).

However, in CFB mode, the pseudorandom blocks K̃n are not independent of Xn. Let the block cipher

using a secret key K be characterized by the bijective mapping BK : Xm → Xm. Each block K̃i depends

on the preceding plaintext block Xi−1 as follows:

K̃i = BK(Xi) = BK(Xi−1 ⊕ K̃i−1), (4)

where X0 is defined to be the IV.

Due to the dependence between K̃n and Xn, the proposed compression algorithm for the CFB mode

operates on individual ciphertext blocks Yi, rather then on Yn all at once like in the OFB mode. Without

this distinction, the joint decompression and decryption as proposed in [3] would not be possible. Let
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Fig. 8. Cipher feedback (CFB).

(CCFB, DCFB) denote a Slepian-Wolf code with encoding rate R and block length m. The Slepian-Wolf

encoding function is defined as CCFB : Xm → {1, . . . , 2mR}, and the Slepian-Wolf decoding function

as DCFB : {1, . . . , 2mR} ×Xm → Xm. Compression is achieved by applying the Slepian-Wolf encoding

function CCFB to each of the ciphertext blocks in Yn individually. The compressed representation of

EncK(Xn) is then (IV, CCFB(Y1), . . . , CCFB(Yn)). Note again, that CCFB does not require knowledge of

K.

Joint decompression and decryption, depicted on Figure 9 is performed sequentially from left to

right, since decryption of the ith ciphertext block requires knowledge of the (i − 1)th plaintext block.

Initially, IV is mapped to K̃1 by the block cipher. The Slepian-Wolf decoder function DCFB is applied

to (CCFB(Y1), K̃1) to obtain Y1. The first plaintext can now be obtained: X1 = K̃1 ⊕ Y1. Subsequently,

Y1 is mapped to K̃2. The same process repeats to obtain X2, and later all remaining plaintext blocks

{Xi}ni=3.

Notice that in contrast to the OFB mode, this compression scheme is generally optimal only if m→∞.

For finite m, the compression is generally suboptimal, even if n→∞.

APPENDIX B

SOME DEFINITIONS FROM CRYPTOGRAPHY

For completeness, we recall some standard definitions from cryptography that are used in this paper.

See [8] for details. These definitions assume a fixed computational model over which time complexity

is defined.
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Fig. 9. Joint decryption and decoding in the CFB mode at the receiver is performed serially from left to right.

Definition 7 (Block Cipher): A block cipher B with block size m is a keyed family {BK}K∈K where

for each K, BK is a permutation over m bits4 and K is the set of all possible keys.

The security of a block cipher is defined via the notion of indistinguishability. Ideally, we would

like the behavior of a block cipher to be indistinguishable by computational means from that of a purely

random permutation over m bits. However, since a block cipher is a much smaller family of permutations

than the family of all permutations, the above is not fully achievable. Yet, if we restrict our attention to

“computationally feasible distinguishers” then we can obtain a meaningful notion of security applicable

to actual block ciphers such as AES.

Hence, the main ingredient in such definition is that of a distinguisher. A distinguisher Dist is defined

as a randomized algorithm with oracle access to two m-bit permutations Enc and Dec where Dec =

Enc−1. Dist can make arbitrary queries to the oracles and eventually outputs a single bit 0 or 1. We

consider the runs of Dist in two cases: When the oracles are instantiated with a truly random permutation

and when instantiated with a block cipher (i.e., with the functions BK and B−1K where K is chosen with

uniform probability from the set K). Let PREAL be the probability that Dist outputs a 1 when the oracle

was instantiated with B, where PREAL is computed over all random coins of Dist and all choices of

the key for B. Further, let PRP be the probability that Dist outputs a 1 when the oracle was instantiated

4 By a permutation over m bits we mean a deterministic bijective function over {0, 1}m.
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with a random permutation, where PRP is computed over all random coins of Dist and all permutations

Enc. Intuitively, we can think of Dist as trying to decide if the oracles are instantiated with a random

permutation or with a block cipher; hence, a distinguisher is considered successful if the difference

|PREAL − PRP |, which is referred to as the advantage, is non-negligible. Formally, this leads to the

following definition.5

Definition 8 (Block Cipher Security): A block cipher B is called (T, ε)-secure if no distinguisher

Dist that runs in time T has advantage larger than ε.

