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Abstract—In the literature of psychophysics and neurophysi-
ology, many studies have shown that both global and local features
are crucial for face representation and recognition. This paper
proposes a novel face recognition method which exploits both
global and local discriminative features. In this method, global
features are extracted from the whole face images by keeping the
low-frequency coefficients of Fourier transform, which we believe
encodes the holistic facial information, such as facial contour. For
local feature extraction, Gabor wavelets are exploited considering
their biological relevance. After that, Fisher’s linear discriminant
(FLD) is separately applied to the global Fourier features and
each local patch of Gabor features. Thus, multiple FLD classifiers
are obtained, each embodying different facial evidences for face
recognition. Finally, all these classifiers are combined to form a
hierarchical ensemble classifier. We evaluate the proposed method
using two large-scale face databases: FERET and FRGC version
2.0. Experiments show that the results of our method are impres-
sively better than the best known results with the same evaluation
protocol.

Index Terms—Ensemble classifier, face recognition, Fisher’s
linear discriminant (FLD), Fourier transform, Gabor wavelets,
global feature, local feature.

1. INTRODUCTION

ACE recognition from still images and video sequence
has been an active research area due to both its scien-
tific challenges and wide range of potential applications such as
biometric identity authentication, human-computer interaction,
and video surveillance. Within the past two decades, numerous
face recognition algorithms have been proposed as reviewed in
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the literature survey [1]. Even though we human beings can
detect and identify faces in a cluttered scene with little effort,
building an automated system that accomplishes such objective
is very challenging. The challenges mainly come from the large
variations in the visual stimulus due to illumination conditions,
viewing directions, facial expressions, aging, and disguises such
as facial hair, glasses, or cosmetics.

As in any pattern classification task, feature extraction plays
a key role in face recognition process. In feature extraction
stage, a proper face representation is chosen to make the
subsequent face processing not only computationally feasible
but also robust to possible intrinsic and extrinsic facial vari-
ations. Existing face representations fall into two categories:
global-based and local-based. In the global-based face repre-
sentation, each dimension of the feature vector contains the
information embodied in every part (even each pixel) of the
face image, thus corresponds to some holistic characteristic of
the face. In contrast, for the local-based face representation,
each dimension of the feature vector corresponds to merely
certain local region in the face, thus only encodes the detailed
traits within this specific area.

In the literature of face recognition, there are various face rep-
resentation methods based on global features, including a great
number of subspace-based methods and some spatial-frequency
techniques. Subspace-based methods, such as principal com-
ponent analysis (PCA) [2], Fisher’s linear discriminant (FLD)
[3] and independent component analysis (ICA) [4], have been
widely recognized as the dominant and successful face repre-
sentation methods. These methods attempt to find a set of basis
images from a training set and represent any face as a linear
combination of these basis images. Many researchers also pro-
pose to extract facial features by using spatial-frequency tech-
niques, such as Fourier transform [5], [6] and discrete cosine
transform (DCT) [7], [8]. In these methods, face images are
transformed to the frequency domain and only the coefficients
in the low-frequency band are reserved for face representation.
One of the merits of these methods, compared with the sub-
space-based methods, is that they do not need a training process
to learn the basis images.

While global-based face representations were popular for
face recognition, recently, more and more attempts are made to
develop face recognition systems based on local features, which
are believed more robust to the variations of facial expression,
illumination and occlusion etc.

In [9], Penve and Atick proposed local feature analysis (LFA)
to encode the local topological structure of face images. LFA is
considered as local method as it utilizes a set of kernels to im-
plicitly detect the local structure such as eyes, nose, and mouth.
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Timo et al. [10] adopted local binary pattern (LBP), which is
originated from the area of texture analysis, for face represen-
tation. In their method, LBP operator is first applied and then
the resulting LBP “image” is divided into small regions from
which histogram features are extracted. The idea of dividing
face image is also used in the component-based methods, in
which the face image is divided into some blocks by a certain
rule. Then, the image blocks may be taken as inputs of classi-
fiers (e.g., SVM [11]) or given to next step for further feature
extraction (e.g., PCA [12], [13], FLD [14]).

Among various local features, especially, Gabor wavelets
have been recognized as one of the most successful local feature
extraction methods for face representation due to their biolog-
ical relevance. The 2-D Gabor wavelets [15], whose kernels
are similar to the 2-D receptive field profiles of the mammalian
cortical simple cells, exhibit desirable characteristics of spatial
locality and orientation selectivity, and are optimally localized
in the space and frequency domains. Typical face recognition
methods based on Gabor features include the elastic bunch
graph matching (EBGM) [16], Gabor-Fisher classifier (GFC)
[17], AdaBoost-based Gabor feature selection [18], and local
Gabor binary pattern (LGBP) [19]. Especially, in recent years,
Gabor wavelets are often combined with discriminant analysis
methods (e.g., FLD) to further enhance the performances of
face recognition systems [17], [20]-[23].

Although many successful face representation methods based
on global or local features have been proposed, it remains an
open problem that what is the most suitable representation for
face recognition. However, in the literature of psychophysics
and neurophysiology, many studies have shown that both global
and local features are crucial for human face perception. More-
over, global and local features play different roles in the process
of face perception and recognition. Global features describe the
general characteristics of the holistic face and they are often
used for coarse representation. Differently, local features re-
flect and encode more detailed variations within some local fa-
cial regions. Thus, it is proper to use local features for finer
representation.

