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Masking a singularity with k−essence fields in an emergent gravity metric
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It is known that dynamical solutions of the k-essence equation of motion change the metric for
the perturbations around these solutions and the perturbations propagate in an emergent spacetime
with metric G̃µν different from the gravitational metric gµν . We show that for observers travelling

with the perturbations, there exist field configurations for the lagrangian L = [ 1
2
gµν∇µφ∇νφ]

1
2 for

which a singularity in the gravitational metric gµν can be masked or hidden for such observers. This
is shown for the Schwarzschild and the Reissner-Nordstrom metrics.

PACS numbers: 98.80.Cq

1.Introduction

Present day observations have established that the uni-
verse consists of roughly 25 percent dark matter, 70 per-
cent dark energy , about 4 percent free hydrogen and he-
lium with the remaining one percent consisting of stars,
dust, neutrinos and heavy elements. Actions with non-
canonical kinetic terms have been shown to be strong
candidates for dark matter and dark energy. A theory
with a non-canonical kinetic term was first proposed by
Born and Infeld in order to get rid of the infinite self-
energy of the electron [1]. Similar theories were also stud-
ied in [2, 3]. Cosmology witnessed these models first in
the context of scalar fields having non-canonical kinetic
terms which drive inflation. Subsequently k−essence
models of dark matter and dark energy were also con-
structed [4–11]. Effective field theories arising from string
theories also have non-canonical kinetic terms [12–15].
An approach to understand the origins of dark matter

and dark energy involve setting up lagrangians for what
are known as k−essence fields in a Friedman-Robertson-
Walker metric with zero curvature constant. In one ap-
proach [16] it is possible to unify the dark matter and
dark energy components into a single scalar field model
with the scalar field φ having a non-canonical kinetic
term. These scalar fields are the k−essence fields men-
tioned above. The general form of the lagrangian for
these k−essence models is assumed to be a function F (X)
with X = 1

2
gµν∇µφ∇νφ, and do not depend explicitly on

φ to start with. In [16], X was shown to satisfy a gen-
eral scaling relation,viz. X( dF

dX
)2 = Ca(t)−6 with C a

constant (similar expression was also derived in [17]).
Recently a lagrangian for the k−essence field has been

set up [18] in a homogeneous and isotropic universe where
there are two generalised coordinates q(t) = ln a(t) (a(t)
is the scale factor) and a scalar field φ(t) with a com-
plicated polynomial interaction between them. In the
lagrangian, q has a standard kinetic term while φ does
not have a kinetic part and occurs purely through the
interaction term. [18] incorporates the scaling relation of
[16] and shows that the the lagrangian has a

√
X depen-

dence. Classical solutions of this lagrangian gave very
good results for relevant cosmological parameters [18].
So addressing questions relating to (quantum) fluctua-
tions became meaningful. In [19] questions regarding the
amplitude of a scale factor at some epoch evolving to
a different value at a later epoch was addressed for the
above lagrangian at times close to the big bang (very
small scale factor). As the scale factor is inversely pro-
portional to the temperature at a particular epoch, these
amplitudes provided an estimate of quantum fluctuations
of the temperature.
Relativistic field theories with canonical kinetic terms

differ from lagrangian theories of k-essence in that non-
trivial dynamical solutions of the k-essence equation of
motion not only spontaneously break Lorentz invariance
but also change the metric for the perturbations around
these solutions [20]. The perturbations propagate [20, 21]
in an emergent spacetime with metric G̃µν different from
(and also not conformally equivalent to) the gravitational
metric gµν .
Now gµν can contain physical singularities. The mo-

tivation of this work is to investigate whether scenarios
can be constructed where the singularity in gµν can be
”masked” to observers travelling piggy-back on the per-
turbations of the k-essence scalar fields. In the context
of cosmological perturbations ,it has been shown in [20]
that for purely kinetic k-essence theories there exist la-
grangians which are proportional to

√
X . We show here

that a simple model lagrangian viz. L =
√
X has k-

essence field configurations (for both the Schwarzschild
and the Reissner-Nordstrom metrics) for which the sin-
gularities can be masked for observers sitting on the
scalar field perturbations. The plan of the paper is as
follows. In Section 2 a brief summary is given of emer-
gent gravity concepts as developed in [20]. In Section
3 the Schwarzschild metric is considered while Section 4
deals with the Reissner-Nordstrom case. Section 5 is the
conclusion.
2. Emergent Gravity

Consider the k−essence scalar field φ minimallly cou-
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pled to the gravitational field gµν . Then the k−essence
action is

