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Abstract

We briefly discuss new models of an ‘affine’ theory of gravity in multidimensional
space-times with symmetric connections. We use and generalize Einstein’s proposal
to specify the space-time geometry by use of the Hamilton principle to determine the
connection coefficients from a geometric Lagrangian that is an arbitrary function of
the generalized Ricci curvature tensor and of other fundamental tensors. Such a theory
supplements the standard Einstein gravity with dark energy (the cosmological constant,
in the first approximation), a neutral massive (or tachyonic) vector field (vecton), and
massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate
dark matter and/or inflation. The concrete choice of the geometric Lagrangian deter-
mines further details of the theory. The most natural geometric models look similar to
recently proposed brane models of cosmology usually derived from string theory.

The history of science teaches us not to completely forget beautiful and logically consis-
tent papers of the past that were not understood in time. Even though not recognized by
the contemporaries (and, often, by the authors) some of them happen to become of interest
many years after their publishing. One can recall sufficiently many examples of such work
and here we discuss a misunderstood and forgotten model based on work of three eminent
scientists (Weyl, Eddington and Einstein) that was reinterpreted and generalized in [1]-[3].

By the end of 1922, Einstein deeply studied and seriously reconsidered attempts of Weyl
and Eddington (see [4] - [6]) to construct an affine modification1 of his general relativity. In
1923 he published three beautiful and concise papers [7] later summarized in [8] and soon
forgotten (but see brief discussions in [9], [10]). The most clear exposition of Einstein’s
approach is given in [8] while the most beautiful model was proposed in the first paper of
the series [7]. Here we only briefly summarize general principles, which can more or less
naturally restrict possible choice of the physical models. Then a simple model satisfying
these principles and generalizing Einstein’s first paper, which we call the Einstein - Edding-
ton model, will be introduced and compared to some recently discussed cosmologies based
on string theory.

The most important properties of the affine theory are the following. 1. It predicts the
existence of one or more vector fields with real or imaginary mass. 2. Its D-dimensional

∗Alexandre.Filippov@jinr.ru
1In 1918, Weyl introduced a special symmetric non-Riemannian connection depending on a metric tensor

and on a vector field (‘Weyl’s connection’), which he attempted to identify with the electromagnetic potential.
His theory was severely criticized and is mostly remembered because in it he first introduced a fairly general
concept of the gauge symmetry.
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generalization predicts (after the simplest dimensional reduction) (D− 4) scalar fields with
the same mass. 3. Both the vector and scalar fields couple to gravity only (being the part of
the generalized gravitation). 4. The most natural effective (‘physical’) Lagrangian contains
Eddington - Einstein terms (nowadays often called Dirac - Born - Infeld terms).

Einstein’s key idea was to derive the concrete form of the affine connection by applying
the Hamilton principle to a generic Lagrangian depending on the generalized Ricci curva-
ture. This assumption completely fixes a geometry, which does not coincide with Weyl’s
geometry, but belongs to the same simple class of connections introduced and discussed in
[1] - [3]. Einstein’s unusual result was difficult to comprehend in the first half of the last
century and it remains somewhat puzzling even these days. From the modern mathematics
viewpoint, its origin could be ascribed to a sort of a mismatch between the affine connec-
tion geometry and the Lagrangian ‘geometry’. At the moment, it is difficult to find a more
detailed explanation. Possibly, this is an interesting mathematical problem.

In Refs.[1] - [3] we follow Einstein’s approach and first construct a geometric Lagrangian

density having the dimension L−D (in units c = 1). Then we show that, without a metric,
one can use scalar densities of weight two constructed of pure geometric fields (see [1] - [3]),
the square roots of which give the desirable scalar densities of weight one. The effective
physical Lagrangians are derived from the geometric ones. A more detailed presentation of
the main steps briefly discussed here can be found in [1] - [3].

Here we first outline basic geometrical facts and then concentrate on a physical model
that looks most interesting for applications to cosmology.