This definition tries to capture the idea that, for secure block ciphers, even distinguishers that have the

ability to run for extremely large time T , say T = 280, gain only negligible distinguishing advantage,

say ε = 2−40. In other words, for any practical purpose the quality of the block cipher is as good as if

it was instantiated by a “perfect cipher” (purely random permutation).

A secure block cipher by itself does not constitute a secure private-key encryption scheme due to its

deterministic nature. Namely, two identical plaintexts are mapped into two identical ciphertexts, therefore

valuable information about data patterns can be leaked to eavesdroppers. Rather, secure block ciphers are

used as building blocks that can be used to construct private-key encryption schemes that eliminate this

vulnerability. Note that a secure private-key encryption scheme must be probabilistic or stateful.

Toward a formal definition of a secure encryption scheme, consider the following experiment:

Definition 9 (CPA Indistinguishability Experiment): Consider an adversaryA and an encryption scheme

(Gen,Enc,Dec). The chosen plaintext attack (CPA) indistinguishability experiment ExptcpaA is defined

as follows:

1) a key k is generated by running Gen;

2) the adversary A has oracle access to EncK(·), and queries it with a pair of plaintexts X0, X1 of

the same length;

3) the oracle randomly chooses a bit b ← {0, 1} and returns the ciphertext q ← EncK(Xb), called

the challenge, to A;

4) the adversary A continues to have oracle access to EncK(·) and is allowed to make arbitrary

queries. Ultimately it makes a guess about the value of b by outputting b′;

5) the output of the experiment, ExptcpaA , is defined to be 1 if b′ = b, and 0 otherwise. If ExptcpaA = 1,

we say that A succeeded.

Definition 10 (Private-Key Encryption Security): A private-key encryption scheme (Gen,Enc,Dec)

5This definition corresponds to the notion of strong pseudorandom permutation [14].
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is called (T, ε)-indistinguishable under chosen plaintext attacks (or CPA-secure) if for every adversary

A that runs in time T ,

Pr
[
ExptcpaA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins used in the

experiment.

APPENDIX C

PROOF OF THEOREM 3

The proof of Theorem 3 is by contradiction. We assume a generic PEC scheme (C,D) that departs

in some noticeable way (later made more precise by means of the parameter ε) from the exhaustive

strategies when it is applied to a block cipher B. Subsequently, we show how to use such a PEC scheme

to build a distinguisher Dist that distinguishes with advantage strictly larger than ε between the block

cipher B and a random permutation, in contradiction to the security of B.

For simplicity, and without loss of generality, we assume that D does not make redundant queries to

Enc or Dec. Namely, no query X to Enc or query Y to Dec is repeated in a run. If X was output by

Dec (resp., Y output by Enc) it is not entered into Enc (resp., into Dec). In addition, if the decoded

output from D is X , we assume that X was either input to Enc or output by Dec. If D does not follow

these rules, it can be modified to do so.

For X ∈R P 6 and Y = Enc(X), assume that C(Y ) is passed as input to D. We say that D decodes

correctly if it queries either X from Enc or Y from Dec during its run. In other words, D is not required

to have the ability to identify the correct plaintext, which simplifies our presentation without weakening

our results. On the contrary, it shows that even if such a relaxed decoding requirement is acceptable, the

lower bound we prove still holds.

Finally, note that the formulation of the theorem assumes that the plaintext distribution P is efficiently

samplable. This assumption is used in an essential way in our proof, though the efficiency requirement

from the P sampler is very weak. In addition, we assume that, for a given compressed ciphertext C(Y ),

one can sample uniformly from the set YC(Y ) = C−1(C(Y )), which is the set of all ciphertexts mapped

by C to C(Y ). Additional discussion related to this assumption is given after the proof.

The proof of Theorem 3 uses the following lemma.

6We use X ∈R P to denote that X is chosen at random according to the probability distribution P .
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Lemma 11: Let T be a time-bound parameter, let B be a (T, ε)-secure block cipher and let E =

(Gen,Enc,Dec) be an encryption scheme, where Gen chooses K ∈R K and Enc = BK , Dec = B−1K .

Let P be a plaintext distribution samplable in time T/4 and let (C,D) be a generic (E ,P, δ)-PEC scheme.

Then either (C,D) runs in time that exceeds T/4 (and hence is infeasible7) or the following holds:

(i) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y ) in which D queries Enc(X),

and let X ′ be a random element drawn from P independently of X . Then, the probability that D queries

Enc(X ′) before Enc(X) is at least 1/2− ε/(1− δ).