Following the above studies, it is natural to expect better per-
formance of face recognition by combining global and local
information. The EBGM method [16] had pioneered such an
idea, since in EBGM global topological information is modeled
as the structure of the graph and local information is encoded
as the attribute of the nodes. In addition, Fang et al. [24] pro-
posed to combine global PCA features and component-based
local features extracted by Haar wavelets. Kim [14] proposed
an effective face descriptor by decomposing a face image into
several components, extracting FLD features from each compo-
nent, and finally combining these component FLD features to-
gether with the features extracted by using a holistic FLD. Sim-
ilar idea was proposed in another paper [25], in which the au-
thors experimentally showed that the combined subspace gives
smaller Bayesian error than the subspaces of either the global
or local features. Lee [26] combined local structures extracted
by local feature analysis (LFA) into composite templates which
show compromised aspects between kernels of LFA and Eigen-
faces. Lin and Tang [27] introduced a multilayer framework for
high resolution face recognition. In their method, PCA followed
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by regularized FLD is exploited to model global appearance and
facial organs. Meanwhile, discriminative multiscale texton fea-
tures and SIFT-activated pictorial structure are used to extract
local features such as skin and subtle details.

In this paper, following the same basic belief of combining
global and local features, we propose a novel hierarchical
ensemble classifier (HEC) for face recognition by combining
global Fourier features and local Gabor features. Specifically,
in our method, global features are extracted from the whole
face images firstly by 2-D discrete Fourier transform. Then,
the real and imaginary components of the low frequency band
are concatenated to form a single feature vector, called by us
global Fourier feature vector (GFFV), for further process. For
local feature extraction, Gabor wavelet transform is exploited.
Firstly, Gabor wavelets are used to extract local features at
every position of the face image. Then, these features are
spatially grouped into a number of feature vectors, each corre-
sponding to a local patch of the face image and called by us a
local Gabor feature vector (LGFV). After the above processes,
a face image can be represented by one GFFV and multiple
LGFVs. These feature vectors encode diverse discriminatory
information: GFFV contains global discriminatory information
and each LGFV embodies discriminatory information within
certain local region. In order to make full use of all these diverse
information, we propose to train multiple component classifiers
by applying FLD on GFFV and each LGFV respectively, and
then combine them into one ensemble classifier appropriately.
The proposed method is extensively evaluated on the FERET
and FRGC databases, and impressive results are achieved.
Especially, on FRGC Experiment 4, we have achieved a verifi-
cation rate of 89% at FAR of 0.1%, while the best known result
was 81%.

The remaining parts of this paper are organized as follows. In
Section II, face representation based on global and local features
is proposed. In Section III, the construction of the hierarchical
ensemble classifier is presented. In Section IV, experiments and
analyses are conducted, followed by conclusion and discussion
in the last section.

II. EXTRACTION OF GLOBAL AND LOCAL FEATURES FOR
FACE REPRESENTATION

As mentioned previously, global and local facial features play
different roles in face perception. Therefore, it is necessary to
combine them together smartly. Intuitively, local information
is embedded in the detailed local variations of facial appear-
ance, while global information means the holistically structural
configuration of facial organs, as well as facial contour. Thus,
from the viewpoint of frequency analysis, global features should
mainly correspond to the lower frequencies, while local features
should be of high frequency and dependent on position and ori-
entation in the face image. Considering that, in this paper, global
information is represented as the Fourier coefficients in low fre-
quency band, and local information is encoded as the responses
of multiscale and multiorientation Gabor wavelets.

It is known that the Gabor wavelet is a Gaussian modulated
Fourier transform. Therefore, it can be tuned to extract global
(usually low frequency) features by increasing the bandwidth
and the radius of its Gaussian modulator. However, doing like
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Fig. 1. TIllustration of the different roles of global and local features in face
recognition. See text for the detailed explanation. (The original faces in this
figure are from P. Sinha, and T. Poggio, “Last but not least: *United” we stand”,
Perception, 31(1), p.133, 2002.).

this is not as computationally desirable as using Fourier trans-
form directly. Specifically, we hope the global features should
be compact and orientation-independent. If we apply multiple
Gabor wavelets to achieve orientation-independent, the compu-
tational burden of global feature extraction will increase signif-
icantly. In addition, the high dimensionality of Gabor features
also brings the problem of “curse of dimensionality” and makes
the following process much computationally expensive. That
is the reason why Fourier transform rather than tuned Gabor
wavelets is adopted to extract global features in this paper.

In what follows, we first illuminate the different roles of
global and local features. Then, the detailed process of global
and local feature extraction is introduced.

A. Different Roles of Global and Local Features

In this sub-section, different roles of global and local features
are illustrated intuitively using two interesting example images.
As shown in Fig. 1, the leftmost two input faces are artificial,
whose main components (eyes, nose, and mouth) are actually
from an identical person. But they have different facial contours
and hairstyles. Therefore, they look holistically very dissimilar
in terms of the overall structural configuration, hair and facial
contour. Consequently the classifier based on global features
will report them as different persons. However, the classifier
comparing their local components is apt to reporting them as the
same person, since their components are almost the same. The
conflicting results of the two classifiers interestingly reflect the
above-mentioned different roles of global and local information,
which suggests that ideal classifier should be the combination of
the two “experts.”

