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Abstract. The slice-level parallelism is popular in parallel video coding. 
However, the quality loses greatly because the dependency between macro-
blocks is broken, especially on many-core platforms. To address this problem, a 
novel Macro-Block Group (MBG) decomposition scheme is presented for 
parallel AVS coding. In the proposed scheme, video frames are equally divided 
into rectangular MBG regions, each consists of more rows and less columns 
than the slice-level scheme. Since MBG is not supported by AVS, a vertical 
partitioning scheme is introduced, and the mode confining and MVD adjusting 
techniques are utilized to keep consistency with the standard. In practice, our 
parallel encoder is developed on the TILE64 platform, where P/B frames use 
the MBG-level parallelism and I frames use the macro-block-level parallelism. 
Experiments show that the proposed scheme can achieve a reduction of 52% 
(IPPP) and 41% (IBBP) in quality loss while keeping the same speed-up 
compared with the slice-level parallelism. 
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1   Introduction 

The new generation of video coding standards such as H.264/AVC [1] and AVS 
(Audio Video Standard) [2] are becoming increasingly popular. These standards can 
provide much higher coding performance than earlier ones but cost greatly increased 
complexities of new tools such as quarter-pixel motion estimation, variable block 
sizes, and so on [1]. In order to realize the real-time HD (High Definition) video 
encoder, many technologies have been developed. Among them, parallel algorithms 
are the most important and efficient solutions for hyper-threading processor, multi-
core processor and multi-processor platforms [3]. Recently, with the advance of 
hardware technology, many-core processors that consist of dozens or hundreds of 

mailto:wgao%7D@jdl.ac.cn


CPU cores are emerging. This brings new challenges in designing efficient parallel 
video coding algorithms. 

To date most of the parallel video coding algorithms exploit data parallelism. 
Typically, there are four kinds of data parallel schemes: GOP-level，frame-level, 
slice-level and Macro-Block-level (MB-level) parallelisms. The GOP-level 
parallelism assigns GOPs to different processor cores, which is the most 
straightforward approach and can be implemented in a very simple manner [4], [5]. 
However, this coarse-grained parallelism introduces a very long latency. The frame-
level parallelism [3] encodes B frames and the next I or P frames at the same time, so 
that it has much lower latency. However, since only consecutive B frames and the 
next I or P frames can be encoded in parallel, it is not suitable for the many-core 
processor. As a popular parallel scheme, the slice-level parallelism [6], [7] considers 
the independence of slices and encodes all slices in one frame simultaneously. It does 
not introduce additional latency, but may cause serious performance drop with the 
increase of slice number, because the dependences between MBs along the slice 
borders are broken [3]. The macro-block-level parallelism [8] assigns each MB to 
different processor cores. Since there are dependencies among the MBs, sophisticated 
scheduling of the encoding tasks is required. It also needs frequent communications 
among the processor cores, which becomes the bottleneck of coding speed, especially 
on the many-core processor. Besides the parallel schemes above, there are some 
hybrid algorithms that combine parallelisms of different levels, e.g. the hierarchical 
parallelization in [9]. Most recently, a Macro-Block Region Partition (MBRP) is also 
proposed [10], where video frames are partitioned into several adjoining columns of 
MBs. Each column can be encoded with the wave-front technique by one processor of 
a multi-processor system. Although many parallel algorithms for video coding have 
been introduced, to our best knowledge, there is seldom technology that can be easily 
extended to many-core platform. 

