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A compact expression for the DeWitt-Schwinger renormalization terms suitable for use
in even-dimensional space-times is derived. This formula should be useful for calculations
of 〈φ2(x)〉 and 〈Tµν (x)〉 in even dimensions.

1. Introduction

A major impediment to using semi-classical general relativity is calculating the

renormalized expectation value of the stress tensor. Properly renormalized values

for 〈φ2〉 and 〈Tµν〉 provide information on particle production and spontaneous

symmetry breaking, and are also required to calculate backreaction. Since in general

relativity energy density is itself a source of curvature, great care must be taken

in deciding what may be dismissed as ‘unphysical’. Fortunately, there are several

generally accepted renormalization schemes for curved space-times.1 Our purpose is

to present a compact formula for the renormalization terms that may be applied to

〈φ2〉 and 〈Tµν〉 calculations in arbitrary black hole space-times of even dimension.

2. Connection to Green’s Functions

Calculating 〈Tµν〉 for a general d-dimensional black hole space-time is difficult. For a

scalar field, Tµν ∝ φ2 and its derivatives, so we start with the simpler problem of cal-

culating 〈φ2〉 = 〈H |φ2|H〉, where |H〉 is the Hartle-Hawking vacuum. Note that 〈φ2〉
is the coincidence limit of the two point function 〈φ2〉 = limx→x′〈φ(x)φ(x′)〉, and so

may be expressed in terms of Green’s functions. In particular, the Feynman Green’s

function is related to the time ordered propagator, iGF(x, x
′) = 〈T (φ(x)φ(x′))〉.

A Wick rotation allows us to work in Euclidean space where GF(t, x; t
′, x′) =

−iGE(iτ, x; iτ
′, x′). The Euclidean Green’s function, GE, now obeys
(

�E −m2 − ξR(x)
)

GE(x, x
′) = −|g(x)|−1/2δd(x− x′), (1)

where�E is the Laplace-Beltrami operator in d-dimensional curved Euclidean space.

To solve for GE, start with the Euclidean metric for a static space-time in d dimen-

sions with line element

ds2 = f(r)dτ2 + f−1(r)dr2 + r2dΩ2. (2)

Here τ is the Euclidean time, τ = −it, r is a radial coordinate, and Ω represents a

(d− 2)-dimensional angular space. The only restriction for this method is that the

metric must be diagonal. If the scalar field is at temperature T , then the Green’s
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function is periodic in τ − τ ′ with period T−1. Assuming a separation of variables,

standard Green’s function techniques lead to the formal solution

GE(x, x
′) =

κ

2π

∞
∑

n=−∞

eiκεn
∑

ℓ

∑

{µj}

Yℓ,{µj}(Ω)Y
∗
ℓ,{µj}

(Ω′)χnℓ(r, r
′), (3)

where κ = 2πT , and Yℓ,{µj}(Ω) are eigenfunctions of the Helmholtz equation ob-

tained from the from the angular part of Eq. (1). For black holes with spherical

topology these are equivalent to the set of hyperspherical harmonics. The radial

function χnℓ(r, r
′) obeys a complicated differential equation obtained by putting

the above expression into Eq. (1). This expression is divergent in the sum over n.

3. DeWitt-Schwinger Renormalization

The 〈φ2〉 computation has been reduced to computating the coincidence limit of the

Green’s function – a divergent quantity. To assign physical meaning to 〈φ2〉 it must

be rendered finite via some renormalization process, and the standard approach is

to renormalize the expression for GE(x, x
′) via Christensen’s point splitting method

applied to the DeWitt-Schwinger expansion of the propagator.2–4 In d dimensions,

the adiabatic DeWitt-Schwinger expansion of the Euclidean propagator is3

GDS
E (x, x′) =

π△1/2

(4πi)d/2

∞
∑

k=0

ak(x, x
′)

(

− ∂

∂m2

)k
(

− z

2im2

)1−d/2

H
(2)
d/2−1(z). (4)