B. Extraction of Global Fourier Features

In this paper, 2-D Discrete Fourier Transform (DFT) is
adopted for global feature extraction. An image can be trans-
formed by 2-D DFT into frequency domain as follows:

M—1N—-1
1 .
F(u,v) = STI E E :f(x,y)e—QZW(uz/]VI-H;y/N) )
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Person 2
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Fig. 2. Reconstruction of the face images by using only low-frequency Fourier
coefficients (30% energy reserved).

where f(xz,y) represents a 2-D image of size M by N pixels,
0<u<M-1and0 < v < N —1 are frequency variables.
When the Fourier transform is applied to a real function, its
outputs are complex numbers, that is

F(u,v) = R(u,v) + jI(u,v) 2)

where R(u,v) and I(u,v) are the real and imaginary compo-
nents of F'(u,v) respectively. Thus, after Fourier transform, a
face image is represented by the real and imaginary components
of all the frequencies.

Though all the frequencies contain information about the
input image, different bands of frequency play different roles.
It is known that generally low frequencies reflect the holistic
attributes of the input image. This can be illustrated intuitively
by observing the effects of inverse transform with only the
frequency band of interest. Fig. 2 gives some examples of
inverse transform by using only the low frequency bands (about
30% of all the energy). From Fig. 2, one can safely conclude
that the low frequencies indeed mainly contain information
about the global structural configuration of the facial organs
and the contour of the face. It is also apparent that these
low-frequency features are very robust to the detailed local
variations in appearance due to facial expressions, noise, and
so on. In Section IV, these characteristics are further validated
by experiments.

Consequently, in our method, only the Fourier coefficients in
low frequency band are reserved as global features. Specifically,
for a face image, after Fourier transform, the real and imagi-
nary components in the low frequency band are concatenated
into a single feature vector, named global Fourier feature vector
(GFFV). As shown in Fig. 3, for both real and imaginary compo-
nents, only those within low frequency band are reserved, which
are illustrated by the white squares in the figure.

C. Extraction of Local Gabor Features

In recent years, face descriptors based on Gabor wavelet
transform (GWT) have been recognized as one of the most
successful face representation methods. Gabor wavelets are in
many ways like Fourier transform but have a limited spatial
scope. 2-D Gabor wavelets are defined as follows [15]:

-
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Fig. 4. Real part of the 40 2-D Gabor wavelets with five scales and eight
orientations.

where k., = k, eu, ky = kmax/f* gives the frequency,
Yu = um/8, ¢, € [0,7) gives the orientation. As can be seen
from the definition, Gabor wavelet consists of a planar sinu-
soid multiplied by a 2-D Gaussian. The Gaussian insures that
the convolution is dominated by the region of the image close
to the center of the wavelet. That is, when a signal is convolved
with a Gabor wavelet, the frequency information near the center
of the Gaussian is encoded and frequency information far away
from the center of the Gaussian has a negligible effect. There-
fore, compared with Fourier transform which extracts the infor-
mation in the whole face region, Gabor wavelets only focus on
some local areas in the face and extract information of specific
scale and orientation within these local areas.

Gabor wavelets can take a variety of different forms with dif-
ferent scales and orientations. Fig. 4 shows the real part of the
40 Gabor wavelets with 5 scales and 8 orientations. Evidently,
Gabor wavelets with a certain orientation respond to edges and
bars along this direction, and Gabor wavelets with a certain scale
extract the information in the corresponding frequency band.
Thus, Gabor wavelets can extract more details in some impor-
tant facial areas such as eyes, nose and mouth, which are very
useful for face representation.

Given the above-defined Gabor wavelets, Gabor features are
then extracted by convolving them with sub-windows sliding the
face image pixel by pixel. Thus, if all the Gabor features are con-
catenated to form a single feature vector (we call it holistic rep-
resentation, as in GFC [17]), the locality information (or neigh-
boring information) provided by the spatial locations of Gabor
features is not completely utilized. However, human faces con-
tain some components with fixed high-level semantics such as
eyes, nose and mouth. Consequently, the locality information
is very meaningful for face modeling. In this work, in order to
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Fig. 5. Procedure of LGFVs construction. In our method, GWT is first applied
to the whole face image, and then the resulting Gabor features are spatially
grouped to obtain multiple LGFVs.

reserve more locality information, Gabor features (only mag-
nitudes) are spatially grouped into a number of feature vectors
named local Gabor feature vector (LGFV), each of which corre-
sponds to a local patch of the face image. We call it patch-based
representation. LGFV is of relatively low dimensionality, which
can greatly facilitate the sequent process. In addition, the patch-
based representation is more robust to lighting variation than the
holistic representation. The reason is that the lighting variation
within each patch is much smaller than that within whole face
image, thus, can be better modeled by the following subspace
learning (e.g., FLD). This point is further validated by the ex-
periment in Section I'V.

Naturally, one problem further arises: how to spatially group
the Gabor features. Intuitively, these local patches should be lo-
cated according to the facial features such as eyes, nose, and
mouth. However, this requires accurate localization of these fa-
cial features, which is still very challenging. In our previous
work [28], the patches are artificially and empirically designed.
However, in this paper, we propose a patch selection method
to automatically determine the positions and sizes of the local
patches. Specifically, a feature selection method is adopted to
select a number of local patches with high discriminability from
a large number of possible local patches. Fig. 5 illustrates the
idea of LGFVs construction based on the preselected image
patches. In the following subsection, we will introduce the patch
selection process in detail.

