DEWITT-SCHWINGER RENORMALIZATION OF $\langle \phi^2 \rangle$ IN d DIMENSIONS

ROBERT T. THOMPSON[†] and JOSÉ P. S. LEMOS[‡]

Centro Multidisciplinar de Astrof´ısica - CENTRA Departamento de Física, Instituto Superior Técnico - IST, Universidade T´ecnica de Lisboa - UTL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal E-mail: † *robert@cosmos.phy.tufts.edu,* ‡ *joselemos@ist.utl.pt*

A compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional space-times is derived. This formula should be useful for calculations of $\langle \phi^2(x) \rangle$ and $\langle T_{\mu\nu}(x) \rangle$ in even dimensions.

1. Introduction

A major impediment to using semi-classical general relativity is calculating the renormalized expectation value of the stress tensor. Properly renormalized values for $\langle \phi^2 \rangle$ and $\langle T_{\mu\nu} \rangle$ provide information on particle production and spontaneous symmetry breaking, and are also required to calculate backreaction. Since in general relativity energy density is itself a source of curvature, great care must be taken in deciding what may be dismissed as 'unphysical'. Fortunately, there are several generally accepted renormalization schemes for curved space-times.[1](#page-2-0) Our purpose is to present a compact formula for the renormalization terms that may be applied to $\langle \phi^2 \rangle$ and $\langle T_{\mu\nu} \rangle$ calculations in arbitrary black hole space-times of even dimension.

2. Connection to Green's Functions

Calculating $\langle T_{\mu\nu} \rangle$ for a general d-dimensional black hole space-time is difficult. For a scalar field, $T_{\mu\nu} \propto \phi^2$ and its derivatives, so we start with the simpler problem of calculating $\langle \phi^2 \rangle = \langle H | \phi^2 | H \rangle$, where $|H \rangle$ is the Hartle-Hawking vacuum. Note that $\langle \phi^2 \rangle$ is the coincidence limit of the two point function $\langle \phi^2 \rangle = \lim_{x \to x'} \langle \phi(x) \phi(x') \rangle$, and so may be expressed in terms of Green's functions. In particular, the Feynman Green's function is related to the time ordered propagator, $iG_F(x, x') = \langle T(\phi(x)\phi(x'))\rangle$. A Wick rotation allows us to work in Euclidean space where $G_F(t, x; t', x') =$ $-iG_{\rm E}(i\tau,x;i\tau',x').$ The Euclidean Green's function, $G_{\rm E}$, now obeys

$$
\left(\Box_{\mathcal{E}} - m^2 - \xi R(x)\right) G_{\mathcal{E}}(x, x') = -|g(x)|^{-1/2} \delta^d(x - x'),\tag{1}
$$

where \Box_E is the Laplace-Beltrami operator in d -dimensional curved Euclidean space. To solve for G_E , start with the Euclidean metric for a static space-time in d dimensions with line element

$$
ds^{2} = f(r)d\tau^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2}.
$$
 (2)

Here τ is the Euclidean time, $\tau = -it$, r is a radial coordinate, and Ω represents a $(d-2)$ -dimensional angular space. The only restriction for this method is that the metric must be diagonal. If the scalar field is at temperature T , then the Green's

function is periodic in $\tau - \tau'$ with period T^{-1} . Assuming a separation of variables, standard Green's function techniques lead to the formal solution

$$
G_{\mathcal{E}}(x,x') = \frac{\kappa}{2\pi} \sum_{n=-\infty}^{\infty} e^{i\kappa \varepsilon n} \sum_{\ell} \sum_{\{\mu_j\}} Y_{\ell,\{\mu_j\}}(\Omega) Y_{\ell,\{\mu_j\}}^*(\Omega') \chi_{n\ell}(r,r'),\tag{3}
$$

where $\kappa = 2\pi T$, and $Y_{\ell, {\mu_j} }(\Omega)$ are eigenfunctions of the Helmholtz equation obtained from the from the angular part of Eq. [\(1\)](#page-0-0). For black holes with spherical topology these are equivalent to the set of hyperspherical harmonics. The radial function $\chi_{n\ell}(r,r')$ obeys a complicated differential equation obtained by putting the above expression into Eq. (1) . This expression is divergent in the sum over n.

3. DeWitt-Schwinger Renormalization

The $\langle \phi^2 \rangle$ computation has been reduced to computating the coincidence limit of the Green's function – a divergent quantity. To assign physical meaning to $\langle \phi^2 \rangle$ it must be rendered finite via some renormalization process, and the standard approach is to renormalize the expression for $G_E(x, x')$ via Christensen's point splitting method applied to the DeWitt-Schwinger expansion of the propagator.^{[2](#page-2-1)[–4](#page-2-2)} In d dimensions, the adiabatic DeWitt-Schwinger expansion of the Euclidean propagator is^{[3](#page-2-3)}

$$
G_{\mathcal{E}}^{\mathcal{DS}}(x,x') = \frac{\pi \Delta^{1/2}}{(4\pi i)^{d/2}} \sum_{k=0}^{\infty} a_k(x,x') \left(-\frac{\partial}{\partial m^2} \right)^k \left(-\frac{z}{2im^2} \right)^{1-d/2} H_{d/2-1}^{(2)}(z). \tag{4}
$$