(ii) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y ) in which D queries Dec(Y ),

and let Y ′ be an element drawn uniformly from YC(Y ) = C−1(C(Y )). Then, the probability that D

queries Dec(Y ′) before Dec(Y ) is at least 1/2− ε/(1− δ).

We first show how the Lemma 11 suffices to prove Theorem 3.

Proof of Theorem 3: For case (i), the probability that X is queried first is within ε/(1− δ) of the

probability that X ′ is queried first, where the latter is the probability of querying a plaintext that bears

no information (the run of D is independent of X ′). Assuming that δ < 1/2, we get ε/(1− δ) < 2ε and

since ε is negligible (say 2−40) so is 2ε. This implies a plaintext-exhaustive strategy by D. Similarly, for

case (ii), the probability that the value Y is computed first is within ε/(1− δ) of the probability that an

independent Y ′ ∈R YC(Y ) is computed first. This implies a ciphertext-exhaustive strategy by D.

Proof of Lemma 11: First, consider the error-free case, i.e. δ = 0. We show that if (C,D) runs in

time less than T/4 and conditions (i), (ii) do not hold, we can build a distinguisher (see Appendix B)

that runs in time at most T and distinguishes between B and a random permutation with an advantage

larger than ε, in contradiction to the security of B. A distinguisher interacts with oracles Enc and Dec

and its goal is to identify whether the oracles are instantiated with the real block cipher B or with a

random permutation. For clarity, we represent the output 0 from Dist by the symbol RP (Dist decided

that the oracles are instantiated with a random permutation) and the output 1 by REAL (Dist decided

that the oracles are instantiated by the block cipher B).

We build a distinguisher Dist that uses the scheme (C,D) and responds to the encryption and

decryption queries made by D with its Enc/Dec oracles. When Enc is a random permutation, (C,D)

may run much longer than when Enc is B. Thus, to bound the time complexity of Dist, we set a time

7 For secure block ciphers, a distinguisher should not be able to attain more then a negligible advantage even if it runs for

extremely large time T , say T = 280 (see Appendix B). Thus, a PEC scheme that runs in time T/4 would be considered

infeasible.
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limit T ′ = T/4, such that if the total time of (C,D) exceeds T ′, Dist stops as well. As we show below,

the parameter T ′ is chosen as T/4 to ensure that the total running time of Dist is no more than T .

Initially, Dist chooses X ∈R P and receives the value Y = Enc(X) from its Enc oracle. It computes

C(Y ) and passes it as input to D. In addition, Dist chooses an independent X ′ ∈R P and independent

Y ′ ∈R YC(Y ). It is assumed that Y ′ can be sampled within time T/4. Subsequently, Dist monitors the

queries to Enc/Dec as requested by D and reacts to the following events:

1) if X is queried from Enc, stop and output REAL;

2) if X ′ is queried from Enc, stop and output RP;

3) if Y is queried from Dec, stop and output REAL;

4) if Y ′ is queried from Dec, stop and output RP.

5) if the run of (C,D) exceeds T ′, stop and output RP

It is possible that multiple such events take place in one run of D, for instance both X and X ′ may

be queried from Enc. In such case Dist stops as soon as it identifies first such event.

Let PREAL and PRP be defined as in Appendix B. We evaluate the advantage of Dist, namely, the

difference |PREAL − PRP |. First, consider a run of Dist when Enc/Dec are instantiated by a random

permutation. The behavior of (C,D) depends on Y which is chosen at random and independently of X

and X ′, therefore the run is independent of both X and X ′. In effect, the probability that X is queried

before X ′ is exactly 1/2. Similarly, if Y is queried from Dec, the behavior of D depends on C(Y ),

while both Y and Y ′ have the same probability to be the chosen as the preimage of C(Y ). Therefore,

the probability that Y precedes Y ′ is exactly 1/2. It follows that Dist outputs REAL with probability

at most 1/2 (exactly 1/2 for the X and Y cases and with probability 0 if Dist exceeds time T ′), i.e.,

PRP ≤ 1/2.

Now, consider a run of Dist when Enc/Dec are instantiated by a block cipher B and its inverse,

respectively. Assume, for contradiction, that (C,D) stops before time T ′ and either (i) the probability

that X ′ is queried before X is strictly less than 1/2− ε or (ii) the probability that Y ′ is queried before

Y is strictly less than 1/2− ε. It follows that the probability that Dist outputs RP is strictly smaller than

1/2− ε, therefore PREAL > 1/2 + ε.