D. Patch Selection via Greedy Search

In principle, in case of allowing overlapping, the local patch
can locate at any position in the image and be of any size. Thus,
we will have too many candidate patches to construct LGFVs.
Fortunately, their discriminating capacities are different and
they are correlative. Therefore, it is feasible to learn only part of
them with the largest discriminating capacities and at the same
time with as little correlation as possible. By considering the
candidate patches as “features”, the problem of patch selection
can be cast as feature subset selection.

In this paper, the wrapper methodology proposed by Kohavi
and John [29] is exploited to address the problem of feature
subset selection. In the wrapper methodology, the prediction
performances of feature subsets, usually computed on a val-
idation set, are adopted to evaluate the usefulness of them.
The measure of prediction performance depends on the task
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Patch Selection with Greedy Search

Input: Candidate Patch Set CPS={p\, p», ..., pc} where p; is the
candidate patch and C is the size of CPS, number of selected
patches N, Evaluation Function F .

Output: Selected Patch Set (SPS).
Initialize: set SPS =0 .

Repeat N times
1. For all p; e CPS , evaluate the performance of feature subset
SPSU {p;},i.e., F(SPSU {p:}).

2. Find the patch with the

p=argmax F(SPSU{pi}) .
pieCPS

largest performance increase:

3. Update SPS and CPS: SPS=SPS U {p}, CPS=CPS/{p}.

Fig. 6. Algorithm of patch selection with greedy search.

to be handled. For example, in pattern classification, the pre-
diction performance of certain feature subset can be set as the
classification accuracy of the classifier based on this feature
subset.

Generally, the only method for determining the optimal fea-
ture subset is the exhaustive search. However, due to its com-
bination nature, the search will quickly become computation-
ally intractable as the number of features increases. Considering
that, in this work, the efficient greedy search strategy is adopted
to select the desired feature subset. In the greedy search, fea-
tures are progressively (e.g., one by one) incorporated into a
larger and larger subset. For each step, the feature bringing the
largest increase of prediction performance is selected and added
to the current subset. The detailed process of patch selection by
greedy search is formulated in Fig. 6. In this process, the evalu-
ation function F is used to compute the performance of feature
subsets on a validation set. In fact, F' involves two steps: the first
is to learn a predictor for certain feature subset on a training set;
the second is to compute the performance of this predictor on
a validation set. Furthermore, for the purpose of consistency,
these two steps are designed to be the same as the training and
testing phase of the proposed face recognition method respec-
tively. More specifically, for certain patch subset, the local en-
semble classifier (see Section III) trained based on these patches
is considered as the predictor. As for the evaluation, the recogni-
tion rate or verification rate is used to measure the performance
of certain predictor.

Besides the above patch selection criteria, some other pos-
sibilities are also acceptable. For instance, Bicego et al. [30]
proposed to identify distinctive areas of each individual’s face
by its comparison to others in the population. This method is in
some sense similar to our patch selection, if the discriminability
is considered as the measure of saliency. However, there also ex-
ists significant difference of this method from ours. Specifically,
our method learns a set of patches with high discriminability in
the training phase. Then, in the testing phase, all the face images
are divided according to these learned patches. Nevertheless, the
saliency maps of different face images are not the same. In other
words, the saliency map of a certain face image is determined
in the testing phase (i.e., in an online manner), whereas the dis-
criminative image patches in our method are determined in the
training phase (i.e., in an offline manner).
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III. HIERARCHICAL ENSEMBLE CLASSIFIER: COMBINING
GLOBAL AND LOCAL FEATURES

After feature extraction, we obtain N + 1 feature vectors,
that is, one global Fourier feature vector (GFFV) G and N local
Gabor feature vectors (LGFVs) £; (z = 1,...,N). Then, N +
1 classifiers can be trained by applying FLD to each feature
vector. These classifiers are named as component classifiers, op-
posite to the forthcoming ensemble classifier, i.e., the combina-
tion of component classifiers. As explained above, these N + 1
feature vectors contain diverse discriminative information for
face recognition. Thus, component classifiers trained on these
feature vectors should have certain degree of error diversity. In
other words, these component classifiers might agree or disagree
with each other when making decision. Considering that the
ensemble classifier is generally superior to the single classifier
when the predictions of its component classifiers have enough
diversity [31], we combine the component classifiers trained on
all the feature vectors into a hierarchical ensemble classifier to
improve the recognition accuracy. In this process, the weighted
sum rule is adopted for classifier combination.

In the remaining part of this section, we will present the de-
tailed process of constructing the hierarchical ensemble classi-
fier and learning the weight of each component classifier.

A. Construction of Hierarchical Ensemble Classifier

As shown in Fig. 7, the proposed hierarchical ensemble
method consists of two layers of ensemble: the ensemble of
all the local component classifiers, and the ensemble of local
classifier and global classifier. In the first layer, local ensemble
classifier (LEC) Cp, is obtained by combining N local com-
ponent classifiers (LCC) Cp,, (¢ = 1,...,N), each trained on
an LGFV £; (: = 1,...,N), with N the number of selected
patches. It is formulated as follows:

N
Cp=>Y wr, -Cr, )

i=1
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where wry,, is the weight of the ith LCC, C,,. The method to
determine the weights is discussed in next sub-section. In the
second layer, the LCC Cp, obtained in the first layer is com-
bined with the global classifier (GC) Cg trained on the GFFV
G to form the hierarchical ensemble classifier (HEC) C'y, as for-
mulated in (5)

Cu =weCeq+ (1 —wg)Cr &)

where wg is the weight of GC Cg.

