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Facial Shape Localization Using
Probability Gradient Hints

Zhiheng Niu, Shiguang Shan, Member, IEEE, and Xilin Chen, Member, IEEE

Abstract—This letter proposes a novel method to localize fa-
cial shape represented by a series of facial landmarks. In our
method, the problem of facial shape localization is formulated
with a Bayesian inference. Specifically, given a face image, the
posterior probability of the facial shape is naturally decomposed
into two parts: the likelihood function of local textures and the
prior constraints of global shape. The former is provided by the
landmark detectors, while the latter is evaluated based on the
global shape statistics. The global shape is iteratively estimated in
the Maximum A Posteriori (MAP) procedure which is derived in
a Lucas-Kanade manner over the probability distribution. Intu-
itively, in each step, the landmarks are driven by the probability
gradient and converge towards the positions which maximize
the posterior probability. Experiments on two public databases
(XM2VTS and BiolD) show the effectiveness of the proposed
method.

Index Terms—Boosting, facial shape localization, maximum a
posteriori estimation, probability gradient hints.

1. INTRODUCTION

the localization and alignment of a target object within an
image is of great importance. Especially in face perception re-
lated research areas, facial shape localization, which provides
the correspondence of facial landmarks between different face
images, has received significant attention because it is one of
the key steps in face recognition, face tracking, pose estimation
and so on. To solve this problem, many methods have been pro-
posed in recent years, e.g., active contour models (snake) [1],
deformable template [2], elastic bunch graph matching [3], Ac-
tive Shape Model (ASM) [4], and Active Appearance Model
(AAM) [5], [6] etc. Among these methods, ASM and AAM,
both based on the statistical point distribution model, have been
recognized as the most successful ones. To pursue further im-
provement, a variety of methods have been proposed, generally,
in three aspects:

I N many computer vision and image understanding tasks,
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Fig. 1. Some facial landmarks on a face image and their probability distribu-
tions predicted by the landmark detectors.

1) More complicated local texture models, consisting of tex-
ture representations and feature extractions, are proposed.
For example, Gabor features [7] and Haar-like features [8],
[9] are combined with the scheme of ASM. In tensor-based
AAM [10], tensor representation is adopted to model the
large variations of face appearances and generate the AAM
basis vectors which are appropriate for the input image.

2) More sophisticated global shape models are adopted. For
instance, GMM is deployed in [11]. In [12], the Gaussian
Markov Random Field is adopted to model the shape. Be-
sides, part-based shape models are developed in [13].

3) The relationship between local textures and global shape
were further formulated and some advanced optimization
approaches are utilized. For instance, in the direct appear-
ance models [14], a linear method is directly brought for-
ward to describe the relationship between shape and texture
information. [15] and [16] provide robust likelihood eval-
uations in an MAP procedure. The procedure converges
in a principled manner due to the monotonously increased
posterior probability in each step. However these methods
often need to determine the number of candidate positions
of a landmark beforehand. The probability distributions
around the candidate positions are often assumed to be
Gaussian, which is hardly satisfied in real world applica-
tions. For example, as shown in Fig. 1, the contour land-
marks are probably located along the image edge and the
eye centers are most likely located at the dark areas (e.g.,
eyebrow) in the image, therefore their probability distribu-
tions are not Gaussian.

Motivated by the previous works, in this paper, we propose to
solve the problem of facial shape localization under the proba-
bilistic framework. Specifically, an optimization method is ex-
ploited to maximize the Bayesian posterior probability of facial
shape which consists of two parts: one is the likelihood function
of local textures and the other is the prior probability of global
shape. In order to accurately predict the former, i.e., the proba-
bility distributions of facial landmarks on the image, landmark
detectors are trained based on a boosting method [17] using
Haar-like features [8], [9], [18]. Unlike previous methods, no

1070-9908/$25.00 © 2009 IEEE

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on January 11, 2010 at 22:13 from IEEE Xplore. Restrictions apply.



898

candidate positions are assumed in our method and the proba-
bility distribution of a landmark is not assumed to be Gaussian.
For the second part, the prior shape probability is evaluated ac-
cording to the shape statistics obtained via Principle Compo-
nent Analysis (PCA) form a training set. The optimization pro-
cedure is directed by a relative probability gradient under the
landmark distribution, which is named as Probability Gradient
Hint (PGH). The PGH is computed numerically and thus the
shape is updated analytically in each iteration. In other words,
the landmarks are driven by the PGHs and converge towards the
positions which maximize the posterior probability.

The remaining parts of this paper are organized as follows:
Section II gives the description of the probability inference and
the detailed specification of the probability of global shape and
local textures. In Section III, the substantial optimization pro-
cedure is interpreted. Extensive experiments are conducted in
Section IV, followed by the conclusions in the last section.