Because of some superior characteristics such as less communication among 
processor cores and low coding latency, the slice-level parallelism is a promising 
method for the many-core processor. However, the quality loss may become much 
serious, because the video frame should be divided into too many slices for the large 
amount of processor cores. To address this problem, we propose a novel Macro-Block 
Group (MBG) parallelism for the HD AVS encoder. The MBG is a rectangle region 
of a frame that consists of more rows and less columns than the slice-level scheme. 
Each MBG can be encoded in a processor core. Since the number of MBs along the 
borders in a MBG can be designed much less than that of a slice with the same MB 
number, the quality loss caused by the broken dependency on the borders is much less. 
However, the MBG is not a syntax element in AVS [2]. In order to comply with the 
standard, we induce MBG by vertically partitioning the slices and develop several 
new techniques such as prediction mode confining and MVD adjusting in parallel 
coding. Based on the new MBG decomposition, we propose a hybrid parallel scheme 
with MBG-level parallelism in P/B frames and MB-level parallelism in I frames, and 
realize an HD AVS encoder on the TILE64 platform [11]. Experimental results show 
that our method has 52% less quality loss in IPPP GOP and 41% less in IBBP GOP 
compared with the slice-level parallelism for the same number of processor cores. 

The rest of this paper is organized as follows. Section 2 gives an analysis on 
quality loss in slice-level parallelism of AVS encoder. Section 3 presents the MBG 



based parallel scheme. Section 4 introduces the implementation of HD AVS encoder 
on the TILE64 platform. Section 5 shows the experimental results and Section 6 gives 
the conclusion. 

2   Analysis on quality loss in the slice-level parallelism 

As mentioned above, the quality loss is the major disadvantage of slice-level 
parallelism on the many-core processor. In [3], an analysis on the quality loss of the 
H.264/AVC coding due to slice partitioning on PC platform is presented. In this 
section, we analyze the AVS video coding algorithm in order to get more insight into 
its quality loss in the slice-level parallelism.  

We employ 11 HD (1280x720p) sequences (BigShips, City, Crew, Cyclists, 
Harbour, Night, Optis, Raven, Sheriff, ShuttleStart and Spincalendar) provided by the 
AVS Working Group [12], each of which has 460 to 900 frames. The AVS1-P2 
reference code (RM52k) with some reduction of coding tools such as RDO and rate 
control is used (see details in Section 5).  

Our experimental results show that the partition of 45 slices (i.e. only one MB 
row in each slice) brings 0.5db quality loss on average compared with one-slice-one-
frame (i.e. 45 MB rows in the slice). The average quality losses are 0.51db, 0.69db 
and 0.19db respectively for I/P/B frames. Fig. 1 shows some details of quality loss 
and bit rate increase against different slice partitions on the Cyclists sequence. We can 
see that, with the decrease of the MB rows number in one slice (i.e. increase of slice 
number), the quality losses of all kinds of frames are increasing. These results can be 
explained as below. In the AVS standard, the top, top-left and top-right neighbors of a 
block, which is on the top border of a slice, are unavailable. For the inter block, it may 
not get the best predicted motion vector (PMV) only by using the motion vector (MV) 
of the left neighbor. For the intra block, some potential sub-modes are confined 
because these neighbors are unavailable. All of these cause the decrease of coding 
performance. More specifically, the quality loss essentially comes from the MBs on 
the slice borders. As shown in Fig.2 (a), a slice-level parallel HD (1280x720p) video 
encoder is realized on a 45-core platform, where each frame should be partitioned into 
45 slices, i.e. one MB row in each slice. As a result, 3520 MBs, as large as 97.8% of 
the total 3600 MBs, are on the slice borders which causes apparent quality drop in the 
video coding.  

Fig.1 also shows that the relation between the quality loss and the MB rows 
number is nonlinear. When the number of MB rows in a slice increases to 4, most of 
the dependencies among MBs can be preserved. As a result, about 50% quality loss is 
avoided. The saving of quality loss is 65% while the number of MB rows in a slice 
increases to 8. This shows that slice-level parallelism is an acceptable HD (720p) 
video coding scheme for 6~12 processor cores. However, on the many-core processor 
that consists of dozens of processor cores, the video frame should be divided into 
many small slices, even one MB row in one slice. Apparently, the quality loss 
becomes a very serious problem in this case. Moreover, the number of the processor 
cores used is also constrained by the maximum number of slices (i.e. 45 slices in AVS 



for 720p video). Therefore, a new parallelism technique is desired for the many-core 
processor. 
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Fig. 1. Quality loss and bitrate increase in different slice partition 
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Fig. 2. Slice partition and MBG partition 