A general exposition of the theory of non-Riemannian spaces equipped with a symmetric

connection can be found in [11], [9], and in our previous papers. In general, the connection
coefficients can be expressed in terms of a Riemannian connection Γi

jk and of an arbitrary

third rank tensor aijk that is symmetric in the lower indices

γijk = Γi
jk[g] + aijk . (1)

Here gij is and arbitrary symmetric tensor and Γi
jk[g] is its Christoffel symbol. More pre-

cisely, for any symmetric connection γijk, there exists a symmetric tensor gij and a tensor

aijk = aikj such that (1) is satisfied.

The curvature tensor rijkl can be defined in terms of γijk by the standard general expres-
sion not using any metric,

rijkl = −γijk,l + γimkγ
m
jl + γijl,k − γimlγ

m
jk . (2)

Then, the Ricci-like (but non-symmetric) curvature tensor can be defined by contracting
the indices i, l:

rjk ≡ rijki = −γijk,i + γimkγ
i
ji + γiji,k − γimiγ

m
jk (3)

(we again stress that γijk = γikj but rjk 6= rkj). Using only these tensors and the com-
pletely antisymmetric tensor density of the rank D, we can construct a quite rich geometric
structure.

The antisymmetric part of the Ricci curvature rij can be expressed in terms of the
vector field γi ≡ γmim or in terms of ai ≡ amim , which differ by the gradient term ∂i ln

√

|g|
(g ≡ det(gij)):

aij ≡
1

2
(rij − rj i) ≡ −1

2
(ai,j − aj,i) ≡ −1

2
(γi,j − γj,i) . (4)
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We call this field vecton and will see that it can be massive or tachyonic depending on a
choice of the connection. This definition of the vecton is independent of the division of the
connection (1) into the metric and non-metric parts. By the way, rmmij = 2aij .

Introducing the covariant derivative ∇γ
i (with respect to the connection γ) we can write

the symmetric part of the curvature as

sij ≡
1

2
(rij + rj i) = −∇γ

mγ
m
ij +

1

2
(∇γ

i γj +∇γ
j γi)− γmniγ

n
mj + γnijγn . (5)

Using the ‘metric’ covariant derivative ∇g
i ≡ ∇i we can rewrite sij in the form

sij = Rij[g] −∇ma
m
ij +

1

2
(∇i aj +∇j ai) + amnia

n
mj − amij am , (6)

where Rij [g] is the standard Ricci tensor of a Riemannian space with the metric gij .
Now, suppose that cij ≡ √−g cij is an arbitrary tensor density. Then, its covariant

derivative with respect to connection (1) is defined by

∇γ
i c

kl = ∂i c
kl + γkim cml + γlim ckm − γmim ckl . (7)

For any antisymmetric density, cij ≡ fij = −fji, it follows that

∇γ
i f

ik = ∇g
i f

ik = ∂if
ik . (8)

The symmetric tensor density gij ≡ √−g gij obviously satisfies the equations

∇γ
i g

ik =
√−g akim gim , ∇g

i g
ik = 0. (9)

Eqs.(5) - (9) will be used in what follows.
For a general symmetric connection one can introduce the concept of the geodesic curve

(path), the tangent vector to which is parallel to itself at every point of the curve. The
equations for the geodesic curves of any symmetric connection γijk can be written as

ẍ i + γijk ẋ
j ẋk = 0 , (10)

where the dot denotes differentiating with respect to the so called ‘affine’ parameter τ of
the curve xi(τ). Using the affine parameter we can compare the distances between points
on the same curve.

For a particular geodesics, the affine parameter is unique up to an affine transformation
τ 7→ τ ′ = aτ + b. Each connection define the unique set of paths, but all symmetric
connections (with an arbitrary vector âk)

γ̂ijk = γijk + δij âk + δik âj , (11)

define the same paths. The Weyl (conformal) tensor W i
jkl of connection (11) is independent

of âk while the Ricci tensor and its symmetric and antisymmetric parts are âi-dependent
(see [11] for more details).

Therefore, an interesting class of connections is

γ̂ijk = Γi
jk[g] + δij âk + δik âj , (12)

where Γi
jk[g] is a Riemannian connection (the Christoffel symbol of a symmetric tensor gij).