As mentioned previously, global and local features play dif-
ferent roles in face perception. While global features capture the
holistic characteristics of the face, therefore, better for coarse
representation; local features encode more details in local face
areas, therefore, better for finer representation. Considering that,
in our method, the input face image is normalized differently
for global and local feature extraction. As shown in Fig. 7, the
global Fourier features are extracted from the face image of
lower resolution, but covering both external and internal facial
features, especially the face contour. On the contrary, the local
Gabor features are extracted from the face image of higher res-
olution, which covers only the internal facial features, e.g., the
facial organs. The reason using this strategy lies in the sensi-
tivity of Gabor features to the possible “background” introduced
along with the contour, to which the Fourier features are very ro-
bust. The effect of different spatial resolutions of face image on
the performance of global and local classifiers is analyzed by
experiment in Section IV.

As for the component classifier, basically, we have several
choices. In this paper, we exploit FLD for its desirable character-
istics to well separate within-class and between-class variations
simultaneously, which has been demonstrated in some previous
works on face recognition [3], [17].

B. Weight Learning for Component Classifiers

In this sub-section, we formulate weight learning as a dis-
criminant analysis problem, in which the weighted sum can
be considered as linear projection from N-D to 1-D and the
projection coefficients can be treated as weights. The weight
learning method consists of three steps. Firstly, the face images
in training set are converted into image pairs, which can be di-
vided into two classes named intrapersonal pairs and interper-
sonal pairs. Secondly, for each image pair, a similarity vector
can be obtained. Each similarity in this vector is given by a cer-
tain LCC; therefore, the dimension of the similarity vector is V.
Each similarity vector can be considered as a sample in the space
of N dimensions. Thus, in the last step, two classes of the N-di-
mensional samples are fed into FLD to get an optimal linear
projection from N-D to 1-D. As mentioned above, each coeffi-
cient of this linear projection can be considered as the weight of
corresponding LCC. The aim of weighting LCCs is to make the
similarities of image pairs from two classes (intrapersonal and
interpersonal) more discriminable, which is consistent with the
aim of FLD. Thus, the projection coefficients computed by FLD
is also the optimal weights for discriminating the intrapersonal
pairs and the interpersonal pairs. This weight learning process
is illustrated in Fig. 8. The weights of GC and LEC can be sim-
ilarly learned from training set by this method.
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Fig. 8. Illustration of the weight learning process. Cr,; denotes the ith LCC;
w; denotes the weight of 7th LCC; and N denotes the number of LCCs.

TABLE I
S1ZES OF TEST SETS IN FRGC EXPERIMENT 1 AND 4. [C] AND [U] MEAN
CONTROLLED AND UNCONTROLLED ILLUMINATION CONDITION, RESPECTIVELY

Experiment Target Set Size Query Set Size
1 16028 [C] 16028 [C]
4 16028 [C] 8014 [U]

IV. EXPERIMENTS

In this section, the proposed method is tested on some virtual
face images and two large-scale face databases: FERET [32] and
FRGC version 2.0 [33]. Both databases are publicly released
along with standard evaluation protocols. For FERET database,
the proposed method is tested on four standard probe sets: fafb,
fafc, dupl, and dup2, which are matched against the gallery with
1196 subjects and one image per subject. The images in fafb
set are with expression variations, fafc set contains images with
lighting variations, and dupl and dup2 from different times.
The readers are referred to [32] for more details. For FRGC
database, Experiment.1 and 4 on still images are taken in our
testing. Configurations of the two experiments are summarized
in Table I. The performance is reported as verification rates (VR)
at 0.1% false acceptance rate (FAR). Following the protocol of
FRGC, for each experiment, three receiver operator character-
istic (ROC) curves are generated. Among them, ROC I is cor-
responding to the images collected within semesters, ROC II
within a year, and ROC III between semesters.

In what follows, we first design experiments to exam the con-
tribution of global and local features on both synthetic and real
data. Then, we give the performance of both the ensemble clas-
sifier and the component classifiers. We also compare the results
of our method with the baseline and the best known results on
the FERET and FRGC databases. It is worth pointing out that, to
emphasize more the recognition method itself, throughout our
experiments, no photometric normalization is performed on im-
ages in the FERET and FRGC databases.

A. Different Roles of Global and Local Features

In order to demonstrate the different roles of global and local
features, we generate 10 groups of virtual face images including
variations such as facial contour, hairstyle, facial organs and
lentigines. Fig. 9 shows one of groups of the virtual face images
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Ron' ginal Rconlour Rhairslyle Rorgan

Fig. 9. Example of synthetic face images and their reconstruction only from
low-frequency Fourier features. I iginal is the original face image. Icontours
Lhairstyte, and Lo, gan are generated by changing the facial contour, hairstyle and
facial organs (including lentigines), respectively. The images in bottom row are
reconstructed by the low-frequency Fourier features with 30% energy preserved.
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Fig. 10. Demonstration of different roles of global and local feature in face rep-
resentation. The vertical coordinate represents the Euclidean distance between
the original image and the virtually generated images.
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Fig. 11. Accuracy of classifiers based on global and local features extracted

from face images of different sizes.