Sk[φ, gµν ] =

∫

d4x
√
−gL(X,φ) (1)

where X = 1
2
gµν∇µφ∇νφ and ∇µ means the covariant

derivative asociated with the metric gµν . The total action
describing the dynamics of k−essence and gravity is

S[φ, gµν ] =

∫

d4x
√
−g[−1

2
M2

PlR + L(X,φ)] (2)

where R is the Ricci scalar and MPl the reduced Planck
mass. The energy momentum tensor for the k−essence

field is (with LX = dL
dX

, LXX = d2L
dX2 )

Tµν =
2√−g

δSk

δgµν
= LX∇µφ∇νφ− gµνL (3)

and the equation of motion for the k−essence field is

− 1√−g

δSk

δφ
= G̃µν∇µ∇νφ+ 2XLXφ − Lφ (4)

where the effective metric G̃µν is

G̃µν = LXgµν + LXX∇µφ∇νφ (5)

and is physically meaningful only when

1 + 2XLXX

LX

> 0

When this condition holds everywhere the effective met-
ric G̃µν determines the characteristics for k−essence
[8, 22–24] .For the non-trivial configurations of the k−
essence field ∂µφ 6= 0 and G̃µν is not conformally equiv-
alent to gµν . So the characteristics are different from
canonical scalar fields whose lagrangians are linear in X .
The characteristics determine the local causal structure
of the spacetime at every point of the manifold. So the
local causal structure for the k−essence field is different
from those ones defined by gµν .
It has been shown in [20] that a solution of the equation

of motion (4) can be obtained as L = f(φ)
√
X − V (φ).

In this work we take f(φ) and V (φ) to be constants and
so our lagrangian is effectively L =

√
X.

2. The Schwarzschild solution

The Schwarzschild metric is given by (rs = 2GM/c2 ≡
2GM , taking c = 1)

ds2 = (1− rs
r
)dt2 − (1 − rs

r
)−1dr2

−r2(dθ2 + sin2θdΦ2) (6)

and the emergent metric components G̃µν are related to
the Schwarschild metric components gµν by (5) so that

G̃00 =
(

1− rs
r

)

LX + LXX

(∂φ

dt

)2
(7)

G̃11 =
(

1− rs
r

)−1
LX + LXX

(∂φ

dr

)2
(8)

As we are concerned only with the singularity structure
of the metrics we are not discussing the G̃22 and G̃33

components as g22 and g33 are well behaved for r → 0.
Note that at r = 0 (7) has a singularity in the term

(

1−
rs
r

)

LX while the first term on the right hand side of (8)
merely goes to zero. So to avoid the physical singularity
we must have

LX(1−
rs
r
) = h1(r) (9)

Let us assume the function h1 to be a constant. Choose
this constant to be cs and the k-essence scalar field to
be spherically symmetric. With the lagrangian L =

√
X,

the equation to be solved is then LX(1 − rs
r
) = cs i.e.

X = gµν∇µφ∇νφ = 1
2c2s

(1− rs
r
)2 i.e.

(1− rs
r
)

(

∂φ

dt

)2

− (1− rs
r
)−1

(

∂φ

dr

)2

=
1

2c2s
(1− rs

r
)2 (10)

Assume the solutions to be of the form φs(r, t) = φ1s(r)+
φ2s(t) Then (10) reduces to

(

∂φ2s

dt

)2

=
1

c2s
(1− rs

r
) + (1− rs

r
)−2

(

∂φ1s

dr

)2

(11)

The l.h.s. of (11) is a function of t only and the r.h.s.

a function of r only. So both sides must separately be
equal to a constant k i.e.

(

∂φ2s

dt

)2

=
1

2c2s
(1− rs

r
) + (1− rs

r
)−2

(

∂φ1s

dr

)2

= k (12)

Note that c2s is always positive and for convenience we
take k = 1. Therefore φ2s(t) =

√
kt ≡ t = t, taking all

integration constants to be zero. The spatial equation to
be solved now is (b = 1

2c2s
):

(

∂φ1s

dr

)

=

[

(1 − rs
r
)2 − b(1− rs

r
)3
]

1
2

(13)

The solution is

φ1s(r) = (r + 2rs)

√

1− b +
rsb

r

+
rs√
1− b

(3b− 2)ln

[

2
√
1− b

√
r +

√
r

√

1− b+
rsb

r

]

(14)

Hence the full solution is

φs(r, t) = t+ (r + 2rs)

√

1− b +
rsb

r

+
rs√
1− b

(3b− 2)ln

[

2
√
1− b

√
r +

√
r

√

1− b+
rsb

r

]

(15)
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When does this field configuration also satisfy the equa-
tion of motion (4)? It is seen that with our choice for L
, the last two terms on the r.h.s. of (4) are zero and the
temporal part of the equation viz. is G00(∂2

0φ2s) = 0 for
all times t while the spatial part i.e. G11(∂2

rφ1s) vanishes
for

r = rs ; r =
3b

3b− 2
rs (16)

As b = 1
2c2s

is always positive the equations of motion

of emergent gravity for the scalar field are always satis-
fied at the Schwarzschild event horizon rs and beyond in
units of rs for all times t. For obvious reasons we are
interested only in solutions in regions that are accessible
to an external observer i.e. in regions for which r ≥ rs.