The paths of the connection γ̂ijk coincide with the geodesics of Γi
jk[g], but the Ricci tensor

3



of γ̂ is symmetric if and only if âi = ∂i â with some scalar â. We see that connection
(12) is maximally close to the Riemannian connection Γi

jk[g] and may be called a geodesi-

cally Riemannian (‘g-Riemannian’) connection. Weyl and Einstein studied more general
connections that belong to the following class introduced in [1], [2]:

γijk = Γi
jk[g] + α(δij âk + δik âj)− (α− 2β)gjk â

i , (13)

where âi = gimâm. The Weyl connection corresponds to β = 0 and the g-Riemannian
connection, to α = 2β. Einstein derived the connection for the space-time dimension D = 4,
his result is α = −β = 1

6 (it was generalized to any dimension in [3]).
Using (6) it is easy to calculate the physically important expression for the symmetric

part of the Ricci curvature. The terms linear in A are equal to

(α+ β)(∇iâj +∇j âi) + (α− 2β) gij∇mâ
m , (14)

and the quadratic terms are

âiâj [(α− 2β)2 − 3α2] + 2 gij â
2(α− 2β)(α + β) . (15)

As we shall soon see the presence of the âiâk term in the expression for sij signals that the
vector field ai has in general a nonzero mass and that the sign of the first term in (15) can
be positive or negative (the second term in (15) and the linear terms in (6) in general do not
vanish). In particular, for the Weyl, Einstein and g-Riemannian connections the quadratic
terms are, respectively:

W: − 1

2
[âiâk − 2gikâ

2] , E:
1

6
âiâk , g-R: − 3

4
âiâk . (16)

Before we leave pure mathematics and turn to more physical problems, we should men-
tion one of the characteristic properties of symmetric connections. For applications of ge-
ometry to gravity, it is very important that at every point of the affine-connected space-time
manifold there must exist a geodesic coordinate system, such that the connection coefficients
are zero at this point. Using the above formulas it is easy to prove that such a coordinate
system exists if and only if the connection is symmetric. For symmetric connections, the
Fermi theorem about the existence of geodesic coordinates along the curves also holds (for
the precise definitions and proofs see [11]).

Let us turn to dynamics. Weyl’s approach to constructing a physical theory based
on the affine geometry is direct (if we discard his ideas on ‘linear metric’ and on lengths
calibrating): he first chooses a particular geometry (13) with β = 0 and then constructs
tensor equations that should generalize the Einstein equations. He tries to identify the
antisymmetric part of the curvature with the electromagnetic field tensor but the âiâk
terms spoil this interpretation. He eventually guessed a Lagrangian which is similar to
the Einstein theory coupled to a vector field with the mass term that cannot be removed
and with the cosmological constant that he introduces ‘by hand’. Eddington tried to find
a generalization of Einstein’s theory by considering the most general nonsymmetric affine
connection. In a discussion of possible scalar densities he suggests the simplest one (we call
it Eddington’s scalar density),

L ≡
√

− det(rij) ≡
√
−r , (17)
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This resembles the fundamental scalar density of the Riemannian geometry,
√

−det(gij) ≡√−g, and Eddington tried to directly identify sij with the metric. If we in addition identify
aij with the electromagnetic field we get a Born-Infeld Lagrangian. However, Eddington
did not succeed in constructing consistent equations.

A consistent Lagrangian formulation of the generalized theory was found by Einstein.
His approach is conceptually different both from Weyl’s and Eddington’s ones and consists
of two stages. In the first stage, he assumed that the general symmetric connection should
be restricted by the Hamilton principle for a general Lagrangian density depending either
on rij (see the second paper2.) or on sij and aij separately (in the third paper). He
gave no motivation for this assumption, but it is easy to see that the resulting theory in
the limit aij = 0 is consistent with the standard general relativity supplemented with a
cosmological term. In this stage, Einstein succeeded in deriving the remarkable expression
for the connection (see (13) with α = −β = 1

6) and the general expression for sij depending
on a massive (tachyonic) vector field and the metric tensor density gij .

