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On Distance and Area

Jarmo Mäkelä1, ∗

1Vaasa University of Applied Sciences, Wolffintie 30, 65200 Vaasa, Finland

We seek for an alternative to the metric tensor gµν as a fundamental geometrical object in four-

dimensional Riemannian manifolds. We suggest that the metric tensor gµν(P ) at a given point P

of a manifold may be replaced by a four-dimensional geometrical simplex σ4(P ) embedded to the

tangent space TP of the point P . The number of two-faces, or triangles, of σ4(P ) is the same as

is the number of independent components of gµν(P ), and hence we may replace the components of

gµν(P ) by the two-face areas of σ4(P ). In this sense the concept of distance may, in four-dimensional

Riemannian manifolds, be reduced to the concept of area. This result may find some applications

in the thermodynamical approaches to quantum gravity.
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Traditionally, the metric tensor gµν has been used as the object describing the geometric properties of Riemannian

manifolds. By means of the metric tensor we may calculate, among other things, lengths of curves, distances between

points, and the change experienced by a vector when it is parallel transported around a closed loop on a Riemannian

manifold. Although the metric tensor is a natural choice for a fundamental geometrical object, however, it is by no

means unique, and one may ask, whether the metric tensor could be replaced, in a natural manner, by some other

objects carrying exactly the same geometrical information.

In this paper we shall introduce an object with a potential of satisfying these requirements in four-dimensional

Riemannian manifolds. Our idea is to replace the metric tensor gµν(P ), which determines the inner product between

the vectors of the tangent space TP associated with a given point P of the manifold, by a four-dimensional geometrical

simplex σ4(P ), which is embedded to the tangent space TP . By definition, an n-dimensional geometrical simplex σn

is a convex hull of (n+1) linearly independent points v0, v1, ..., vn of a Eulidean space ℜm (m ≥ n), and it is denoted

by σn = v0v1...vn. [1] The points v0, v1, ..., vn are known as the vertices of σn. Hence the simplex σ4(P ) is a convex

hull of five linearly independent points v0(P ), v1(P ), ..., v4(P ) ∈ TP . In the tangent space TP which, by definition, is

a flat, Euclidean four-space we introduce a system of coordinates x̃µ (µ = 0, 1, 2, 3) such that straight lines parallel to

the tangent vectors ~bµ(P ) of the coordinate curves associated with the coordinates xµ of the points of the manifold

at the point P act as coordinate axes. In this system of coordinates an edge vector joining the vertices va(P ) and

vb(P ) of σ4(P ) is of the form

~lab(P ) = (x̃µ(b)− x̃µ(a))~bµ(P ), (1)

where x̃µ(a) and x̃µ(b), respectively, are the coordinates of the vertices va(P ) and vb(P ) (a, b = 0, 1, 2, 3, 4), and we

have used Einstein’s sum rule.

Consider now what happens, if we keep the coordinates x̃µ(a) of the vertices of σ4(P ) as fixed and move the point

P around on the manifold. If the manifold is curved, the tangent vectors ~bµ(P ) will change when the point P is moved

and, as a consequence, the edge vectors of the simplex σ4(P ) will also change. In other words, the properties of the

four-simplex σ4(P ) are different in different points of a curved manifold. The main idea of this paper is to relate the

geometrical properties of the manifold to the geometrical properties of σ4(P ).

∗Electronic address: jarmo.makela@puv.fi

http://arxiv.org/abs/1011.2052v1
mailto:jarmo.makela@puv.fi


2

It is interesting that the number of the two-faces, or triangles, of the simplex σ4(P ) is
(

5

3

)

= 10, (2)

which is exactly the same as is the number of independent components of the metric tensor gµν(P ) at the point P .

In other words, there is a one-to-one correspondence between the two-faces of σ4(P ) and the components of gµν(P ).

The natural geometrical quantities to replace the components of gµν(P ) are therefore the areas of the two-faces of

σ4(P ). When the components of gµν(P ) are changed, the areas of the two-faces of σ4(P ) will also change and there

is a one-to-one correspondence between the changes of the components of gµν(P ) and the changes of the areas of the

two-faces of σ4(P ). This means that exatly the same geometrical information is carried by the components of gµν(P )

and the areas of the two-faces of σ4(P ).