Equation [\(4\)](#page-1-0) introduces several new variables. Let $s(x, x')$ be the geodesic distance between x and x', then define $2\sigma(x,x') = s^2(x,x')$ and $z^2 = -2m^2\sigma(x,x')$. The $a_k(x, x')$ are called DeWitt coefficients, and $H_{\nu}^{(2)}(z)$ is a Hankel function of the second kind. Lastly, $\triangle(x, x') = \sqrt{g(x)}D(x, x')\sqrt{g(x')}$ is the Van Vleck–Morette determinant, where $g(x) = \det(g_{\mu\nu}(x))$ and $D(x, x') = \det(-\sigma_{;\mu\nu'})$. Using the derivative properties of Bessel functions, noting that $z = i|z|$ is purely imaginary in Euclidean space, and defining $\nu = d/2 - 1 - k$, Eq. [\(4\)](#page-1-0) can be written as

$$
G_{\mathcal{E}}^{\mathcal{DS}}(x, x') = \frac{-2i\Delta^{1/2}}{(4\pi)^{d/2}} \sum_{k=0} a_k(x, x')(2m^2)^{\nu} |z|^{-\nu} \Big[(-1)^{\nu} \pi I_{\nu}(|z|) + iK_{\nu}(|z|) \Big]. \tag{5}
$$

The DeWitt-Schwinger expansion is a WKB expansion of the Euclidean propagator for a generic space-time when the point separation is small. For a particular space-time, this procedure does not give the correct results for the Green's function with finite point separation because it ignores global space-time properties that determine the Green's function – such as the effective potential around a black hole – but it should reproduce the same divergent terms in the coincidence limit. Therefore, if the divergent terms of the DeWitt-Schwinger expansion can be isolated, then subtracting these terms from $G_{\mathcal{E}}(x, x')$ will make it finite as $x \to x'$. Since we are working in Euclideanized space the physical renormalization terms come from the real part of Eq. [\(5\)](#page-1-1). The asymptotic behavior of $K_{\nu}(|z|)$ as $z \to 0$ implies that only

2

terms with $\nu \geq 0$ contribute divergences in the coincidence limit, so

$$
G_{\rm div}(x, x') = \frac{2\Delta^{1/2}}{(4\pi)^{d/2}} \sum_{k=0}^{k_d} a_k(x, x')(2m^2)^{\nu} |z|^{-\nu} K_{\nu}(|z|). \tag{6}
$$

To renormalize G_E , Eq. [\(6\)](#page-2-4) must be made commensurate with Eq. [\(3\)](#page-1-2). We have shown^{[5](#page-2-5)} that an integral representation of $K_{\nu}(z)$ for small z and integer-valued ν is

$$
K_{\nu}(z) = \frac{(-1)^{\nu}\sqrt{\pi}}{\Gamma(\nu + \frac{1}{2})} \left(\frac{z}{2}\right)^{\nu} \int_0^{\infty} dt \cos(zt) (t^2 + 1)^{\nu - 1/2}.
$$
 (7)

Changing of variables and using the Plana sum formula to convert the integral to a sum, the renormalization terms for the d-dimensional space-time of Eq. [\(2\)](#page-0-1) are^{[5](#page-2-5)}

$$
G_{\rm div}(x, x') = \frac{2}{(4\pi)^{d/2}} \sum_{k=0}^{k_d} \left\{ \frac{[a_k] \kappa \sqrt{\pi}}{(-f)^\nu \Gamma(\nu + \frac{1}{2})} \left[\sum_{n=1}^\infty \cos(\kappa \varepsilon n) \left(\kappa^2 n^2 + m^2 f \right)^{\nu - \frac{1}{2}} - \frac{1}{2} (\kappa^2 + m^2 f)^{\nu - \frac{1}{2}} \right. \\ \left. - i \int_0^\infty \frac{dt}{e^{2\pi t} - 1} \left\{ \left[(1 + it)^2 \kappa^2 + m^2 f \right]^{\nu - 1/2} - \left[(1 - it)^2 \kappa^2 + m^2 f \right]^{\nu - 1/2} \right\} \\ \left. + (m^2 f)^{\nu - \frac{1}{2}} {}_2F_1 \left(\frac{1}{2}, \frac{1}{2} - \nu, \frac{3}{2}, -\frac{\kappa^2}{m^2 f} \right) \right] + [a_k] E_\nu + \sum_{n=1}^\nu \sum_{p=1}^{2n} \sum_{j=0}^p \frac{2^{2n-1} (-m^2)^{\nu - n} \Gamma(n)}{\Gamma(\nu - n + 1)} \frac{a_k^j \Delta_{p-j}^{1/2}}{(\sigma^\rho \sigma_\rho)^n} \right\} \tag{8}
$$

for a scalar field at nonzero temperature $T > 0$. In this expression the E_{ν} are terms depending on the metric function f and have been tabulated elsewhere,^{[5](#page-2-5)} while a_k^m and $\Delta_m^{1/2}$ represent the m^{th} term in an expansion in powers of σ^{ρ} . This expression generalizes previously known four-dimensional results.[6](#page-2-6) The corresponding renormalization terms for a scalar field at zero temperature $T = 0$ are similarly found.^{[5](#page-2-5)}

4. Discussion

Semi-classical general relativity requires calculation of $\langle T_{\mu\nu}\rangle_{\text{ren}}$ in complicated – possibly higher dimensional – space-times. The first step in calculating $\langle T_{\mu\nu} \rangle_{\text{ren}}$ for a scalar field is calculating $\langle \phi^2 \rangle_{\text{ren}}$. We have presented a compact expression for the renormalization terms for $\langle \phi^2 \rangle$ in even dimensional, static, black hole space-times.

Acknowledgments

This work partially funded by FCT, through Project No. CERN/FP/109276/2009

References

- 1. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
- 2. S. M. Christensen, Phys. Rev. D14, 2490 (1976).
- 3. S. M. Christensen, Phys. Rev. D17, 946 (1978).
- 4. B. S. DeWitt, Phys. Rept. 19, 295 (1975).
- 5. R. T. Thompson and J. P. S. Lemos, Phys. Rev. D80, 064017 (2009).
- 6. P. R. Anderson, Phys. Rev. D41, 1152 (1990).

3