In the next stage, a concrete Lagrangian density L(sij , aij) should be chosen. Einstein
did not formulate any principle for selecting a Lagrangian, and both from geometric and
physical standpoint his concrete choice seems sufficiently arbitrary, especially in the third
paper where he essentially reproduced one of the Weyl results. We believe that his best
choice was made in the first two papers and, indeed, very similar effective Lagrangians are
considered in modern applications of the superstring theory to cosmology. We may try to
formulate some properties of possible geometric Lagrangian densities L that are consistent
with the Eddington-Einstein Lagrangian but allow for a more general class of them (with
different mass terms, different dependence on sij , aij , ai, in different space-time dimensions).

Naturally, the Lagrangian must depend on tensor variables having a direct geometric

meaning. It is desirable that in the next stage they will acquire a natural physical interpre-

tation. As soon as we do not wish to fix the division of the connection into the metric and
non-metric parts by Eq.(1), we can take the vector γi (not ai!), second-rank tensors, sij,
aij , γij ≡ γiγj (if we used representation (1) for γkij we could add to this list γ̄ij ≡ γka

k
ij,

but this tensor implicitly depends on the metric and we must not use it at the first stage).
We can construct higher-rank tensors, but the tensors of the second rank (especially, the
first three) look more fundamental from the physics point of view.

Consider the second-rank tensors as building blocks of the ‘geometric’ Lagrangian. They
all have the dimension L−2 (in the units c = 1) and we can use as Lagrangian densities
some homogeneous functions of the degree D/2 and dimension L−D that are indepen-
dent on any dimensional constants. After integrating over D-dimensional volume element
dx0

∧

...
∧

dxD−1 we then get a dimensionless quantity playing a role of a geometric action.
The simplest Lagrangian density then depends on three second-rank tensors,

L = L(sij, aij , γij) , (18)

and a density having the correct dimension L−D can easily be written:

Lg =
√

− det(sij + νaij + ν1γij) . (19)

Here we take the minus sign because det(sij) < 0 (due to the local Lorentz invariance) and
we naturally assume that the same is true for det(sij+νaij+ν1γij) (to reproduce Einstein’s

2 In the first paper Einstein uses as the Lagrangian the Eddington density but later he realized that in
the first stage it is sufficient to suppose that the Lagrangian is an arbitrary scalar density depending on rij
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general relativity in the limit ν, ν1 → 0). The ν-parameters are dimensionless, we mainly
introduce them to disentangle the scale of the mass parameter of the vector field from the
cosmological constant. If we take the original Eddington - Einstein Lagrangian (17), the
mass squared will be of the order of the cosmological constant Λ (see [2]). Lagrangian
(19) with ν1 = 0 was proposed and studied in some detail in [2]. The general Lagrangian
(19) was first considered in Ref.[3], where we also discussed a more general construction
that allows to write other Lagrangians having the desired properties. Unfortunately, these
generalized Lagrangians are more complicated both technically and conceptually, and we
do not discuss them here.

We emphasize that the Lagrangians (17) and (19) are written in the form independent
of D, although the analytic expressions for the dependence of the determinants on sij and
aij essentially depend on D. Accordingly, the physical equations depend on the space-time
dimension as we will shortly demonstrate.

The starting point for Einstein (in his first paper of the series [7]) was the action prin-
ciple with Lagrangian density (17) depending on 40 connection functions γikl. Varying the
action with respect to these functions, he derived 40 equations that allowed him to find the
expression for γikl given by (13) with α = −β = 1

6 (in the four-dimensional space-time).
The main steps of his proof were reproduced in [2]. Here we somewhat generalize the

derivation to an arbitrary dimension D and assume that the geometric Lagrangian depends
also on γi ≡ γmim. We define the new tensor densities3.

∂L
∂sij

≡ gij ,
∂L
∂aij

≡ fij ,
∂L
∂γi

≡ bi , (20)

and introduce a conjugate Lagrangian density L∗ = L∗(gij , fij ,bi) by a Legendre transfor-
mation,

sij =
∂L∗

∂gij
, aij =

∂L∗

∂fij
, γi =

∂L∗

∂bi . (21)

By varying L in γikl and using the above definitions, we can then show that the conditions
δL/δγikl = 0 are equivalent to the following 40 equations

2∇γ
i g

kl = δli [∇γ
m (gkm + fkm)− bk] + δki [∇γ

m (glm + flm)− bl] , (22)

where∇γ
i is the covariant derivative with respect to the affine connection γijk. Remembering

