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Abstract

We give an interpretation of the temperature in de Sitter universe in terms of a dynamical Unruh

effect associated with the Hubble sphere. As with the quantum noise perceived by a uniformly accelerated

observer in static space-times, observers endowed with a proper motion can in principle detect the effect.

In particular, we study a “Kodama observer” as a two-field Unruh detector for which we show the effect is

approximately thermal. We also estimate the backreaction of the emitted radiation and find trajectories

associated with the Kodama vector fields are stable.

1 Introduction

In Ref. [1], Kodama introduced a vector field which generalizes the notion of time-like Killing vectors to
space-times with dynamical horizons 1. Recently many authors have focused their attention on the Kodama
vector field and found interesting results related to the measurement of the Hawking radiation emitted by
different kinds of horizons [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] or timelike naked singularities [13].

We here present a more “physical” process of measurement in which the detector has finite mass and
extension [14], and interacts with a massless scalar field like in Ref. [15]. The background is a de Sitter
universe and the horizon is provided by its exponential expansion. The Kodama observer does not follow a
cosmic fluid geodesics, but remains at constant proper distance from the horizon, and is thus “accelerated”
with respect to locally inertial observers. Consequently, it perceives the de Sitter vacuum as a thermal
bath with a temperature associated with the surface gravity of the Hubble sphere, much like a uniformly
accelerated detector in Minkowski space-time measures a temperature associated with its acceleration. As
usual, such result is obtained from the transition probability for the detector to emit a (scalar) radiation
quantum and increase its energy. Further, assuming finite detector’s size and mass, we show that the Kodama
trajectory remains stable during this process.

We shall use the metric signature (+−−−) and implement units where c = G = kB = 1.
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1For a clarification of the differences between Kodama and Killing vectors, see Ref. [2]. For the ability of Kodama vectors

to define a local time flow, see Ref. [3]
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2 Kodama observer in de Sitter

For an observer comoving with the cosmic fluid, the de Sitter metric reads

ds2 = dt2 − e2H t
[

dr2 + r2 dΩ
]

, (2.1)

and the Kodama vector is given by

kµ = (1,−H r) , (2.2)

which is related to the surface gravity K of the de Sitter horizon, namely

kα∇[αkβ] = −K kβ =
1

K

∣

∣

∣

∣

K=1/H

= H . (2.3)

We are interested in a detector moving along the Kodama trajectory,

r eHt = K , (2.4)

where K is constant, and its four-velocity is then given by

uµ =
kµ√

1−H2K2
. (2.5)

Analogously, the four-acceleration has components


















at =
H3K2

1−H2K2

ar = −H
2K e−H t

1−H2K2
,

(2.6)

and

A2 ≡ aµ aµ = − H4K2

1−H2K2
. (2.7)

A very simple interpretation of the Kodama observers can be found if we go on to the static representation
of de Sitter space,

ds2 =
(

1−H2 r̄2
)

dt2 −
(

1−H2 r̄2
)−1

dr̄2 − r̄2 dΩ2 . (2.8)

The Kodama trajectory then corresponds to r̄ = K with fixed angles, that is to observers, if we wish, which
are at rest relative to the static coordinate system.

We can also introduce coordinates associated with the Kodama detector, namely

K = r eH t , T = t , (2.9)

so that the metric reads 2

ds2 =
(

1−H2K2
)

dT 2 + 2HK dT dK − dK2 −K2 dΩ2 . (2.10)

The four-velocity of the detector in Kodama coordinates {T,K} is thus






uT = ut

uK = 0 ,
(2.11)

and the four-acceleration






aT = at

aK = −H2K .
(2.12)

2Note that, in this case, the Kodama vector ∂/∂T is also a Killing vector.
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3 Particles detectors

A key concepts of Physics – no matter if classical or quantum – is the concept of particle. The question
“What is a particle?” is so important in our atomistic viewpoint that even in Quantum Field Theory (QFT)
we feel necessary to find an answer.