3   The Macro-Block Group Level Parallelism 

3.1   The micro-block group decomposition 

As presented in Section 2, the main reason for the quality loss in the slice-level 
parallelism is the limitation of sub-mode in intra MBs and PMVs in inter MBs along 
slice borders. In order to solve this problem, we propose a novel MBG decomposition 
scheme to reduce the number of MBs affected by data partition. As shown in Fig. 2(b), 
we define the MBG as a rectangle region in a frame that consists of a certain number 
of MBs, and the MBG is encoded independently on a processor core with minimal 
communication and overhead. Obviously, the number of MBs on the borders of 
MBGs is much less than that on the border of slices with the same number of MBs. 
For example, as for the same HD (1280x720p) video frame, if we partition it into 5×
9=45 MBGs, the MBs on the border reduces to 936, i.e. the percentage greatly 
reduces to 26% compared with 97.8% in the slice partition. 



Considering the implementation on the many-core processor, we propose several 
principals in MBG design as below: 

(1) Making the MBG close to a square to minimize the total number of border 
blocks. 

(2) Making all the MBGs consist the same amount of MBs for the load balance 
in parallel coding. 

(3) Considering the architecture of the many-core processor, including number of 
cores, sizes of L1 and L2 caches, communication mechanism among cores, 
constrains in data alignment, etc. 

Besides the above principals of the MBG design, we should consider the 
constraints of the AVS standard. The MBG is not a syntax element in AVS. Actually 
the AVS1-P2 [2] only supports slice with a certain number of complete MB rows1. 
Therefore, we propose to partition the MBG based on the AVS slice. Without loss of 
generality, supposing 45 MBGs should be partitioned, we firstly set the slice number 
to 9, i.e. partition the frame to 9 slices with equal MB row number, and then vertically 
divide each slice into 5 MBGs with equal number of MB columns. Apparently, the 
borders of the AVS slices can work as the horizontal borders of the MBGs. However, 
the vertical MBG borders bring inconsistency between encoding and decoding. For 
example, as shown in Fig.2 (b), the left neighbor of the block marked with the star 
(“*”) is unavailable in the encoding since each MBG is encoded independently, while 
it becomes available as a block in the same slice in the decoding. We will give 
detailed analysis on this problem and propose a solution in Section 3.2 and 3.3 
respectively. 

3.2   Analysis on the inter/intra mode in MBG blocks 

In this section, we analyze the inconsistency between encoding and decoding of 
the blocks along the vertical borders of MBGs.  

As for the inter mode of the blocks on vertical MBG borders, the inconsistency 
comes from the PMV. Without loss of generality, we assume that all the blocks have 
the same size of 8×8 as shown in Fig.3, where each little square stands for a block. 
The PMV of the block E along the vertical MBG border relies on the availabilities of 
block A~D. While encoding, the block A and D are unavailable since this MBG is 
encoded independently. In this case, the MV of block E is predicted according to 
block B and C, and then the difference (MVD) between MV and PMV is written into 
the bit stream. However, when decoding, block A and D are available according to the 
slice partition since the information of MBG is blind for the decoder. Obviously, the 
MV calculated according to the availability of the block A~D and the MVD in the bit 
stream would be inconsistent. As for the blocks like J on the left side of the MBG 
border, similar failure may happen due to different availability status of block H in 
encoding and decoding. We will describe that these inconsistency can be solved by 
confining some prediction sub-modes and adjusting the MVD in the next section.  

                                                           
1 The AVS1-P2 Jizhun, Zengjiang and Jiaqiang profile only supports slice with complete MB 

lines, while the Shenzhan profile support rectangular slices, similar to the proposed MBG. 