In general, the relationship between the components of gµν(P ) and the areas of the two-faces of σ4(P ) is pretty

complicated. However, between the infinitesimal variations of the two-face areas of σ4(P ) and those of the components

of gµν(P ) there is a simple linear relationship. More precisely, if we arrange the infinitesimal variations δgµν(P ) to a

column matrix δg(P ) with 10 elements, and those of the areas of the two-faces of σ4(P ) to a column matrix δA(P ),

we have:

δA(P ) = M(P ) δg(P ) (3)

where M(P ) is an approriate 10× 10 matrix defined at the point P . Eq.(3) tells in which way the variations of the

two-face areas may be obtained from the variations of the components of gµν(P ). Conversely, the variations of the

components of gµν(P ) may be obtained by means of the variations of the two-face areas of σ4(P ):

δg(P ) = N(P ) δA(P ), (4)

where the 10× 10 matrix N(P ) is the inverse of the matrix M(P ). Eq.(4) implies that the partial derivatives of the

components of the metric tensor may be expressed in terms of the partial derivatives of the two-face areas of σ4(P ):

∂g(P )

∂xµ
= N(P )

∂A(P )

∂xµ
(5)

for all µ = 0, 1, 2, 3. If we pick up an orthonormal system of coordinates at the point P , the first partial derivatives of

the metric tensor will all vanish at P , and its second partial derivatives may all be expressed in terms of the second

partial derivatives of the two-face areas:

∂2g(P )

∂xµ∂xν
= N(P )

∂2A(P )

∂xµ∂xν
. (6)

Since the Riemann tensor and the related objects such as the Ricci and the Einstein tensors are all, in orthonormal

geodesic coordinates, functions of the second partial derivatives of the components of the metric tensor only, we find

that all these objects may be expressed in terms of the second partial derivatives of the two-face areas of σ4(P ).

In an arbitrary system of coordinates the components of these objects may be obtained from their components in

orthonormal geodesic coordinates by means of a simple cordinate trasformation. In other words, we have shown

that in an arbitrary point P of a Riemannian manifold in an arbitrary system of coordinates the components of the

Riemann tensor, and thus all geometrical properties of the manifold at that point, may ultimately be reduced to the

two-face areas of σ4(P ). Hence we may indeed replace the metric tensor gµν as a fundamental geometric object of

four-dimensional Riemannian manifolds by a specific four-simplex σ4.

It only remains to find the 10 × 10 matrices M(P ) and N(P ). In a proper Riemannian manifold with a positive

definite metric tensor the area of a two-simplex with vertices va(P ), vb(P ) and vc(P ) is

Aabc(P ) =
1

4

√

4sab(P )sac(P )− (sab(P ) + sac(P )− sbc(P ))2, (7)



3

where

sab(P ) := gµν(P )(x̃µ(b)− x̃µ(a))(x̃ν(b)− x̃ν(a)) (8)

is the squared length of the edge vector joining the vertices va(P ) and vb(P ). Hence we find that

δAabc = M
µν
abc(P ) δgµν(P ), (9)

where

M
µν
abc(P ) :=

1

16Aabc(P )
[∆abc(P )(ab)µν +∆cab(P )(ca)µν +∆bca(P )(bc)µν ]. (10)

In Eq.(10) we have denoted:

∆abc(P ) := sac(P ) + sbc(P )− sab(P ), (11a)

(ab)µν := (x̃µ(b)− x̃µ(a))(x̃ν (b)− x̃ν(a)). (11b)

The quantities Mµν
abc(P ) are the elements of the matrix M(P ). The indices µν determine collectively the column and

the indices abc the row of the element Mµν
abc(P ). In a pseudo-Riemannian manifold with a signature (−,+,+,+) in

the metric the elements of Mµν
abc(P ) are otherwise the same as in Eq.(10), except that for time-like two-faces the right

hand side of Eq.(10) is equipped with a minus sign and the expression inside of the square root in Eq.(7) is replaced

by its modulus. The elements of the inverse N(P ) of the matrix M(P ) are of the form Nabc
µν (P ), and they have the

property:

δgµν(P ) = Nabc
µν (P ) δAabc(P ). (12)

In contrast to the elements of the matrix M(P ), the indices abc determine collectively the column and the indices µν

the row of the element Nabc
µν (P ) of N(P ).