(8) we define the vector density âk by

∂i f
ki − bk ≡ âk, (23)

and then easily find that

∇γ
i g

ik = −D + 1

D − 1
âk , (24)

Now it is easy to find the equations from which the connection coefficients can be derived
(as in the Riemannian case):

∇γ
i g

kl = − 1

D − 1
(δki â

l + δliâ
k). (25)

3 Following Eddington’s notation, we let boldface Latin letters denote tensor densities. The derivatives
in (20) and (21) must be properly symmetrized, which is easy in concrete calculations. We tacitly assume
that geometry has only a single dimensional constant, e.g., the cosmological constant Λ with the dimension
L−2. To restore the correct dimension in (20) and (21), we must then multiply the densities by Λ(D−2)/2.
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Defining the Riemann metric tensor gij by the equations

gkl
√−g = gkl , gkl g

lm = δmk , (26)

we can then define the corresponding Riemannian covariant derivative ∇i, for which

∇i gkl = 0, ∇i g
kl = 0. (27)

Taking the above into account, we can now use (25) to derive the expression for γijk in

terms of the metric tensor gij and of the vector âk ≡ âk/
√−g,

γijk = Γi
jk[g] + αD [ δij âk + δik âj − (D − 1) gjk â

i] , (28)

which corresponds to α = αD and β = βD in (13), with

αD ≡ [(D − 1)(D − 2)]−1 , βD ≡ −[2(D − 1)]−1 . (29)

For D = 4, this coincides with Einstein’s result for the connection. If we add γij as an
independent variable, the connection remains the same. Note also that the added variables
remain non-dynamical and attempting to make them dynamical in the second stage ‘by
hand’ destroys the beauty of the original Einstein construction.

We cannot go deeper into discussions of further relations between geometry of affine
connections and dynamical principles. But the above results show that these relations are
rather complex and we do not yet understand their nature. Indeed, we tried to add new
natural variables into the geometric Lagrangian, but the class of connections obtained as an
output of Einstein’s approach did not change at all. It can be argued that there are many
other, not yet explored options, but in reality, we do not even know how to obtain Weyl’s
or g-Riemannian connections following Einstein’s approach.

One of the possibilities could be to abandon some of Einstein’s assumptions. The most
serious drawback (or virtue, depending on a viewpoint) of his approach is that two pairs of
the basic variables of the theory, (sij , g

ij) and (aij , f
ij), having very different geometrical

and physical meaning, are treated symmetrically. Definition (20) looks quite natural for the
metric density because Einstein’s Lagrangian for the pure gravity theory is simply gijRij.
But Einstein’s definition of fij tacitly (and, as we see, wisely!) assumes that the geometric
Lagrangian is independent of γi or γij. This may look rather paradoxical, but, as we have
seen, the mass term is dictated by the geometry because its germ, the term ∼ aiaj , is
already present in the expression for sij.

4 Its interpretation as the physical mass comes
when we write an effective physical Lagrangian. Then the geometric Lagrangian generates
only the kinetic terms and is in fact the Lagrangian of a brane.

There are many other questions, which should be carefully discussed, but we postpone
the discussion to future publications. Here, we present a simple example demonstrating
how to eventually pass from geometry to physics and to demonstrate a relation of the
Einstein approach to the present-day concerns. Our discussion suggests that the geometric
Lagrangian (19) with ν1 = 0 is better motivated by geometry and physics than other ones.
This Lagrangian is most natural and gives the effective physical Lagrangian belonging to a
class widely discussed in relation to modern problems of cosmology. We only briefly describe
this model which is, possibly, the simplest generalization of Einstein’s general relativity.

4 Therefore, it would be more natural to identify the field tensor of the massive vector field directly with
aij , up to a necessary dimensional multiplier.
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Pure geometry gives us equations (4) and (6). With aijk given by (13), their right-hand
sides are given by (ai,j − aj,i)/2, where ai = (Dα + 2β) âi, and by the sum of Rij with
expressions (14), (15). To derive sij and aij in terms of the ‘physical’ variables gij and
fij we must choose a Lagrangian (e.g., (19)) and then solve equations (20) with respect
to the geometric variables sij and aij . Alternatively, if we know the conjugate Lagrangian
L∗(gij, fij), we can directly calculate them using (21).