As for the intra mode, the sub-mode 
prediction causes the similar problem as 
the PMV. However, it is impossible to 
solve the inconsistency in some blocks 
along the MBG border by prediction 
mode confining or residual adjustments. 
For example, as for the luminance block 
B in Fig. 3, in encoding, only the 
Intra_8x8_DC mode can be chosen since 
both the block D and the block K~M are 
not available. Moreover, all the predicted 
pixels must be set to 128 [2]. While in 
decoding, the block D is available, so that the Intra_8x8_DC mode computes the 
predicted pixel according to pixels in block D, which would not be just 128 in 
general. As a result, the decoding result would be incorrect. On the other hand, it is 
impossible to adjust the residual to keep the correctness. In encoding, the residual is 
transformed and quantized before being written into the bit stream. This is likely to 
change the adjusted residual, so that the decoder can not get the exact residual values 
after inverse quantization and inverse transformation. Therefore, we should confine 
the intra mode in block B to avoid the inconsistency issue. 

 
Fig. 3. Inter and intra mode in MBG 

partition 

  
K L M
D B C
A E

I G H 
F J 

MBG 

MBG Vertical 
Border 

MBG Vertical
Border 

Slice 
Border 

Slice 
Border 

In summary, we can see that it is impossible to realize the MBG partition in 
AVS I frames where there is only intra mode blocks. Fortunately, it can be realized in 
P/B frames by confining intra mode and adjusting the data of some MBs. We will 
describe the scheme in the next section. 

3.3   The MBG-level parallelism for P/B frames 

In this section, we introduce the MBG-level parallel encoding scheme for P/B 
frames. As shown in Fig. 4, the encoding is accomplished in 3 steps. Firstly, all the 
MBGs are encoded simultaneously on different processor cores, where a new mode 
confining technique is used for the MBs along the vertical MBG borders. Then, the 
processor cores that encode the adjacent MBGs exchange the MVs of the blocks on 
the vertical border. Finally, these MVs are used to adjust the data of MBs along the 
vertical MBG borders in order to keep encoding and decoding consistency. 
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Here, we give the details of Step 1 (mode confining) and Step 3 (vertical border 
MB adjustment) 

 



 Prediction mode confining 
As presented in Section 3.2, it is impossible to solve the inconsistency issue of 

the intra mode block along the vertical MBG borders, so the intra mode must be 
confined in the corresponding MBs (See MBs marked by grey background in Fig.3). 
As for the inter mode, the skip mode in these blocks should also be confined because 
the skip mode will not write the MVD into the bit stream, and we can not keep the 
consistency by adjusting MVD. For the same reason, the direct mode and symmetric 
mode in B frames should also be confined on these blocks. Although the above 
scheme possibly discards the best mode on these blocks or MBs, it brings little quality 
loss due to the low percentage of these blocks or MBs. For example, if a 
HD(1280x720p) video frame is divided into 5×9=45 MBGs (5 MBGs in each slice), 
there are only 45×2×4-4=356 MBs, i.e. only 10% of the MBs are affected. 

 MVD adjustment of the vertical border blocks 
As for the forward and backward modes, all the block size, including 16x16, 

16x8, 8x16 and 8x8 can be used in the blocks on the vertical MBG borders. The 
MVD of these inter modes should be adjusted to solve the inconsistency issue.  

As shown in Fig.5, the block E on the right 
border of MBG1 is encoded without block C 
since it is unavailable. More specifically, it 
calculate the PMV (vectoroa ) using the MVs of 
the block A, B and D, and search the actual MV 
(vector ob ) in a region centered by a. Then, it 
calculates the residual (vector ab ) of the PMV 
and the actual MV and writes it into the bit 
stream as the MVD. In decoding, the PMV is 
calculated according to the block A, B and C, as 
represented by vector oc , which would be 
different to oa .  