(top row) and their reconstructions only from low-frequency
Fourier features (bottom row).

In this experiment, the virtual faces are generated to make the
differences of them (Icontours Ihairstyle and Iorgan) from the orig-
inal face (Ioriginal) be approximately equal in the sense of Eu-
clidean distance (about 1450-1500 as shown in Fig. 10). How-
ever, the differences among their reconstruction images vary
widely. Specifically, the Euclidean distance between Roriginal
and R;gan is much smaller than the distance between Roriginal
and Reontour and the distance between Roriginal and Ruairstyles
which is shown in Fig. 10. Note that, Fig. 10 presents the av-
erage results of ten different persons.
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From Fig. 10, it can be conclude that low-frequency Fourier
features are indeed robust to detailed local variations, and
mainly reserve large-scale variations such as facial contour and
hairstyle. In addition, compared with global Fourier features,
the distance of local Gabor features between Loriginal and Iorgan
is larger than the distance between Ioriginal and Icontour and the
distance between Ioriginal and Ihairstyle, Which demonstrates
that Gabor feature are more sensitive to the detailed local
variations.

Different roles of global and local features are further vali-
dated on FRGC database with different normalized image sizes.
As mentioned previously, global features contain mainly the
holistic characteristics of the whole face, whereas local features
encode more detailed variations within some local areas in the
face. Intuitively, facial details will lose at small size. On the con-
trary, the global characteristic of the face, such as the configu-
ration and the shape, can be reserved even at small size. Thus,
global features should be more robust to the variation of face
size, which is also supported by the experiment results on FRGC
Experiment 4 with five different normalized sizes: 128 x 160,
96 x 120, 64 x 80, 48 x 60 and 32 x 40, as shown in Fig. 11. It
can be seen from the figure that, with the decrease of the face
size, the accuracies of local classifier drop more quickly than
those of global classifier. This observation can further validate
the different roles of global and local features: global features
encode the holistic characteristics whereas local features cap-
ture the details.

B. Experiments About Global and Local Classifier

In this sub-section, we present the detailed experimental
setups and report the performances of both global and local
classifiers on FERET and FRGC databases. As mentioned in
Section III, the input face images are geometrically normalized
differently for global and local feature extraction. For both
databases, face regions are extracted partially automatically
according to the eye centers directly from the FERET and
FRGC database. Specifically, for global feature extraction, the
scale of normalization is controlled by locating the two eye
centers to the coordinates of (19, 31) and (46, 31) respectively,
and crop the image size as 64 x 80. For local feature extraction,
the normalized face image is 128 x 160 pixels while the two
eye centers are fixed at (29, 61) and (100, 61) respectively. A
pair of example normalized faces can be founded in Fig. 7.

1) Experiments About Global Classifier: Given image
size 64 x 80 as mentioned above, in order to apply the fast
Fourier transform (FFT) algorithm, image must be extended
to 128 x 128 pixels. Thus, the full bandwidth available is 64
due to the symmetry of the Fourier coefficients. As explained
above, we need only the low-frequency Fourier coefficients. In
the experiments, we select the first 16 x 16 FFT coefficients,
which cover about 50% of all the energy, to form the global
fourier feature vector (GFFV). Thus, referring to Fig. 3, the
dimension of the GFFV is 16 x 16 x 4 = 1,024. This feature
vector is then processed by FLD to obtain the global classifier,
whose accuracies on FRGC Experiment 1 and 4 are shown in
Fig. 15.

2) Experiments About Local Classifiers: This sub-section
first presents the experimental setup and results of the patch
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Fig. 12. Top five most discriminating patches learned from FERET (a) and
FRGC (b) training set.
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Fig. 13. Performances of LEC with different number of patches (LCCs) on
FERET and FRGC databases.

selection, followed by the description on the experimental de-
sign and evaluation results of the local component classifiers and
their ensemble.

Patch Selection and the Design of LCC: In the process
of patch selection, the size of candidate patches is set to range
from [16, 64] X [16, 64]. To apply the algorithm in Fig. 6, the
training sets of the FERET database are randomly divided into
two subsets without any overlapping: one for predictor learning
and the other for performance evaluation. Similar process is
performed on FRGC database. Fig. 12 shows respectively the
top five most discriminating patches learned with greedy search
from the FERET and FRGC training set.

After patch selection, local Gabor feature vector (LGFV) is
extracted from each selected patch by concatenating the magni-
tudes of all the Gabor convolution results in this patch. In this
work, 40 Gabor wavelets (five scales and eight orientations) are
used with the same parameters in [16]; therefore, the dimension
of each LGFVis D = w x h x 5 x 8, where w and h are re-
spectively the width and height of the patch. Since the range of
w and h is between 16 and 64, the maximum dimensionality
D is 163,840 (64 x 64 x 5 x 8), which is too high dimensional
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Fig. 14. Performance comparison of LCC and LEC on Experiment 1 (a) and
Experiment 4 (b) of FRGC (ROCIII).
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Fig. 15. Three ROC performances of GC, LEC and HEC on FRGC Experiment
1 (a) and Experiment 4 (b).

for FLD. To solve this problem, the Gabor features are uni-
formly down-sampled by averaging them in an 8 X 8 grid. The
down-sampled features of each LGFV are then further used to
train an LCC. Finally, N LCCs are combined to form the LEC.