Thus, Dist distinguishes with advantage |PREAL−PRP |, which is strictly larger than ε. The running

time of Dist is upper-bounded by T : it includes three samplings (of X,X ′ and Y ′), each assumed to

take at most T/4 time, and the work of (C,D) which Dist runs for total time T/4 at most. In all, we

have built a distinguisher against B that runs time T and has advantage larger than ε in contradiction to

the security of the block cipher B.
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Assume now that δ > 0. When a positive probability of error for D is allowed, it can occur that D

stops before time T ′ and before Dist sees X,X ′, Y or Y ′. To deal with this situation, we add a clause to

the specification of Dist saying that if (C,D) stops before time T ′ and before seeing any of the values

X,X ′, Y, Y ′, then Dist chooses a random bit b and outputs REAL if b = 1 and RP if b = 0. We slightly

increased the probability that X ′ is queried before X (or Y ′ before Y ) in the block cipher case, however

it is still negligibly far from 1/2. The proof is now a straightforward extension of the case when δ = 0.

Remark. The proof of Lemma 11 assumes that the set YC(Y ) is samplable in time T/4. While this

assumption is likely to hold, we note that it is enough to know the size of YC(Y ). In such case, rather

than sampling YC(Y ), the events 3) and 4) in the proof are replaced with the following one: if the number

of queries to Dec performed by D exceeds |YC(Y )|/2 before Y is queried, stop and output RP.

We now sketch the proof of the theorem when none of the above conditions holds, namely when YC(Y )

is of unknown size and not samplable in time T/4. Assume that (C,D) performs noticeably better than

the exhaustive strategies when the Enc/Dec oracles are instantiated with the block cipher B. Then it

must hold that (C,D) runs noticeably faster when the Enc and Dec oracles are instantiated with the

block cipher B than with a random permutation, for the exhaustive strategies are optimal for a random

permutation (as shown above). Using this (assumed) discrepancy between the runs of (C,D) over B and

the runs of (C,D) over a random permutation, we can build a distinguisher against B in contradiction

to the security of B. In the following, we formalize this discrepancy and outline the construction of the

distinguisher, where some straightforward details are omitted.

For any plaintext X let TB(X) denote the runtime of (C,D) on input X when Enc/Dec oracles

are instantiated with the block cipher B. Further, let TR(X) denote the runtime of (C,D) on input X

when Enc/Dec oracles are instantiated with a random permutation. We assume that there is a known

time bound T0 such that TB(X) < T0 for all X (we relax this assumption below) and there exists a

non-negligible ε such that Pr[TB(X) < TR(X)] ≥ 1/2 + ε. The probability is over all choices of X

and all random coins of (C,D). Further, it is over all key choices for B for TB and over all random

permutations for TR. We build a distinguisher Dist as follows:

1) Choose X ∈R P and run (C,D) using the input oracles. If time T0 is exceeded, stop and output

RP, otherwise proceed to Step 2.

2) Let T1 denote the running time of (C,D) in step (1). Run (C,D) again on X (same X as in step

1)) but this time ignore the given Enc/Dec oracles. Instead, answer queries from (C,D) with a
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random permutation. If time T1 is exceeded then output REAL, otherwise output RP.

We have the following:

• If the Enc/Dec oracles are instantiated with B, step (1) always completes and in step (2) REAL is

output with the probability that equals Pr[TR(X) > TB(X)], which is at least 1/2 + ε.

• If the Enc/Dec oracles are instantiated with a random permutation, REAL is output only if TR(X) ≤

T0 and the runtime on X in step (2) exceeds the runtime on X in step (1). The probability of the

latter is at most 1/2 since both runs are over a random permutation.

Thus, Dist will output REAL with probability at least 1/2+ ε when the oracles are instantiated with B,

while it will output REAL with probability at most 1/2 when the oracles are instantiated with a random

permutation. It follows that Dist is a (T, ε)-distinguisher for B where T = 2T0 since in each of the

steps (1) and (2) Dist runs time at most T0.

Note that the requirement that TB(X) < T0 for all X can be relaxed such that the joint probability of

TB(X) < T0 and TB(X) < TR(X) is at least 1/2 + ε.
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