 
Fig. 5.  MVD adjustment in MBs 

along the vertical MBG borders 

In order to compensate this difference, we propose to adjust the MVD data in 
block E. As mentioned above, the MV of block C is sent to the processor core for 
MBG1 in the step 2 (see Figure 4). Therefore, the vector oc  can be recalculated 
according to block A~D in the step 3, which is the same as that in the decoder. Then, 
vectorcb  can be calculated as the residual of PMV oc  and actual MV ob  and is 
written into the bit stream as the MVD instead of vector ab . Obviously, in this case 
the decoder can resume the correct MVob . For other blocks the left and right MBG 
borders, the solution is the same. 

Although recalculating MVD introduce some additional computations, it affects 
the coding speed very little, because the border blocks have rather small percentage, 
e.g. less than 10% in the 45-MBG-partition mentioned above. 

4   Implementation 

We develop a parallel AVS encoder on the TILE64 processor [11]. The coding 
algorithm is based on the AVS1-P2 reference code RM52k [12]. The MB-level 
parallelism in I frames and the MBG parallelism in P/B frames are used. The encoder 



software is developed and tuned using Tilera MDE (multicore development 
environment) and Tilera TILExpress-20G™ Card [11]. 

4.1   The TILE64 platform 

TILEPro64 Processor is the latest generation processor features 64 identical 
processor cores (namely tiles) interconnected with Tilera's iMesh™ on-chip 8x8 
network [11]. As shown in Fig.6, each tile is a complete full-featured 700M Hz 
processor and integrated 8KB L1 cache and 64KB L2 cache. Each tile can access its 
private memory through the on-chip network directly, and shared memory through 
another tile’s L2 cache, if the shared memory is not allocated by the process on 
current tile. 

The Tilera MDE provides three communication mechanisms between the tiles, 
including channel, message and shared memory. The shared memory includes system 
management shared memory and 
user management shared memory. 
With user management shared 
memory, all the processes on 
different tile can access the same 
shared memory through the L2 
cache of the tile which allocates the 
shared memory. The processes can 
copy the data in the shared memory 
to their own L2 cache without 
considering coherence. We use this 
shared memory mode by calling 
APIs provided by Tilera MDE to 
share and exchange data in parallel 
coding.  

 
Fig. 6.  Architecture of TILEPro 64 processor[11] 

4.2   MBG-level parallel scheme for P/B frames 

In our parallel encoder, we use the MBG-level parallelism in P/B frames, as 
shown in Fig. 7. At first, the n MBGs in a frame are assigned to n processes executed 
on n processor cores. Every process encodes all the MBs in its MBGs independently 
using the algorithm described in step 1 in section 3.3. The operations including ME, 
DCT, quantization, inverse quantization, IDCT and MC are done. The reconstructed 
MBs and temporary data such as the residuals after quantization, the prediction modes 
and the MVs are stored in the shared memory, but they may be unavailable for other 
processes at this time. Then, every process flush the data stored in the shared memory 
and calls a synchronization barrier function to wait until all the flush operations are 
done. After that, all the data previously stored in the shared memory are visible for all 
the processes. Next, the MVD adjustment (as described in section 3.3), deblocking, 
interpolation and VLC are conducted. At last, another synchronization barrier is used 



to make the bit stream data visible for processes No.1, which gathers the data from 
every MB row and creates the final bit stream. 

Benefiting from the shared memory mechanism, only two synchronization 
barriers are required in the MBG-level parallelism, which are much less than those in 
the MB-level parallelism. Compared with the slice-level parallelism, the proposed 
scheme uses one more synchronization barrier, but our experiments show it affects the 
coding speed very little. 
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Fig. 7. flow chart of MBG-level parallelism scheme for P/B frames 

4.3   MB-level parallel scheme for I frames  

As for I frames, the wave-front 
parallelization algorithm [8] is used. As 
shown in Fig.8, six processes P1~P6 are 
employed as an example, where each 
process encodes one MB row. The number 
in the MB in Fig.8 stands for the steps 
when the MB is coded. In step 1, the 
process P1 encodes the first MB in the top 
row and sends the intra sub-mode and 
reconstructed MB data to the process P2. 
In step 2, the process P1 does the same work on the second MB. Then, in step 3 the 
process P2 can start encoding the first MB in the second row since the all the 
necessary information on its neighboring MBs are available, meanwhile the process 
P1 continues coding the MBs in the top row. In the same way, one new process can be 
activated every two steps until all MB rows are assigned to different processes and 
encoded simultaneously. In practice, message mechanism is used for data exchange 
between processes. 