II. BAYESIAN INFERENCE AND SPECIFICATIONS

Similar to ASM/AAM, the shape is denoted as a vector S =
[11y1 w2 y2 ... Tn yn]T where (27, 1;) is the location of the /"
landmark in the target image and 7 is the number of landmarks.
Given an image I, the goal of pursuing the most likely shape
S* can be formulated as maximizing the posterior probability
P(S|I) = P(S)P(I|S)/P(I). P(I) is a constant independent
of S. Furthermore, the local textures from different facial land-
marks are assumed to be independent of each other, therefore
the optimal shape can be pursued as

n
S* = argrgggP(S)HP(IzISz) (0
where S is the shape space, S; is the position (z;,y;), and I; is
the local texture around (zy, y;).

P(S) Specification: The shape is controlled by two types
of parameters when it changes in a subspace. One is the reg-
istration parameter, i.e., similarity transformations including
rotation, scaling, and translation; the other is the shape pa-
rameter which is presented by the PCA coefficients in the
tangent shape space. The registration parameter is denoted
as 0 = [a,b,tx,ty]T and the shape parameter is denoted as

B=lcica ... cm]T. The transformed shape can be represented
as

=S +Vp )
where V is the projection matrix and S’ =
[#y o, @y b ... o), yl]" is the transformed shape that

best fits the mean shape S’ in the least square sense. The
transformation of each landmark is represented as

()= ) G-G)- o

Since S is determined by # and 3 which can be safely assumed
to be independent, we have P(S) = P(8)P(6). Due to the
uniform distribution of P(¢) and the normal distribution of
PCA coefficients, P(S) is proportional to e~ (/28 A8 e
P(S) o e=(1/2B A8 where A is the diagonal matrix that
contains the first m leading eigenvalues derived from PCA of
the transformed shapes.

P(1;|S;) Specification: We approximate this conditional
probability by integrating the output of the corresponding
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landmark detector. Specifically, for each landmark, we learn a
GentleBoost-based detector [17] based on Haar-like features.
For each pixel (z, y) in the target image, if its surrounding local
texture (a rectangle image patch centered at (z,y)) is classified
by the [*" detector as positive, we assign the probability of /t"
landmark at (z,y) as P;(z,y) = 1/N;, where N is the total
number of the positive detections for [** detector in the whole
image. Otherwise, a very small positive constant € is assigned,
ie., P(z,y) = e.

Algorithm 1: Parameter optimization

Input: The coarsely aligned face image I (e.g., by a face
detector), shape statistics A, V.

Output: Optimized facial shape, S*.

1 Start with the registration parameter § < (1 0 0 0)”, shape
parameter § < 0,,x1.

2Setk < 0, S0 « 02, %1

3 repeat // Optimization of registration
parameter 6

4 k<=k+1
5 Update current shape S* via (3) and (2).

6 Assign the probability distribution at (z;, ;) and its
neighbors by each landmark detector.

7 Compute PGHs via (9).

8 Compute Af via (6).

9 Update the registration parameter 6 <= 6 + A1 Af.
10 until ||S* — S*1|| < e1;

11 Setk < 0, S° < 09,,%1

12 repeat// Optimization of shape parameter 3
13 Operate as 4 ~ 7.

14  Compute Af via (8).

15 Update the shape parameter 3 < 3 + A\ ApS.

16 until ||[S* — S*~1|| < eo;

17 Return the optimized shape S* <« S*.

III. PARAMETER OPTIMIZATION

With the above specifications, the objective function defined
in (1) can be rewritten as follows (after performing the natural
logarithm):

- 1
F(5.0) =Y n(Pi(z,y) = 5ATAT6. (4

=1

The optimization of this objective function is summarized in
Algorithm 1, where A1 and A, are the steps which control the
convergence speed. Briefly speaking, Algorithm 1 consists of
two procedures, as described as follows.

Optimization of Registration Parameter 6: As 6 has no effect
on the second term, by considering 3 as a constant, the aim is
turned to maximize the first term of F'. A gradient ascent method
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is employed to iteratively optimize the registration parameter.
The first-order partial derivative of F' w.r.t. 6 is

xlvyl

VP 0
Z 7 ®)

where P, and VP, are the probability of the [** landmark

at (z;,y;) and its gradient respectively. According to (3),
R

of registration parameter can be computed by

n T T
_ ooy 10N (VA
AG_;<y{ S 01 7)) ©

Optimization of Shape Parameter (3: The second term of F’
is second-ordered which facilitates the Gauss-Newton solution.
By taking a first-order Taylor expansion of the first term of F' at
[ and applying the chain rule, we have

, therefore the increment

F(B+AB,0) = Zln (P, 1)) +ZVPI L
9 (7, y;)
XMA,@_§(ﬁ+Aﬁ)TA_I<IB+A'B) @)

ap

where 9(z1,y1)/0(z],y]) = (—ab

( Vai-1 )
Vi
V according to (2)). By setting the derivative of F(8 + A, 0)

w.r.t. Af to zero, we obtain
—b A
— — 8. 8
() - @

_ a
AB=A Z (V%}flvg) < b
Probability Gradient Hints: Both (6) and (8) include the term