As far as gravitation is not considered (an approximation which turns out to be often natural since gravity
is the weakest known interaction), the answer runs straight without many accidents: in this case, in fact, the
space-time where quantum fields propagate is Minkowskian. It is well known [16] that Minkowski space-time
possesses a rectangular coordinate system (t, x, y, z) naturally associated with the Poincaré group, whose
action leaves the Minkowski line element unchanged. The vector field ∂t is a Killing vector of Minkowski
space-time orthogonal to the space-like hypersurfaces t = constant and the wave modes uk ∝ exp(i ωk t−k·x)
are eigenfunctions of this Killing vector with eigenvalues i ω. Thus, a particle mode solution in Minkowski
space is one which is positive frequency (ω > 0) with respect to the time coordinate t. Under Poincaré
transformations, positive frequency solutions transform to positive frequency solutions and the concept of
particle is the same for every inertial observer, in the sense that all inertial observers agree on the number
of particles present. Further, the Minkowski vacuum state, defined as the state with no particles present, is
invariant under the Poincaré group.

Problems arise as one turns gravity on. In curved space-time, in fact, the Poincaré group is no longer a
symmetry group. In general, there are no Killing vectors with which to define positive frequency modes and
no coordinate choice is available to make the field decomposition in some modes more natural than others.
This, of course, is not just an accident but is rooted in the same guiding principle of general relativity:
that coordinate systems are physically irrelevant. As a possible way out, DeWitt and others suggested an
operational definition of a particle: “a particle is something that can be detected by a particle detector”.
(That this definition may look as a tautology will not concern us further.) The particle detector proposed
by Unruh [17] and later, in simplified version, by DeWitt [18] can be described as a quantum mechanical
particle with many energy levels linearly coupled to a massless scalar field via a monopole moment operator.
This is the construction we will employ in the following.

3.1 Point-like detectors

Let us consider a massless scalar field φ with Hamiltonian Ĥφ obeying the massless Klein-Gordon equation.
The free field operator is expanded in terms of a complete orthonormal set of solutions to the field equation
as

φ̂(t,x) =
1

(2π)
3
2

∫

dk√
2ωk

(

âke
−i(ωkt−k·x) + â†

k
ei(ωkt−k·x)

)

, (3.1)

where, in the massless case, ωk = |k|. Field quantization is realized by imposing the usual commutation
relations on the creation and annihilation operators,

[âk, â
†
k′ ] = δ3(k − k

′) , [âk, âk′ ] = 0 = [â†
k
, â†

k′ ] . (3.2)

The Minkowski vacuum is the state | 0 〉 annihilated by âk, for all k.
The detector is a quantum mechanical system with a set of energy eigenstates {| 0 〉d, | Ei 〉} which moves

along a prescribed classical trajectory t = t(τ), x = x(τ), where τ is the detector’s proper time. The detector
is coupled to the scalar field φ via the interaction Hamiltonian

Ĥint = λ M̂(τ)φ̂(τ) . (3.3)

λ is treated here as a small parameter while M̂(τ) is the detector’s monopole moment operator whose
evolution is provided by

M̂(τ) = eiĤdτ M̂(0) e−iĤdτ , (3.4)
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Ĥd being the detector’s Hamiltonian. This model is also known as the point-like detector since the interaction
takes place at a point along the given trajectory at any given time.

Suppose that at time τ0 the detector and the field are in the product state | 0, E0 〉 = | 0 〉| E0 〉, where
| E0 〉 is a detector state with energy E0 [19]. We want to know the probability that at a later time τ1 > τ0
the detector is found in the state | E1 〉 with energy E1 ≷ E0, no matter what is the final state of the field φ.
The answer is provided by the so-called interaction picture where we let both operators and states evolve in
time according to the following understandings: operators evolution is governed by free Hamiltonians; states
evolution is governed by the Schrödinger equation depending on the interaction Hamiltonian, that is

i
d

dτ
| ϕ(τ) 〉 = Ĥint| ϕ(τ) 〉 . (3.5)

The amplitude for the transition from the state | 0, E0 〉 at time τ = τ0 to the state | ϕ,E1 〉 at time τ = τ1
is then provided by

〈ϕ,E1 | 0, E0 〉 = 〈ϕ,E1 |T̂ exp

(

−i
∫ τ1

τ0

dτ Ĥint(τ)

)

| 0, E0 〉 , (3.6)

where T̂ is the time-ordering operator. To first order in perturbation theory, we get

〈ϕ,E1 | 0, E0 〉 = 〈ϕ,E1 |̂I| 0, E0 〉 − i λ 〈ϕ,E1 |
∫ τ1

τ0

dτ eiĤdτ M̂(0) e−iĤdτ φ̂(τ)| 0, E0 〉+ . . .