In [2], we reproduced Einstein’s result of Refs.[7], [5] (in which it was not written ex-
plicitly but could easily be derived):

L ≡
√

− det(rij) = 4
√

− det(gij + fij) ≡ 4
√

− det(gij + fij) = L∗ . (30)

We emphasize that these equations are valid only in the four-dimensional theory. Note that
the equality L∗ = L simply follows from the fact that L is a homogeneous function of the
degree two but, in general, the concrete expression for L∗ must be obtained by a direct
calculation. Now we can show that the relation like (30) holds also for Lagrangian (19)
with ν1 = 0 and ν 6= 0, which we rewrite as

Lν ≡
√

− det(sij + νaij) . (31)

This can be done by a direct computation but it is simpler to first dimensionally reduce Lν .
Consider the D = 4 case and define a ‘spherical reduction’ not using any metric. Suppose

that sij and aij are functions of (x0, x1) and that a2 = a3 = 0 (therefore, only a01 =
−a10 6= 0). We then assume that the symmetric matrix has the following nonzero elements:
sij = δij si , s01 = s10 (our result will not change if also s23 6= 0). By explicitly deriving
sij + νaij, we can find gij and fij (using (20)) and hence express det(gij + λfij) in terms of
sij and aij :

16 det(gij + λfij) = det[sij + (ν2λ) aij ]. (32)

It follows that choosing λ = ν−1 we have5

Lν =
√

− det(sij + λ−1 aij) = 4
√

− det(gij + λfij) = 4
√

− det(gij + λfij) = L∗

λ , (33)

where the sign and normalization are arbitrary chosen in relation to the cosmological inter-
pretation. This result is written in the form not implying the spherical reduction, and we
suppose it is true in a general four-dimensional theory. In arbitrary dimension (D 6= 2) it
must be somewhat modified as was first shown in [2].

To similarly treat the higher dimensional case we first reduce the D-dimensional
Lagrangian to the dimension four. For simplicity, let us consider D = 5. Then the field
ak (k = 0, .., 4) depends only on xi (i = 0, .., 3), aij =

1
2(∂jai − ∂iaj), and a4i = 1/2 (∂i a4).

Therefore the terms containing a24i should be interpreted in four dimensions as kinetic
terms of the scalar field a4.

6 Applying spherical reduction to the resulting four-dimensional
Lagrangian, we can construct a two-dimensional model effectively describing spherically

5 We ignore the dimensional constants while working mainly with geometrical theory, where presumably
exists just one dimensional constant Λ (with c = 1). Then emergence of some dimensionless parameters may
signal that there exist other dimensional constants (e.g., different scales in symmetric and antisymmetric
sectors of geometry may be described by introducing our parameter ν). We eventually restore dimensions
in the effective physical Lagrangian.

6 It can be seen that this scalar field is massive or tachyonic. In the simplest reduction, its mass coincides
with that of the vecton.
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symmetric solutions of the four-dimensional gravity coupled to the vecton and to the scalar
fields. To get the corresponding Lagrangian we derive the determinant of the matrix

sij + νaij ≡ siδij + (δ0iδ1j + δ0jδ1i)(sij + νaij) + (δi4 + δj4)aij , (34)

where aij are defined in terms of ai , and all the functions in (34) depend on x0, x1 (thus
a24 = a34 = 0). The determinant is

det(sij + νaij) =
4
∏

i=0

si [1 + s̃201 − ν2(ã201 + ã204 − ã214)], (35)

where we define m̃ij ≡ mij |sisj|−1/2. The determinant obviously has zeroes and thus
its square root is always singular. Therefore, the corresponding two-dimensional dilaton
gravity describing spherically symmetric solutions is rather unusual and complex. By further
reductions to static or cosmological configurations we can construct corresponding one-
dimensional dynamical systems describing static states with horizons as well as cosmological
models. The cosmological models look realistic enough because they incorporate a natural
sources of the dark energy, inflation, and, possibly, some candidates for the dark matter
(for a more detailed discussion see [1], [2]).