V) ana et 100 =

(i.e., the corresponding rows of the projection matrix

=1

(VP,/P;)T which is termed as the Probability Gradient Hint
(PGH) of the I*"* landmark and denoted as H;. It is computed
by
Pl(zl+1,yl)(—Pl(i)El—1,yl)
_ 2P (xz,y
H; = < Pz(zz,y1+1l)—le l(l”l,yz—l) ) ®)
2P (z1,y1)

forl = 1,2,...,n. It can be found that the PGH comes from

the image evidence and acts as the relative probability gradient
at (x7,y;) which directs the moving direction for the conse-
quent iteration. Since H; is computed relatively (i.e., H; does
not change if P; is multiplied by a constant), therefore the prob-
ability mass function, defined in Section II, can be simplified as
Pi(z,y) = 1regardless of the detection number (i.e., N;) on the
whole image due to the division operation. To ensure the conti-
nuity and smoothness of the probability distribution, F; is fur-
ther filtered by a Gaussian window. Benefiting from this prop-
erty, to compute H;, we do not need to collect image evidences
within the whole image but only within a small neighborhood
of the current position (x7, ;).

As illustrated in Fig. 2, the H; points in the direction of the
greatest increase of the logarithm likelihood predicted by the /*"
landmark detector. By applying (6) and (8), the final decision
is made for all landmarks. When the algorithm converges, the
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Fig. 2. PGHs (first row) and the predicted moving direction AS (second row)
in three iterations: the beginning of registration parameter 6 optimization (left
column); the end of # optimization, i.e., the beginning of 3 optimization (middle
column); the end of 3 optimization (right column). The magnitudes and orien-
tations of PGHs are represented by the lengths and directions of the blue arrows
in the first row (similarly for AS in the second row).

PGHs are in balanced state considering the global shape con-
straint.

Discussion: Differences From Lucas-Kanade (LK) Method:
As can be seen, our optimization procedure is performed in
an LK-like manner [6]. However, there are two differences be-
tween the LK method and ours. Firstly, the objective function
in our method is the posterior probability function of the shape
rather than the squared loss function of image intensity as in the
LK method. Secondly, the LK method requires computing the
first-order derivative of image intensity in the whole face image,
while in our method it is replaced by PGHs computed within the
neighbourhoods of the current positions.

IV. EXPERIMENTS

Experiments are conducted on two public face databases,
XM2VTS [19] and BiolD [20] to evaluate the proposed method.
In XM2VTS, images are acquired under four sessions, and
there are 590 face images for each session. The images taken
from the first two sessions are used for training, and those in
the last two sessions are used for testing. More challenging test
is conducted on the BioID database (totally 1521 face images),
since no images in the BioID database are used for training
and the testing images contain complex pose, lighting and
background variations. Each face image in XM2VTS database
is released with 68 manually labeled landmarks, and the face
image in BioID has 20 manually labeled landmarks.

In the training stage, all the face images are normalized ac-
cording to the provided eye centers to make the distance be-
tween them be 100 pixels. For the boosting algorithm, the pos-
itive samples are extracted in a square window of size 25 x 25
centered at each landmark, and the negative samples are ran-
domly extracted some distance away from the positive ones. The
proportion of their amount is 1:5, i.e., each landmark detector is
trained from 1,180 positive samples and 5,900 negative samples.
For each detector, 100 Haar-like features are selected to build a
strong classifier by using the GentleBoost method [17]. In the
fitting stage, the input images are automatically localized by a
face detector based on the cascaded AdaBoost architecture [18]
and coarsely normalized to the same size as those in the training
set.

The localization error is evaluated as
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Err (10)

1 n
= S, —S;
nHSL_SRH ;” l l||

where Sy, Sk and S, are the manually labeled positions of the
left eye, the right eye and the [** landmark respectively, S} is
the optimized location for the [** landmark. The performance
of each method is plotted as the curve of z = p(Err < e), the
proportion of localizations with Err smaller than e against the
total number of testing images. Hereinafter, z is called cumula-
tive correct rate.

First, the performance of our method is compared with those
of ASM and AAM on the XM2VTS database using the 68 land-
marks. The comparison results are shown in Fig. 3. From the
figure, it is clear that our method outperforms both ASM and
AAM. In the figure, we also report results of our method when
the initial shape is purposively made farther away by translating
15 pixels to the left and 15 pixels to the top. Clearly, our method
can still converge correctly in such conditions.

Then, as shown in Fig. 4, we also compare our method with
the recently proposed method Reg-ASM [9]. It can be seen from
the figure that our method outperforms Reg-ASM on XM2VTS
database and performs comparably on the BiolD database.
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V. CONCLUSIONS

With Bayesian inference, this letter proposed a new facial
shape localization method. The posterior probability is com-
posed of two parts: one is from the image evidence provided
by the landmark detectors; the other is obtained from the statis-
tics of the global shape constraints. An MAP procedure is em-
ployed to update the shape iteratively by optimizing two types
of parameters, i.e. the registration parameters and the shape pa-
rameters. Both of them are solved analytically with the PGHs
computed numerically. The PGHs lead the landmarks to the
most likely places while the global shape constraints ensure the
landmarks move in a reasonable manner. Experiments on the
XM2VTS and BiolD database showed the accuracy and robust-
ness of our approach.
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