= −i λ 〈E1 |M̂(0)| E0 〉
∫ τ1

τ0

dτ eiτ(E1−E0)〈ϕ |φ̂(τ)| 0 〉+ . . . (3.7)

The transition probability to all possible finale states of the field φ is given by squaring (3.7) and summing
over the complete set {| ϕ 〉} of final unobserved field states,

∑

ϕ

|〈ϕ,E1 | 0, E0 〉|2 = λ2|〈E1 |M̂(0)| E0 〉|2
∫ τ1

τ0

dτ

∫ τ1

τ0

dτ ′ e−i(E1−E0)(τ−τ ′)〈 0 |φ̂(τ) φ̂(τ ′)| 0 〉 . (3.8)

This expression has two parts: the pre-factor λ2|〈E1 |M̂(0)| E0 〉|2 which depends only on the peculiar details
of the detector and the response function

Rτ0,τ1(∆E) =

∫ τ1

τ0

dτ

∫ τ1

τ0

dτ ′ e−i∆E(τ−τ ′)〈 0 |φ̂(τ) φ̂(τ ′)| 0 〉 , (3.9)

which is insensitive to the internal structure of the detector and is thus the same for all possible detectors.
Here, we have set the energy gap ∆E ≡ E1 − E0 ≷ 0 for excitations or decay, respectively. From now on,
we will only consider the model-independent response function.

Introducing new coordinates u := τ, s := τ−τ ′ for τ > τ ′ and u := τ ′, s := τ ′−τ for τ ′ > τ , the response
function can be re-written as

Rτ0,τ1(∆E) = 2

∫ τ1

τ0

du

∫ u−τ0

0

ds Re
(

e−i∆Es〈 0 |φ̂(u) φ̂(u − s)| 0 〉
)

, (3.10)

having used 〈 0 |φ̂(τ ′)φ̂(τ)| 0 〉 = 〈 0 |φ̂(τ)φ̂(τ ′)| 0 〉∗, since φ̂ is a self-adjoint operator. Eq. (3.10) can be
differentiated with respect to τ1 in order to obtain the transition rate

Ṙτ0,τ (∆E) = 2

∫ τ−τ0

0

ds Re
(

e−i∆Es〈 0 |φ̂(τ) φ̂(τ − s)| 0 〉
)

, (3.11)

where we set τ1 ≡ τ . If the correlation function 〈 0 |φ̂(τ)φ̂(τ − s)| 0 〉 is invariant under τ -translations, (3.11)
can be further simplified,

Ṙτ0,τ (∆E) =

∫ τ−τ0

−(τ−τ0)

ds e−i∆Es〈 0 |φ̂(s) φ̂(0)| 0 〉 . (3.12)
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The correlation function 〈 0 |φ̂(x)φ̂(x′)| 0 〉 which appears in these expressions is the positive frequency Wight-
man function that can be obtained from (3.1),

〈 0 |φ̂(x) φ̂(x′)| 0 〉 = 1

(2π)3

∫

dk

2ωk

e−iωk(t−t′)+ik·(x−x
′) . (3.13)

The integral in |k| contains UV divergences and can be regularized [16] by introducing the exponential cut-off
e−ǫ|k|, with ǫ > 0 and small, in the high frequency modes. The resulting expression is