Before presenting a simplest cosmological model, we write the general D-dimensional
theory. In addition to predicting scalar fields, the higher-dimensional Lagrangians differ
from the ones usually considered in modern brane cosmology. In fact, while the square-root
Lagrangian L produces the square-root Lagrangian L∗, which gives the so-called DBI-like
term in the effective physical Lagrangian (see many examples in [12] - [22]), our higher-
dimensional Lagrangian essentially depends on D:
√

− det(sij + νaij) = [−2D det(gij+λfij)]1/(D−2) =
√−g [−2D det(δji +λf

j
i )]

1/(D−2) , (36)

which coincides with (33) forD = 4. Following [2], we may write the corresponding physical
Lagrangian

Leff =
√−g

[

−2Λ [det(δji + λf ji )]
1/(D−2) +R(g) + ca g

ijaiaj

]

, (37)

which should be varied with respect to the metric and the vector field; ca is a parameter de-
pending on D (Einstein’s first model is obtained for D = 4 and ca = 1/6). When the vecton
field is zero, we have the standard Einstein gravity with the cosmological constant. Making
the dimensional reduction from D = 5 to D = 4, we obtain the Lagrangian describing the
vecton ai, fij ∼ ∂iaj − ∂jai and (D − 4) scalar fields ak, k = 4, ..,D.

The theory (37) is very complex, even at the classical level. Its spherically symmetric
sector is described by a (1+1)-dimensional dilaton gravity coupled to one massive vector
and to several scalar fields. If the mass of the vector field is zero and the scalar fields
vanish7, the dilaton gravity is classically integrable with a rather general dependence of the

Lagrangian on the massless Abelian gauge fields, X(φ, F 2), where F 2 = FijF
ij and φ is

the dilaton field, see [23]-[25]. If µ2 6= 0, the theory is certainly not integrable even with
vanishing scalar fields. It is also not easy to analytically construct its physically interesting
approximate solutions8.

7Such models can be derived by dimensional reductions of some higher-dimensional gravity and super-
gravity theories, see, e.g, [23] - [26] and references therein.

8At first sight, a perturbation theory in µ2 seems to be a viable alternative to numeric approximations
but, when µ2 = 0, an additional gauge symmetry emerges that makes it difficult to estimate the validity of
the approximation, especially, in the physically important asymptotic regions.
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Further dimensional reductions to one-dimensional static or cosmological theories also
give non-integrable dynamical systems although some approximate solutions can possibly
be derived. The naive cosmological reduction of four-dimensional theory (37) can be written
using the metric

ds24 = e2αdr2 + e2βdΩ2(θ, φ)− e2γdt2 , (38)

where α, β, γ depend on t and dΩ2 is the metric on the two-dimensional sphere.9 Now
the effective cosmological (one-dimensional) Lagrangian corresponding to theory (37) in the
D = 4 case is

Lc = −2e2β
[

eα−γ(β̇2 + 2β̇α̇) + Λ

√

e2(α+γ) − λ2Ȧ2 +
1

2
µ2A2e−α+γ

]

. (39)

As γ is obviously a Lagrange multiplier we can fix the remaining gauge freedom by choosing
γ = −α.10 Using this gauge and denoting the anisotropy function by 3σ ≡ β − α, we have
the gauge fixed Lagrangian

Lc = −2e2β
[

3e2α(ρ̇2 − σ̇2) + Λ

√

1− λ2Ȧ2 +
1

2
µ2A2e−2α

]

, (40)

where α = ρ− 2σ and γ = ρ+ σ.
Up to the dilaton multiplier e2β , the second term in (40) is the DBI (or, 0-brane)

Lagrangian. If we consider constant metric functions α, β, and denote MA ≡ 2λ2Λe2β , we
see that the 0-brane term is the relativistic Lagrangian of a particle with the mass MA (the
analog of the velocity of light c is λ−1 ≡ c̄). Introducing the canonical momenta pρ, pσ, pA
we find the Hamiltonian (one should not forget that MA depends on β(t)):

H = c̄
√

p2A +M2
A c̄

2 + µ2A2e2(β−α) +
1

24
e2(β+α) (p2σ − p2ρ) = 0. (41)

If µ2 = 0, the momentum PA is the integral of motion and we get an integrable 1-dimensional
dilaton gravity. (with µ2 6= 0, it is not integrable and rather unusual theory). If α and β
vary much slower than A(t) this is a more tractable model of a relativistic ‘particle’ with
the slowly varying time dependent mass MA in a simple potential having time dependent
parameters. A simpler effective ‘particle’ model was used by Gribov for discovering the
famous Gribov copies. One may hope that a similar interpretation of the theory (41) will
help to understand some unusual qualitative features of our generalized gravity.