Since each LCC encodes only part of the discriminating in-
formation of a given face, it is expected that the recognition ac-
curacy of LEC can be improved with the increase of the number
of LCCs. An experiment is conduced to verify this expecta-
tion. Fig. 13 shows how the performance of LEC changes with
the number of patches. The figure indicates that, by and large,
the performance of LEC increases with more LCCs combined.
However, the performance improvement becomes trivial when
the number of LCCs exceeds 30. As can be imagined, 30 patches
should have covered most of the face region; therefore, adding
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TABLE II
INFLUENCE OF EXCHANGING TRAINING SET FOR PATCH SELECTION AND
WEIGHT LEARNING ON THE PERFORMANCE OF LEC (WITH 30 PATCHES)

Testing set FRGC FERET
(Verification Rate) | (Recognition Rate)
Training set Exp.1 Exp.4 fatb dupl
FRGC training set 97.3% 82.8% 99.7% 90.7%
FERET trainingset | 97.1% 79.7% 99.9% 91.4%

more patches might introduce merely more redundancy rather
than more complementary discriminating information. Thus, in
the following experiments, only the top 30 LCCs are combined
to construct the LEC. By using the patch selection strategy, the
performance of LEC increases 3 percents on FRGC Experiment
4 compared with that of our previous work [28], in which the
face images are artificially partitioned into 20 nonoverlapping
patches.

To show how the training set might influence the patch selec-
tion results, we exchange the training sets of FERET and FRGC,
and show the experimental results in Table II, from which we
can conclude that the accuracies of LEC are basically not sensi-
tive to the training set. The possible reason is that human faces
are all very similar in overall configuration; therefore, the results
of both weights learning and patch search from a relatively large
dataset should have good generalizability.

Comparison of LCCs With Their Ensemble: Another
interesting point is how the ensemble of LCCs enhances the
performance compared with individual LCC. Intuitively, since
each LCC exploits only part of the discriminating information
within certain facial regions, their performances are commonly
not good enough. This is validated by our experimental results
shown in Fig. 14, which shows the verification rates of the 30
LCCs, as well as that of the LEC. As shown in Fig. 14, the
performance of LEC is much better than that of the individual
LCC (especially on Experiment 4). This large gain can be
mainly attributed to the complementarity among the LCCs
since they capture the discriminating characteristics within
different regions. In addition, as has been proved in machine
learning field, by averaging outputs of multiple estimators,
ensemble system can achieve a better estimation with less
generalization error [34]. Therefore, as an ensemble classifier,
LEC is expected to have desirable low generalization error.

Comparison of LEC With Gabor-Fisher Classifier: To fur-
ther verify the merits of LEC, we also compare its performance
with the Gabor—Fisher classifier (GFC) [17], in which FLD is
applied to the Gabor features within the whole face image to ob-
tain only one classifier. Since the Gabor features are too high-di-
mensional, they are down-sampled before applying FLD. As
shown in Table III, the proposed LEC outperforms GFC sig-
nificantly in both experiments. Especially, on Experiment 4, the
verification rate of LEC is 23 percents higher than that of GFC.
Considering that the query images in Experiment 4 were cap-
tured under uncontrolled situation and with severe illumination
changes, we can conclude that the proposed LEC seems also
more robust to illumination variation.

C. Experiments About Hierarchical Ensemble Classifier

In order to make full use of the discriminative information in
both the global and the local features and further improve the
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TABLE III
PERFORMANCE COMPARISON OF GFC AND THE PROPOSED
LEC oN FRGC EXPERIMENT 1 AND 4 (ROC III)

Testing set | Verification Rate at 0.1% FAR
Method Exp. 1 Exp. 4
GFC 92.5% 59.8%
Proposed LEC 97.3% 82.8%
TABLE IV

PERFORMANCE COMPARISONS ON FOUR STANDARD PROBE SETS OF FERET.
THE RESULTS OF OTHER METHODS ARE DIRECTLY
CITED FROM THE CORRESPONDING PAPERS

Testing set Rank-1 Recognition Rate

Method fafb fafc dupl dup2

FERET 96 [35] 96% 82% 59% 52%

Method in [10] 97% 79% 66% 64%

Method in [19] 98% 97% 74% 71%

our GC 96% 77% 53% 23%

M LEC 99% 99% 91% 86%
ethods

HEC 99% 99% 92% 88%

TABLE V

PERFORMANCES COMPARISON ON EXPERIMENT 1 AND 4 OF THE FRGC
DATABASE (ROC III). THE RESULTS IN [6], [36], [37] ARE
CITED DIRECTLY FROM THE CORRESPONDING PAPERS

Testing set | Verification Rate at 0.1% FAR
Method Exp. 1 Exp. 4
FRGC Baseline [33] 66% 12%
Method in [6] 91% 74%
Method in [36] 92% 76%
Method in [37] N/A 81%
GC 81% 51%
Our Methods LEC 97% 83%
HEC 98% 89%

system performance, GC and LEC are combined to form the
hierarchical ensemble classifier (HEC), as formulated in (5). In
the combination, the weight for GC W can actually balance
the importance of global and local information. This is evidently
necessary because the performances of GC and LEC are quite
different, as can be seen from Fig. 15. Since the accuracy of GC
is significantly lower than that of LEC, it is desirable to assign
a smaller weight for GC. We use the similar weight learning
method proposed in Section III to determine W, the weight of
GC. By learning on the training set, we get W equal to 0.13 for
FERET, while W equals to 0.16 for FRGC. With the learned
weight, experiments are conducted on both FERET and FRGC
databases. The results are given in Tables IV and V.