When calculating the elements of the matrices M(P ) and N(P ) we have lots of choice, because those elements

depend both on the four-simplex σ4(P ) chosen at the point P , and on the system of coordinates. In the Appendix we

have constructed the matrices M(P ) and N(P ) explicitly in the special case, where the lengths of all edges of σ4(P )

are equals, and the system of the coordinates xµ(P ) at the point P of the manifold has been chosen such that in the

corresponding coordinates x̃µ induced in the tangent space TP the vertex v4(P ) lies at the origin, and the coordinates

of the other vertices va(P ) are x̃µ(a) = δµa for all a, µ = 0, 1, 2, 3. If we change the ”old” coordinates xµ to the ”new”

coordinates x′µ, the elements of the matrices M(P ) and N(P ) will also change such that

M
′µν
abc (P ) =

∂x′µ

∂xα

∂x′ν

∂xβ
M

αβ
abc(P ), (13a)

N ′abc
µν (P ) =

∂xα

∂x′µ

∂xβ

∂x′ν
Nabc

αβ (P ). (13b)

So it is possible to obtain the elements of the matrices M(P ) and N(P ) in any system of coordinates, provided that

we know those elements in just one system of coordinates.

In this paper we have suggested that the metric tensor gµν(P ) determining the inner product between the vectors of

the tangent space TP associated with a given point P of a Riemannian manifold may be replaced, in four dimensions,

by a specific four-simplex σ4(P ) ⊂ TP . In the tangent space TP we define a system of coordinates, where straight

lines parallel to the tangent vectors of the coordinate curves of the manifold act as coordinate axes. In this system of

coordinates we keep the coordinates of the vertices of σ4(P ) as fixed. When the point P is moved around on a curved

manifold, the tangent vectors of the coordinate curves, and hence the edges of the four-simplex σ4(P ), will change.

Four-dimensional simplices have a specific property that the number of their two-faces, or triangles, is the same as is
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the number of independent components of the metric tensor. Hence there is a one-to-one correspondence between the

changes of the two-face areas of σ4(P ) and the changes of the independent components of the metric tensor gµν(P ),

when the point P is moved around on the manifold. In other words, the changes of the components of the metric

tensor gµν(P ) may be expressed in terms of the changes of the two-face areas of σ4(P ), and vice versa. Because of

that we may replace the components of the metric tensor, which determines the distances between nearby points, by

the two-face areas of a specific four-simplex as the fundamental geometrical variables in four-dimensional Riemannian

manifolds. In this sense one may say that in four-dimensional Riemannian manifolds the concept of distance may be

reduced to the concept of area.

The explicit relationship between the components of the metric tensor and the two-face areas of our four-simplex is,

in general, pretty complicated, and therefore it is unlikely that the use of two-face areas of a four-simplex would offer

essential benefits over the use of the components of the metric tensor in the traditional applications, such as classical

general relativity, of the general theory of Riemanian manifolds. Nevertheless, it is quite interesting that the concept

of metric tensor, which determines the distance between nearby points, may be replaced by the concept of area in the

sense described above. The potential importance of this result lies in the fact that in many approaches to quantum

gravity the concept of area, instead of the concepts of metric and distance, takes a central role. In loop quantum

gravity, for example, spacetime is assumed to consist of Planck-size loops equipped with a certain area spectrum.

[2] During some recent times attempts to consider general relativity as an essentially thermodynamical theory of

spacetime and its constituents have gained increasing popularity. [3–6] In those considerations the concept of entropy

holds the central stage. Because the entropy of a black hole is proportional to its event horizon area, one may expect

the concept of area to play a fundamental role in any thermodynamical approach to quantum gravity. For instance,

the results gained from the thermodynamical approaches to quantum gravity so far suggest that two-dimensional

surfaces of spacetime might consist of Planck-size constituents, each of them occupying an area which is about one

Planck length squared. [5, 6, 8] It is possible that by means of the results of this paper one may obtain a relationship

between the geometric and the causal poperties of spacetime, and the statistical distributions of those constituents in

their quantum states.