For small A and slowly varying gravitational fields, one can also use the small-field
approximation (see [1], [2]), which is formally equivalent to expanding (37) in powers of λ2.
Keeping only the first-order correction we then obtain a nice-looking field theory:

Leff
∼=

√−g
[

R[g]− 2Λ− κ

(

1

2
FijF

ij + µ2AiA
i + gij∂iψ ∂jψ +m2ψ2

)]

, (42)

where Ai ∼ ai, Fij ∼ fij, κ ≡ G/c4 and we use the CGS dimensions. Note that here we
choose the standard normalization of the fields and thus the dimensionless parameters of

9 The function β(t) is the two-dimensional dilaton field and, usually, it is supposed that α = β (isotropy
condition). With the massive vector field Ai(t), this is not possible because the equations of motion require
A0 ≡ At = 0 and A1 ≡ Ar 6= 0, which obviously gives an anisotropic configuration, see [1], [2].

10 The standard gauge fixings are γ = 0 or γ = α; in [2] we also used the gauge fixing γ = 3ρ ≡ α + 2β.
Varying the Lagrangian multiplier γ gives the energy constraint, i.e. vanishing of the Hamiltonian.
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the theory (D, λ) are hidden in the masses µ and m. Note also that for Einstein’s geometry
the masses are imaginary, but we should study the general case when they may also be real.

This simplified theory still keeps traces of its geometric origin: the simplest form of the
dark energy (the cosmological constant Λ), massive (or tachyonic) vector and scalar fields,
which can describe inflation and/or imitate dark matter. The most popular inflationary
models require a few massive scalar particles usually called inflatons (see, e.g., [27] - [31]).
Without massive scalar fields, there is no simple inflation mechanism with one massive vec-
ton. However, with the tachyonic vecton (see [32]) or with several massive vector particles,
it is probably easier to find more realistic inflation models (see [33] - [37]; some of these
papers also discuss a possible role of massive vector particles in dark energy and dark matter
mechanisms).

In conclusion, we note that the geometrical and dynamical models discussed in this
paper are not well understood, both conceptually and technically. Much work on them
should be done before a realistic cosmological model could be constructed. In particular,
one should study the relation between the geometry and dynamics discovered by Einstein.
Possibly, one shall find behind it some symmetry principles which are not yet understood.
One should also study more general theories. For example, why we not add to the geometric
Lagrangian the terms quadratic in the curvature tensor that can be constructed not using
any metric? Of course, the Eddington - Einstein Lagrangian and its simplest generalizations
discussed here are most beautiful and are closely related to the modern theory of branes,
but this is not a good enough argument for restricting alternative geometric proposals. The
new part of the connection aijk is a tensor that can generate some higher spin fields and we
must have some serious arguments for excluding this possibility from the very beginning.

Finally, we must clearly state once more that the generalization of gravity considered
here has nothing to do with other matter fields. It is not suggesting any unification of
gravity with other forces of nature and with the standard matter. The true meaning of it
and its unexpected relation to recent discoveries and ideas in cosmology is a real puzzle.
Possibly, a role of this theory is to replace the standard gravity inside the string theory
which did not yet completely succeed in giving a simple and natural explanation of dark
energy, inflation, and dark matter.

It is a great sorrow to dedicate this article to the dear memory of Volodya Gribov and
not to hear his sharp critical and highly stimulating remarks on its content. I realize that the
ideas treated here might look to Volodya a bit far from physics he liked, but his incredible
ability to penetrate deep to the heart of any problem would certainly help to solve a puzzle
left to us by three great scientists of the last century.
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