In Table IV, besides the results of the proposed GC, LEC, and
HEC, we also give the best results in FERET 96 evaluation [35],
the performances of LBP-based method [10] and LGBP-based
method [19]. As can be seen from the table, the performances
of both LEC and HEC are better than those of the comparison
methods. Especially on dupl and dup?2 probe sets, the improve-
ment is very significant, which further verifies the robustness
of our method to variations due to illumination, expression and
aging, since the images in these two sets cover these variations.
From the results, we also observe performance gain by com-
bining global and local classifiers.
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Fig. 16. ROC performances comparison between our method and Liu’s method
in [36] on Exp. 4. The results of Liu’s method are taken directly from his paper.

Similarly, in Table V, we also compare our method with the
FRGC baseline algorithm (basically PCA) and the best known
results reported in [6], [36], and [37] on both Experiment 1 and
4.1In [6], Hwang et al. proposed a Fourier-based face recognition
system, in which Fourier features with different frequency bands
and face models are projected into some linear discriminant sub-
spaces and merged together. In [36], the author presented a pat-
tern recognition framework which integrates Gabor image rep-
resentation and multiclass kernel Fisher analysis (KFA) with
fractional power polynomial models. In [37], the authors pro-
posed to combine complementary features from three different
representation levels on color images in YIQ color space. In
each level, features are extracted by using discrete cosine trans-
form (DCT) and enhanced Fisher model (EFM).

From Table V, one can see that the proposed methods
(both LEC and HEC) significantly outperform the comparison
methods on both Experiment 1 and 4 (ROC III). Especially
on Experiment 4, the proposed method (HEC) achieves 89%
verification rate at FAR = 0.1%, which is 8 percents higher
than the best known results. As the query images in Experiment
4 cover illumination, blur and partial occlusion, we can also
conclude that the proposed method is more robust to these
extrinsic variations.

Another observation from Table V is that the combination of
global and local features leads to significant performance gain.
On Experiment 4, by combining GC with verification rate 51%
and LEC with verification rate 83%, the verification rate of HEC
increases to 89%. This large gain further validates their comple-
mentarity and the necessity to combine them.

Besides the results in Table V, we also report in Fig. 15 more
results of the ROC I, II, and III on Experiment 1 and 4. Fig. 16
gives the complete comparison on the three ROC curves of our
method (HEC) with those in [36]. From both figures, one can
reach consistent observation as can be drawn from Table V.

V. CONCLUSION AND DISCUSSION

Inspired by the fact that we human beings recognize faces
relying on both global and local facial features, a hierarchical
ensemble method is proposed to simulate the observations in
bionic sense by exploiting both global and local features. In
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the proposed method, the global features are extracted from the
whole face images by using Fourier transform, and the local fea-
tures are emphasized on some spatially divided face patches by
using Gabor wavelets. The position and size of the patches are
learned from a training data via greedy search. The hierarchical
ensemble classifier is formed by weighted sum of the compo-
nent classifiers, which are all FLDs on either global or local
features. Experimental results on both FERET and FRGC ver-
sion 2.0 databases show that the ensemble classifier outperforms
other competitors. Compared with the baseline and best known
results, the proposed method demonstrates significant improve-
ment especially on FRGC Experiment 4.

To summarize the proposed method, we would like to at-
tribute its favorable performance to the following aspects, which
should be valuable to researchers in this area.

First, the combination of global and local features plays a
key role. Experimental results show that they are indeed com-
plementary for distinguishing faces. Although the local features
seem significantly better than global features for face recogni-
tion, the accuracy can still be improved by carefully combining
them.

Second, ensemble is also a key contributor to improve gen-
eralizability. In machine learning area, ensemble learning has
been widely recognized as a successful method to avoid overfit-
ting. In the proposed method, ensemble is applied in two stages:
the combination of the local classifiers and the combination
of the global and local classifiers. Experimental results show
that both ensemble procedures improve impressively the per-
formance compared with the component classifiers.

Finally, we would especially remark the “Gabor + FLD”
method for face recognition. To our knowledge, Gabor wavelet
and FLD have been recognized as two valuable pearls for face
recognition. In previous work combining them together, many
possibly discriminating Gabor features had to be down-sam-
pled heavily due to the small sample size problem of FLD. In
this paper, with the “divide and conquer” strategy, the Gabor
features can be much less down-sampled when applying FLD
to the patches. This should also be one of the sources of the
performance gain.

As to the future work, though the global features are not as
effective as the local ones, we still believe that the global fea-
tures should play more important role in human perception con-
sistent recognition. Therefore, it is one of our future efforts to
study better methods for global feature extraction. In addition,
patch-based method provides a nature way to deal with occlu-
sion, and we will adopt the idea of switching off some occluded
patches, for instance as presented in one of our previous works
[38], to extend this work to solve partially occluded face recog-
nition problem.
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