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Abstract.Abstract.Abstract.

Abstract.

The paper investigates a locally coupled neural oscillator
autonomous system qualitatively. To obtain analytical results, we choose an
approximation method and obtain the set of parameter values for which an
asymptotically stable limit cycle exists, and then give sufficient conditions
on the coupling parameters which can guarantee asymptotically global
synchronization of oscillators given the same external input. The above
results are potentially useful to analytical and numerical work on the
binding problem in perceptual grouping and pattern segmentation.
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Introduction

A fundamental aspect of perception is to bind spatially separate sensory features to form
coherent objects. There is also wide experiment evidence that perception of a single object
(especially in the visual scene) involves distributed in a highly fragmented over a large spatial
region. The problem thus arise of how the constituent features are correctly integrated together
to represent a single object.
Some authors [1, 3, 5] assume that these features of an object are grouped based on the
temporal correlation of neural activities. Thus neurons that fire in synchronization would signal
features of the same object, and groups desynchronized from each other represent different
objects. Experimental observations of the visual cortex of animals show that synchronization
indeed exists in spatially remote columns and phase-locking can also occur between the striate
cortex and extratriate cortex, between the two striate cortices of the two brain hemisphere, and
across the sensorimotor cortex. These findings have concentrated the attention of many
researchers on the use of neural oscillators such as Wilson-Cowan oscillators and so on. In this
scheme, neural oscillators that are in phase would represent a single object (binding), while
neural groups with no phase lock would represent different objects. Though there are some
analysis results [4, 5, 7, 8, 10] on Wilson-Cowan neural network, the results on autonomous
Wilson-Cowan network system are still less. To make use of oscillation in phase, it is necessary
to study the autonomous Wilson-Cowan network system. In this paper, we use a neural network
based on locally coupled Wilson-Cowan oscillators to analyse the binding problem. To solve the
binding problem, it is necessary to determine the conditions under which neural oscillators
would exhibit periodical behavior and synchronize asymptotically..
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The paper is organized as follows. In Section 2, the mathematical model is described. Our main
theoretical results are given in Section 3. Conclusions are given in Section 4.
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In the model each oscillator is described by means of simplified Wilson-Cowan equations.
Such a model consists of two nonlinear ordinary differential equations representing the
interactions between two populations of neurons that are distinguished by the fact that their
synapses are either excitatory or inhibitory. Thus, each oscillator consists of a feedback loop
between an excitatory unit and inhibitory unit that obey the equations:ix iy
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A single oscillator and an open chain of coupled oscillators

Both and variables are interpreted as the proportion of active excitatory and inhibitoryix iy
neurons respectively, which are supposed to be continuous variables and their values may code
the information processed by these populations. Especially, the state and0ix  0iy 
represents a background activity. The parameters have the following meanings: is the strengtha
of the self-excitatory connection, is the strength of the self-inhibitory connection, is thed b
strength of the coupling from to , is the strength of the coupling from to .Bothx y c y x x
and are thresholds, and modify the rate of change of the and unit respectively. Fig.1y 1r 2r x y
shows the connections for single oscillator and the structure of an open chain of coupled
oscillators. All these parameters have nonnegative values, is external input to the oscillatoriI
in position which corresponds to a pixel in object. is a sigmoid activation functioni ( )H 
defined as: , is a parameter that sets the central slope of the sigmoid/( ) 1/(1 )z TH z e  T
relationship, and represent the strength of the connection between neurons. 
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Consider the following system of a single oscillator:

(2)
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Where , . In order to study the equation of the model, we choose the1 11/ r  2 21/ r 
1 11/ r  2 21/ r 

following piece-wise linear function to approximate the sigmoid function in (2):
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Thus, the system (2) may be described as:
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In order to solve the binding problem, we aim to find the conditions under which the oscillators
keep silent when equal to zero and the system will exist an asymptotic stable limit cycle wheniI

adopts proper value. Through analysis, it is easy to find the necessary conditions for theiI
above result.
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On the base of the obtained conditions, it is easy to verify the fact that the above conditions
satisfy Poincare-Bendixon Theorem. So an asymptotic stable limit cycle must exist. If you run
the MatLab simulation, you will see that an asymptotic stable limit cycle does indeed exist and
it is plotted in Fig. 2.

Fig.Fig.Fig.

Fig.

2.2.2.

2.

Two phase diagrams (an asymptotically stable zero solution and an asymptotically stable
limit cycle). The parameters are: and1, 1, 2, 0.5, 0, 0.65i ia b c d I I     

.1 20.025, 1, 0.2, 0.15x yT r r      
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The boundary conditions of the coupled system (1) are as follows:

1 10 1 1 0, ; ,
NN N Nx x x x y y y y
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1,

0,
i j

ij

if I I
r

otherwise
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where is a threshold. Based on the above restrictions, we will give the synchronization
conditions of the coupled system in (1).
Theorem 1: Consider an open chain coupled oscillators receiving the same input ,iI I

in (1), the synchronization state is asymptotically stable if the following1,2,i N 
conditions hold: , ,2 10 r r   
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Conclusions

The paper presented a qualitative analysis on locally coupled autonomous Wilson-Cowan neural
network, and gave the conditions under which the oscillator can oscillate and synchronize
asymptotically. Note they are only sufficient conditions to achieve oscillation and
synchronization. Some authors [5, 7, 8] give some analysis results on chaotic synchronization in
Wilson-Cowan neural network and put these into image segmentation. And some results [10]
lack of the generality and effectiveness in application more or less. In contrast to them, the
obtained results in the paper are more convenient to solve the binding problem. In the future
research, the authors will apply the proposed model to image segmentation and test its
performance.
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