It can also be verified that the terms LXX

(

∂φ
dt

)2
and

LXX

(

∂φ
dr

)2
in (7) and (8) respectively remain well be-

haved with this field configuration φs(r, t) for r → 0.
3. The Reissner-Nordstrom black hole

For a static charged black hole with charge Q the met-
ric is the Reissner-Nordstrom metric :

ds2 = (1− rs
r
+

r2Q
r2

)dt2 − (1 − rs
r
+

r2Q
r2

)−1dr2

−r2(dθ2 + sin2θdΦ2) (17)

with r2Q = GQ2/4πǫ0c
4 ≡ GQ2/4πǫ0 taking c = 1. The

emergent gravity metric components are related to their
Reissner-Nordstrom counterparts by

G̃00 =

(

1− rs
r
+

r2Q
r2

)

LX + LXX

(

∂φ

dt

)2

(18)

G̃11 =

(

1− rs
r
+

r2Q
r2

)−1

LX + LXX

(

∂φ

dr

)2

(19)

We now carry out a similar analysis as before for the
same lagrangian L =

√
X . The equation to be solved

now is LX(1− rs
r
+

r2Q
r2
) = crn i.e.

(1− rs
r
+

r2Q
r2

)

(

∂φ

dt

)2

− (1 − rs
r
+

r2Q
r2

)−1

(

∂φ

dr

)2

=
1

2c2rn
(1− rs

r
+

r2Q
r2

)2(20)

Again assuming solutions to be like φrn(r, t) = φ1rns(r)+
φ2rn(t) and proceeding exactly as before , the full solu-
tion for the field is obtained as

φrn(r, t) = t+
√

rsr − r2Q

[

2 +
5rs
4r

−
r2Q
2r2

]

−
(

3r2s
4rQ

+ 2rQ

)

tan−1

(

√

rsr − r2Q

rQ

)

(21)

This solution will also be a solution of the equation of
motion (4) for all times t and for the following values of

the radial coordinate

r1 = 2r2Q/rs ; r2 =
1

2
[3rs ±

√

9r2s − 12r2Q]

r3 ≡ r± =
1

2
[rs ±

√

r2s − 4r2Q] (22)

The solutions should be on or outside the event horizon
for obvious regions. Thus r2 and r3 are valid solutions
whereas r1 is unphysical. ( r3 denotes the two event hori-
zons while r2 > r3 and we are ruling out extremal black

holes). Again, the terms LXX

(

∂φ
dt

)2
and LXX

(

∂φ
dr

)2
in

(18) and (19) respectively remain well behaved with this
field configuration φrn(r, t) for r → 0.

4.Conclusion

In this work we have shown that for observers whose
world is in an emergent gravity metric G̃µν , singulari-
ties in the gravitational metric gµν can remain masked
for certain k−essence field configurations which are also
solutions of the equations of motion. This means that
observers travelling with the perturbations of k−essence
fields that are solutions of the equations of motion will
never be aware of the physical singularities of the grav-
itational metric as this is not conformally equivalent to
the emergent gravity metric. This has been shown for
the Schwarzschild and the Reissner-Nordstrom metrics.

The scenario works for certain specific values of the
radial coordinate r and for all values of the temporal
coordinates. In the Schwarzschild case the radial coor-
dinate r ≥ rs where rs is the event horizon, while in
the Reissner-Nordstrom case the solutions are again the

event horizons r± = 1
2
[rs ±

√

r2s − 4r2Q] and two other

values greater than r±.

∗ debashis@bose.res.in
† senchoudhurys@gmail.com

[1] M.Born and L.Infeld,Foundations of the new field the-
ory,Proc.Roy.Soc.Lond A144(1934) 425.

[2] W.Heisenberg, Zeitschrift fur Physik A Hadrons and Nu-
clei 113 no.1-2.

[3] P.A.M.Dirac, An extensible model of the electron, Royal
Society of London Proceedings Series A 268 (1962) 57.