〈 0 |φ̂(x(τ)) φ̂(x(τ ′))| 0 〉 = 1/4π2

|x(τ) − x(τ ′)|2 − [t(τ)− t(τ ′)− iǫ]2
≡Wǫ(x(τ), x(τ

′)) , (3.14)

so that, we finally have

Ṙτ0,τ (∆E) = lim
ǫ→0+

∫ τ−τ0

−(τ−τ0)

ds e−i∆EsWǫ(x(s), x(0)) . (3.15)

3.2 Unruh effect in De Sitter universe

Let us apply the above construction to Kodama detectors in de Sitter space-time. We first recall that
de Sitter metric (2.1) and (2.8) in the cosmological global system reads

ds2 = dτ2 −H−2 cosh2(Hτ) dΩ2
3 . (3.16)

An easy calculation then gives the equivalent definitions of the Kodama trajectory (2.4)

r = K e−H t ⇐⇒ r̄ = K ⇐⇒ sinχ =
KH

cosh(Hτ)
. (3.17)

As we mentioned before, the relevant equality is the second one: it means that the Kodama observers are
just the stationary de Sitter observers at constant distance from their cosmological horizon. We know that
these observers will perceive a thermal bath at de Sitter temperature T = H/2π, so this must be true in the
inflationary patch as well.

We can confirm this expectation by rewriting Eq. (3.14) with the following relations for de Sitter space

η = −H−1e−H t, r = K e−Ht = −KH η, τ = t
√

1−K2H2 . (3.18)

Then, provided 1−K2H2 > 0, the Wightman function (3.14) becomes

Wǫ(x, x
′) = − 1

4π2

H2

eH(t+t′)

1

(1−K2H2)(e−Ht − e−Ht′ − iǫ)2
. (3.19)

and, in the limit of τ0 → −∞, the detector transition rate (3.15) becomes

Ṙ(∆E) = −H2

4π2
lim
ǫ→0+

∫ +∞

−∞
ds

exp(−i∆E
√
1−K2H2 s)

(eHs/2 − e−Hs/2 − iǫ)2
. (3.20)

As long as H > 0 (expanding universe) we can write the denominator as

(

eH s/2 − e−H s/2 − iǫ
)2

= 4 sinh2 [H (s− iǫ)/2] . (3.21)

This function has infinitely many double poles in the complex s-plane, namely for s = sj with

sj =
2 π i

H
j , j ∈ Z . (3.22)
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Since we are interested in the case of ∆E > 0, we can close the contour of integration in the lower half
plane, summing over the residues of all the double poles in the lower complex s-plane, with the exception of
the s = 0 pole which has been slightly displaced above the integration path by the iǫ-prescription. The well
known result turns out to be confirmed, namely

Ṙ(∆E) =
∆E

√
1−K2H2 exp

(

2 π
H ∆E

√
1−K2H2

)

exp
(

2π∆E
√
1−K2 H2

H

)

− 1
, (3.23)

showing the presence of a cosmological Unruh effect with de Sitter temperature

TH =
H

2 π
, (3.24)

red-shifted by the Tolman factor
√
1−K2H2, here appearing as a Doppler shift due to the proper motion

of the detector. In fact, we remarked after Eq (3.17) that K is also the value of the static coordinate r̄ of
the detector relative to the static patch.

Another intriguing formula can be written if we recall the value (2.7) of the acceleration: one easily sees
that

TH√
1−H2K2

=

√
A2 +H2

2π
. (3.25)

One can interpret this formula by saying that the temperature is actually due to a mixing of a pure Un-
ruh effect (the acceleration term) plus a cosmological expansion term (the H term), and is the de Sitter
version [20] of a formula discovered by Deser & Levine for detectors in anti-de Sitter space [21].

Alternatively, we can understand this effect as the transition from cosmological energy ∆E, conjugated
to cosmic de Sitter time t, to the energy ∆E

√
1−K2H2 as measured locally by Kodama’s observers (with

proper time T ).

3.3 Extended detector and backreaction

We now repeat the previous analysis assuming the detector’s size is not a priori negligible. In order to
simplify the computation, we still assume spherical symmetry and the detector therefore only extends along
one dimension. We will not display all the details but focus on the main differences.