Equation (4) introduces several new variables. Let s(x, x′) be the geodesic distance

between x and x′, then define 2σ(x, x′) = s2(x, x′) and z2 = −2m2σ(x, x′). The

ak(x, x
′) are called DeWitt coefficients, and H

(2)
ν (z) is a Hankel function of the sec-

ond kind. Lastly, △(x, x′) =
√

g(x)D(x, x′)
√

g(x′) is the Van Vleck–Morette deter-

minant, where g(x) = det(gµν(x)) and D(x, x′) = det(−σ;µν′). Using the derivative

properties of Bessel functions, noting that z = i|z| is purely imaginary in Euclidean

space, and defining ν = d/2− 1− k, Eq. (4) can be written as

GDS
E (x, x′) =

−2i△1/2

(4π)d/2

∑

k=0

ak(x, x
′)(2m2)ν |z|−ν

[

(−1)νπIν(|z|) + iKν(|z|)
]

. (5)

The DeWitt-Schwinger expansion is a WKB expansion of the Euclidean propa-

gator for a generic space-time when the point separation is small. For a particular

space-time, this procedure does not give the correct results for the Green’s function

with finite point separation because it ignores global space-time properties that de-

termine the Green’s function – such as the effective potential around a black hole –

but it should reproduce the same divergent terms in the coincidence limit. There-

fore, if the divergent terms of the DeWitt-Schwinger expansion can be isolated, then

subtracting these terms from GE(x, x
′) will make it finite as x → x′. Since we are

working in Euclideanized space the physical renormalization terms come from the

real part of Eq. (5). The asymptotic behavior of Kν(|z|) as z → 0 implies that only
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terms with ν ≥ 0 contribute divergences in the coincidence limit, so

Gdiv(x, x
′) =

2△1/2

(4π)d/2

kd
∑

k=0

ak(x, x
′)(2m2)ν |z|−νKν(|z|). (6)

To renormalize GE, Eq. (6) must be made commensurate with Eq. (3). We have

shown5 that an integral representation of Kν(z) for small z and integer-valued ν is

Kν(z) =
(−1)ν

√
π

Γ(ν + 1
2 )

(z

2

)ν
∫ ∞

0

dt cos(zt)(t2 + 1)ν−1/2. (7)

Changing of variables and using the Plana sum formula to convert the integral to

a sum, the renormalization terms for the d-dimensional space-time of Eq. (2) are5

Gdiv(x, x
′) =

2

(4π)d/2

kd
∑

k=0

{

[ak]κ
√
π

(−f)νΓ(ν + 1
2 )

[

∞
∑

n=1

cos(κεn)
(

κ2n2 +m2f
)ν− 1

2−1

2
(κ2+m2f)ν−

1

2

− i

∫ ∞

0

dt

e2πt − 1

{

[

(1 + it)2κ2 +m2f
]ν−1/2 −

[

(1− it)2κ2 +m2f
]ν−1/2

}

+(m2f)ν−
1

2 2F1

(

1

2
,
1

2
− ν,

3

2
,− κ2

m2f

)

]

+[ak]Eν+

ν
∑

n=1

2n
∑

p=1

p
∑

j=0

22n−1(−m2)ν−nΓ(n)

Γ(ν − n+ 1)

ajk∆
1/2
p−j

(σρσρ)n

}

(8)

for a scalar field at nonzero temperature T > 0. In this expression the Eν are terms

depending on the metric function f and have been tabulated elsewhere,5 while amk
and ∆

1/2
m represent the mth term in an expansion in powers of σρ. This expression

generalizes previously known four-dimensional results.6 The corresponding renor-

malization terms for a scalar field at zero temperature T = 0 are similarly found.5

4. Discussion

Semi-classical general relativity requires calculation of 〈Tµν〉ren in complicated –

possibly higher dimensional – space-times. The first step in calculating 〈Tµν〉ren for

a scalar field is calculating 〈φ2〉ren. We have presented a compact expression for the

renormalization terms for 〈φ2〉 in even dimensional, static, black hole space-times.
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