Appendix: The Matrices M(P) and N(P)

In this appendix we shall obtain explicit expressions for the matrices M(P ) and N(P ) in the special case, where

the edge lengths of the geometric four-simplex σ4(P ) are all equals and the coordinates x̃µ(a) of the vertices va(P ) of

the simplex in the tangent space TP have been chosen in such a way that

x̃µ(a) := δµa , (A.1)

for all a = 0, 1, 2, 3, and

x̃µ(4) = 0. (A.2)

In other words, the vertex v4(P ) lies at the origin of our system of coordinates, and the coordinates of the vertices

v0(P ), v1(P ), v2(P ) and v3(P ), respectively, are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). Denoting the common

length of the edges of σ4(P ) by L we find:

Aabc(P ) =

√
3

4
L2, (A.3a)

∆abc(P ) = L2 (A.3b)

for all a, b, c = 0, 1, 2, 3, 4. Hence it follows fom Eq.(10) that the elements of the matrix M(P ) are:

M
µν
abc(P ) =

√
3

12
[(ab)µν + (ca)µν + (bc)µν ]. (A.4)
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Using Eq.(11b) we observe that the symbols (ab)µν have the symmetry properties:

(ab)µν = (ab)νµ, (A.5a)

(ab)µν = (ba)µν , (A.5b)

and therefore the only independent, non-zero components of (ab)µν , in our system of coordinates, are:

(ab)aa = 1, (a = 0, 1, 2, 3) (A.6a)

(ab)ab = −1. (a, b = 0, 1, 2, 3) (A.6b)

So we find that if we define the column matrices δA(P ) and δg(P ) such that

δA(P ) :=











































δA012(P )

δA013(P )

δA014(P )

δA023(P )

δA024(P )

δA034(P )

δA123(P )

δA124(P )

δA134(P )

δA234(P )











































and δg(P ) :=











































δg00(P )

δg01(P )

δg02(P )

δg03(P )

δg11(P )

δg12(P )

δg13(P )

δg22(P )

δg23(P )

δg33(P )











































, (A.7)

the matrix M(P ) becomes to:

M(P ) =

√
3

12











































2 −1 −1 0 2 −1 0 2 0 0

2 −1 0 −1 2 0 −1 0 0 2

2 −1 0 0 2 0 0 0 0 0

2 0 −1 −1 0 0 0 2 −1 2

2 0 −1 0 0 0 0 2 0 0

2 0 0 −1 0 0 0 0 0 2

0 0 0 0 2 −1 −1 2 −1 2

0 0 0 0 2 −1 0 2 0 0

0 0 0 0 2 0 −1 0 0 2

0 0 0 0 0 0 0 2 −1 2











































. (A.8)

The matrix N(P ) is the inverse of M(P ):

N(P ) =
2
√
3

3











































−1 −1 2 −1 2 2 2 −1 −1 −1

−4 −4 2 2 2 2 2 2 2 4

−4 2 2 −4 2 2 2 2 −4 2

2 −4 2 −4 2 2 2 −4 2 2

−1 −1 2 2 −1 −1 −1 2 2 −1

−4 2 2 2 2 −4 −4 2 2 2

2 −4 2 2 −4 2 −4 2 2 2

−1 2 −1 −1 2 −1 −1 2 −1 2

2 2 −4 −4 2 2 −4 2 2 2

2 −1 −1 −1 −1 2 −1 −1 2 2











































. (A.9)
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Using the matrix M(P ) we may express the elements of δA(P ) in terms of the elements of δg(P ), whereas by means

of the matrix N(P ) we may express the elements of δg(P ) in terms of the elements of δA(P ). So there is an invertible

one-to-one relationship between the variations δgµν(P ) and δAabc(P ) of the components of the metric tensor and the

areas of the two-faces of σ4(P ). The elements of the matrices M(P ) and N(P ) in any system of coordinates may be

obtained from the elements of M(P ) and N(P ) in Eqs.(A8) and (A9) by means of a simple coordinate transformation

as in Eqs. (13a) and (13b). Although we have assumed in this Appendix that our manifold is a proper Riemannian

manifold with a positive definite metric, a similar calculation may be performed in pseudo-Riemannian manifolds as

well.
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