It is easy to see that a detector moving along a Kodama trajectory (2.4) in an expanding de Sitter
universe, has the same dynamics of a particle which moves along the separatrix in the potential of an
inverted harmonic oscillator. From the equation of motion (2.4), we can therefore introduce the effective
Lagrangian

Liho = m

(

d2r

dt2
+H2 r2

)

, (3.26)

where m is a parameter with mass dimension whose relation with physical quantities will be clarified later.
Our detector is initially (at t = 0) represented by a Gaussian wave packet of size b peaked around r = K,

ψ(t, r) =

exp

[

−iH Kmr

~
− (r −K)2

2 b2

]

√

b
√
π

, (3.27)

which is then propagated to later times by the propagator obtained from the Lagrangian (3.26) (see Ref. [14])

G(t, r; 0, r′) =

√

iH m

2 π ~ sinh(H t)
exp

[

i
H m

[

(r2 − r′2) cosh(H t)− 2 r r′
]

2 ~ sinh(H t)

]

. (3.28)
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The complete expression of the detector’s propagated wavefunction is rather cumbersome, however we notice
that its square modulus yields

|ψ(t, r)|2 ≃ exp

[

− 2 b2H2m2 (r −K e−H t)2

b4H2m2 − ~2 + (~2 + b4H2m2) cosh(H t)

]

, (3.29)

and the classical behaviour is properly recovered in the limit ~ → 0 followed by b → 0 [14], in which
the detector’s wavefunction ψ(r, t) reproduces the usual Dirac δ-function peaked on the classical trajectory
employed in Sections 3.1-3.2.

However, in order to study the probability for the detector to absorb a scalar quantum and make a
transition between two different trajectories (parameterized by different mi and Ki), one needs to compute
the transition amplitude for finite b and ~ (otherwise the result would automatically vanish). The detector
now interacts with the quantized scalar field ϕ = ϕ(t, r) according to

Lint =
1

2
Q (ψ∗

2 ψ1 + ψ2 ψ
∗
1)ϕ , (3.30)

where Q is a coupling constant and ψi = ψi(t, r) two possible states of the detector corresponding to different
trajectories ri = Ki e

−H t and mass parameters mi
3. We assume the difference between the two states is

small,







K1 = K − 1
2 δK

K2 = K + 1
2 δK







m1 = m− 1
2 δm

m2 = m+ 1
2 δm ,

(3.31)

and expand to leading order in δK and δm and, subsequently, for short times (H t ∼ H t′ ≪ 1), keeping ~

and b finite. In particular, one obtains

ψ∗
2 ψ1(t)ψ

∗
1 ψ2(t

′) ≃ exp

[

−i H
2K2

~
δm (t− t′) +O(b)

]

, (3.32)

in which we have evaluated the phase for r along the average trajectory between r1 and r2. Upon comparing
with the result obtained for the point-like case, we immediately recognize that

H2K2m = E
√

1−H2K2 , (3.33)

where E is the detector’s proper energy and

ψ∗
2 ψ1(t)ψ

∗
1 ψ2(t

′) ≃ exp

[

− i

~
δE

√

1−H2K2 (t− t′) +
i

~

2− 3H2K2

K
√
1−K2H2

E δK (t− t′) +O(b)

]

. (3.34)

We can now take the limit b → 0, as part of the point-like limit in which one would not expect the second
term in the above exponential. In Ref. [15] we required the analogue of the second term above vanished
and obtained the equation of motion for a uniformly accelerated detector in Minkowski space-time, namely
ma = f and constant. Following the same line of reasoning, we now obtain the equation of motion

δK = 0 . (3.35)

This can be interpreted as meaning the Kodama trajectory is stable against thermal emission of scalar
quanta in the de Sitter background.

The transition probability per unit de Sitter time can finally be computed by taking the classical limit,
in which one recovers the same result in Eq. (3.23) with ∆E = δE.