 
Fig. 8. MB-level parallel scheme for I 

frames 

5   Experiments 

We employ 11 HD video sequences presented in Section 2 to evaluate the 
proposed MBG-level parallelism. The encoder software is developed based on the 



AVS1_P2 reference code (RM52k) [12]. Some coding algorithms are modified (e.g. 
using the more efficient hexagon-based block search algorithm [13] instead of the 
MLS_FME in the AVS reference code [12]) and SIMD optimization is applied to the 
SAD and MAD functions. Moreover, rate distortion optimization (RDO) and rate 
control are closed, and the GOP length is set to be 30.   

In our system, 45 processor cores on the Tilera TILExpress-20G™ card are used 
for video coding and the other 19 cores are reserved for audio, system and other 
applications. I frames are encoded using the MB-level parallelism as described in 
Section 4.3 and P/B frames are encoded using the MBG-level parallelism as described 
in Sections 3.3 and 4.2. In the MBG-level parallelism, 9×5 MBGs are defined, i.e. 9 
slices in each frame and 5 MBGs in each slice. In the following paper, we call this 
encoder “MBG Parallelism Encoder”(MBGcoder). 

In order to compare with the related parallel schemes, we also develop three 
anchor systems based on the same modified AVS reference code:  

(1) One Slice Single Core Encoder (OScoder): Single process implementation 
(for one single core) with one slice in the I/P/B frames; 

(2) Slice Parallelism Encoder (SLICEcoder): The slice-level parallelism for 
I/P/B frames, where each frame is divided into 45 slices (for 45 cores); 

(3) MB-Slice hybrid Parallelism Encoder (MB-SLICEcoder): The MB-level 
parallelism in I frames and the slice-level parallelism in P/B frames for a 
fair comparison to the MPE encoder. 
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Fig. 9. Performance in different scheme 

Fig. 9 shows the performance comparison of the 4 encoders above on two 
representative sequences (Cyclists and Crew). It can be seen that quality loss in the 
proposed MBGcoder is obviously less than the SLICEcoder. Compared with the MB-
SLICEcoder, the MBGcoder also has apparent performance gains. Since the 
MBGcoder and the MB-SLICEcoder employ the same MB-level parallelism, the 
above results show the effectiveness of the proposed MBG-level parallelism for P/B 
frames. On the other hand, the MB-SLICEcoder does not have much gain compared 
with the SLICEoder, which means the MB-level parallelism contributes very little to 
the coding quality. This proves that the MBG-level parallelism makes the major 
contribution to the quality loss saving.  



Table 1 shows the gains of the MBGcoder and the SLICEcoder compared with 
the OScoder using IPPP and IBBP GOPs. The proposed MBGcoder saves 52% 
quality loss in IPPP GOPs and 41% in IBBP GOPs. Table 2 compares the 
performances of the MBGcoder and the MB-SLICEcoder. The proposed MBGcoder 
saves about 44% quality loss in IPPP GOPs and 30% in IBBP GOPs by using the 
MBG-level parallelism in P/B frames. 