[4] C.Armendariz-Picon, T.Damour and V.Mukhanov,k-
Inflation, Phys.Lett. B458 209 (1999) [hep-th/9904075]

[5] C.Armendariz-Picon, V.Mukhanov and P.J.Steinhardt,
Essentials of k-essence, Phys.Rev. D63 103510
(2001)[astro-ph/0006373]

[6] C.Armendariz-Picon, V.Mukhanov and P.J.Steinhardt,A
dynamical solution to the problem of a small cos-
mological constant and late time cosmic acceleration,
Phys.Rev.Lett. 85 4438 (2000) [astro-ph/0004134]

[7] T.Chiba, T.Okabe and M.Yamaguchi, Kinetically
driven quintessence, Phys.Rev. D62 023511 (2000)
[astro-ph/9912463]

[8] C.Armendariz-Picon and E.A.Lim, Haloes of k-essence,
JCAP 0508(2005) 007 [astro-ph/0505207].

http://arxiv.org/abs/hep-th/9904075
http://arxiv.org/abs/astro-ph/0006373
http://arxiv.org/abs/astro-ph/0004134
http://arxiv.org/abs/astro-ph/9912463
http://arxiv.org/abs/astro-ph/0505207


4

[9] N.Arkani-Hamed, H.C.Cheng,M.A.Luty and
S.Mukohyama, Ghost condensation and a consis-
tent infrared modification of gravity, JHEP 05 (2004)
074 [hep-th/0312099].

[10] N.Arkani-Hamed, P.Creminelli,S.Mukohyama and
M.Zaldarriaga, Ghost inflation, JCAP 0404 (2004) 001
[hep-th/0312100].

[11] R.R.Caldwell A phantom menace?, Phys.Lett.B545

(2002) 23 [astro-ph/9908168]
[12] J.Callan, G.Curtis and J.M.Maldacena, Brane dynamics

from the Born-Infeld action, Nucl.Phys.B513 (1998) 198
[hep-th/9708147].

[13] G.W.Gibbons, Born-Infeld particles and Dirichlet p-
branes, Nucl.Phys. B514 (1998) 603 [hep-th/9709027].

[14] G.W.Gibbons, Aspects of Born-Infeld theory and
string/M-theory, Rev.Mex.Fis. 49S1 (2003) 19
[hep-th/0106059].

[15] A.Sen, Rolling Tachyon. JHEP 04 (2002) 048
[hep-th/0203211].

[16] R.J. Scherrer Purely Kinetic k Essence as Unified
Dark Matter,Phys.Rev.Lett. 93 011301 (2004) [astro-
ph/040231].

[17] L.P.Chimento,Extended tachyon field, Chaplygin gas and

solvable k-essence cosmologies,Phys.Rev. D69 123517
(2004) [astro-ph/0311613].

[18] D.Gangopadhyay and S. Mukherjee,Logarithm of the
scale factor as a generalised coordinate in a lagrangian
for dark matter and dark energy, Phys. Lett.B665 121
(2008)[arXiv:0710.5366].

[19] D.Gangopadhyay, Estimating temperature fluctuations in
the early universe, Gravitation and Cosmology 16 231
(2010) [arXiv: 0903.3806]

[20] E.Babichev,M.Mukhanov and A.Vikman, k-
Essence,superluminal propagation,causality and emergent
geometry, JHEP 0802 101 (2008)[arXiv:0708.0561].

[21] M.Visser,C.Barcelo and S.Liberati, Analogue models
of and for gravity, Gen.Rel.Grav. 34 1719 (2002)
[gr-qc/0111111].

[22] G.W.Gibbons,Aspects of Born-Infeld theory and string
theory, Rev.Mex.Fis. 49S1 13 (2003) [hep-th/0106059].

[23] G.W.Gibbons,Thoughts on tachyon cosmology, Class.
Quant. Grav. 20 S231 (2003) [hep-th/0301117].

[24] A.D.Rendall, Dynamics of k-essence, Class.Quant.Grav.
23 1557 (2006) [gr-qc/0511158].

http://arxiv.org/abs/hep-th/0312099
http://arxiv.org/abs/hep-th/0312100
http://arxiv.org/abs/astro-ph/9908168
http://arxiv.org/abs/hep-th/9708147
http://arxiv.org/abs/hep-th/9709027
http://arxiv.org/abs/hep-th/0106059
http://arxiv.org/abs/hep-th/0203211
http://arxiv.org/abs/astro-ph/0311613
http://arxiv.org/abs/0710.5366
http://arxiv.org/abs/0708.0561
http://arxiv.org/abs/gr-qc/0111111
http://arxiv.org/abs/hep-th/0106059
http://arxiv.org/abs/hep-th/0301117
http://arxiv.org/abs/gr-qc/0511158