3A fundamental difference with respect to the Unruh effect analyzed in Ref. [15] is that the acceleration parameter H is not
varied here, since it is a property of the background space-time. A change δK implies a change in the detector’s acceleration
according to Eq. (2.7).
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4 Conclusions

We considered an expanding de Sitter universe that is inflating exponentially and studied the dynamics of an
observer as an object which is collapsing towards the Hubble sphere. This is the “Kodama observer” placed
at K = r eH t constant, and its radial velocity (2.5) is in fact negative which means that the observer is
moving towards decreasing radii. In particular, the observer’s motion is described by an inverted harmonic
potential and involves the negative radial acceleration in Eq. (2.6). We can picture our observer/detector in
spherical coordinates as a “shell” with a “density” profile |ψ|2 peaked on the average radius r [see Eq. (3.29)]
which sees the universe becoming less dense (in time) but in a homogenous way (in space). Of course, the
detector’s proper time differs from the cosmological time t for an observer comoving with the cosmic fluid.

The detector interacts with a scalar field so that it can absorb or emit quanta and change its proper mass
(energy). Indeed, the Unruh effect is given by the simultaneous emission of a scalar quantum and detector’s
excitation. We therefore considered the transition between two states of the detector corresponding to two
different trajectories associated with different energies and values of K and obtained the transition rate
(3.23) in the point-like limit. Our result shows the expected thermal behaviour (3.24) associated with the
trajectory’s stability (3.35).

In summary, we studied the response of a Kodama detector moving along trajectories at constant distance
from the Hubble sphere of the de Sitter universe and found that it perceives a thermal noise associated with
the emission of scalar quanta. We also estimated the backreaction of the emitted radiation and showed
trajectories associated with the Kodama vector fields are stable. This represents a novel semiclassical
property of the (classically defined) Kodama vector.

References

[1] H. Kodama, Prog. Theor. Phys. 63 (1980) 1217.

[2] R. Casadio, A. Orlandi and P. Nicolini, in preparation.

[3] G. Abreu and M. Visser, Phys. Rev. D 82, 044027 (2010)

[4] S. A. Hayward, Class. Quant. Grav. 15, 3147 (1998) [arXiv:gr-qc/9710089].

[5] S. A. Hayward, S. Mukohyama and M. C. Ashworth, Phys. Lett. A 256, 347 (1999) [arXiv:gr-
qc/9810006].

[6] I. Racz, Class. Quant. Grav. 23, 115 (2006)

[7] R. Di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini and G. Zoccatelli, Phys. Lett. B 657, 107 (2007)

[8] R. Di Criscienzo and L. Vanzo, Europhys. Lett. 82, 60001 (2008)

[9] S. A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini and S. Zerbini, Class. Quant. Grav. 26, 062001
(2009) [arXiv:0806.0014 [gr-qc]].

[10] A. B. Nielsen and M. Visser, Class. Quant. Grav. 23, 4637 (2006)

[11] R. Di Criscienzo, S. A. Hayward, M. Nadalini, L. Vanzo and S. Zerbini, Class. Quant. Grav. 27 (2010)
015006.

[12] A. B. Nielsen and D. h. Yeom, Int. J. Mod. Phys. A 24, 5261 (2009)

[13] R. Di Criscienzo, L. Vanzo and S. Zerbini, JHEP 1005, 092 (2010)

[14] R. Casadio and G. Venturi, Phys. Lett. A 199 (1995) 33.

[15] R. Casadio and G. Venturi, Phys. Lett. A 252 (1999) 109.

8



[16] N. D. Birrell and P. C. W. Davies, “Quantum Fields In Curved Space”, Cambridge, Uk: Univ. Pr.
(1982).

[17] W. G. Unruh, Phys.Rev. D14, 870 (1976).

[18] B. S. DeWitt, “Quantum gravity: the new synthesis” in General Relativity an Einstein centenary survey

ed. S. W. Hawking, W. Israel, Cambridge University Press (Cambridge, 1979).

[19] P. Langlois, “Imprints of spacetime topology in the Hawking-Unruh effect,” arXiv:gr-qc/0510127.

[20] H. Narnhofer, I. Peter and W. E. Thirring, Int. J. Mod. Phys. B 10, 1507 (1996).

[21] S. Deser and O. Levin, Phys. Rev. D 59, 064004 (1999)

9