Table 1. Performance comparison of the proposed MBGcoder and the SLICEcoder 

GOP 
Structure scheme Cyclists Big

Ships Crew Raven Night Optis Harbour City Spin 
calendar

Shuttle
Start Sheriff (average) 

SLICEcoder (dB) -1.31 -0.08 -0.64 -0.70 -0.29 -0.2 -0.08 -0.19 -0.18 -0.29 -0.13 -0.37 
MPEcoder (dB) -0.77 -0.05 -0.28 -0.36 -0.09 -0.12 -0.01 -0.09 -0.08 -0.06 -0.06 -0.18 IPPP 
Gain Save (%) 41% 42% 56% 49% 68% 39% 87% 55% 53% 81% 56% 52% 
SLICEcoder (dB) -1.82 -0.19 -0.77 -1.15 -0.4 -0.07 -0.22 -0.19 -0.27 -0.23 -0.15 -0.5 
MBGcoder (dB) -1.25 -0.16 -0.34 -0.78 -0.17 -0.1 -0.07 -0.10 -0.15 -0.02 -0.08 -0.29 IBBP 
Gain Save (%) 31% 14% 56% 32% 57% -33% 69% 46% 45% 91% 48% 41% 

 Table 2. Performance comparison of the proposed MBGcoder and the MB-SLICEcoder 

GOP 
Structure scheme Cyclists Big

Ships Crew Raven Night Optis Harbour City Spin 
calendar

Shuttle
Start Sheriff (average) 

MB-SLICEcoder (dB) -1.25 -0.06 -0.59 -0.62 -0.23 -0.20 -0.02 -0.15 -0.14 -0.15 -0.09 -0.32  
MBGcoder (dB) -0.77 -0.05 -0.28 -0.36 -0.09 -0.12 -0.01 -0.09 -0.08 -0.06 -0.06 -0.18  IPPP 
Gain Save (%) 38% 24% 52% 42% 59% 38% 55% 43% 38% 64% 41% 44% 
MB-SLICEcoder (dB) -1.70 -0.16 -0.69 -1.04 -0.33 -0.07 -0.15 -0.14 -0.21 -0.02 -0.10 -0.42  
MBGcoder (dB) -1.25 -0.16 -0.34 -0.78 -0.17 -0.10 -0.07 -0.10 -0.15 -0.02 -0.08 -0.29  IBBP 
Gain Save (%) 26% 1% 51% 25% 47% -42% 54% 28% 29% -4% 19% 30% 

 

Our experiments also show that the MBGcoder can achieve real-time coding on 
SD (Standard Definition) videos using 36 cores, and 14fps on average on 720p HD 
videos using 45 processor cores. Table 3 shows the average coding times of the 
SLICEcoder and the MBGcoder for IPPP GOP structure. The MBGcoder only costs 
1.7ms (2.5%) more coding time per frame on average, but saves 52% quality loss as 
shown in table1.  

The above experimental results show that the proposed MBG-level parallelism 
can effectively reduce the quality loss and is more feasible for the many-core 
processor. 

Table 3. Coding speed comparison of the MBGcoder and the MB-SLICEcoder 

scheme Cyclists Big 
Ships Crew Raven Night Optis Harbour City Spin 

calendar
Shuttle
Start Sheriff (average) 

SLICEcoder(ms) 64.5 73.2 74.6 69.8 68.2 72.0 72.0 69.3 73.7 65.0 69.7 70.2 
MBGcoder(ms) 68.5 73.4 74.8 69.6 73.7 72.5 71.0 74.2 74.8 67.3 71.5 71.9 

6   Conclusions and Future Work 

In this paper, we proposed a novel Macro-Block Group (MBG) decomposition 
scheme for parallel AVS coding on the many-core processor. The MBG is defined as 
a rectangle region in a frame that consists of a certain number of MBs, which can be 
encoded independently. In order to keep the consistency with the AVS standard, we 

http://forum.ecoustics.com/bbs/messages/34579/118003.html


developed several techniques such as slice-based MBG partition, mode confining and 
MVD adjustment. In practice, the MBG-level parallelism and the MB-level 
parallelism are realized in P/B frames and I frames respectively. On the TILE64 
platform, the proposed scheme achieves 52% (IPPP）and 41% (IBBP) quality saving 
while keeping the same encoding speed-up compared with the slice-level parallelism.  

Future work includes cache optimization, nimbler MBG partitions for better load 
balance, and finally to achieve real-time on HD videos. 
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