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w-cosmological singularities

L. Fernández-Jambrina1, a
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In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological
models [1]. They are shown to appear in cosmologies for which the scale factor is analytical with a
Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of
the perfect fluid is singular, the singularities are weak, as it happens for other models for which the
density and the pressure are regular.
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I. INTRODUCTION

The observational evidence from different sources [2–
6] for the present stage of accelerated expansion of our
universe has driven the quest for theoretical explanations
of such feature. Assuming the validity of the theory of
gravity, one attempt of explanation is the existence of an
unregarded, but dominant at present time, ingredient of
the energy content of the universe, known as dark en-
ergy [7–9], with unusual physical properties. The other
possibility is modifying the general theory of relativity at
large scales [10–12].
Both approaches have contributed to change our view

of the final state of the universe. Before the discovery of
the accelerated expansion of the universe only two pos-
sibilities were considered. Either our universe would ex-
pand forever or the matter content would force a contrac-
tion and recollapse of the universe in a final Big Crunch.
Observations compatible with a barotropic index w =

p/ρ lower than -1 pointed out a final singularity in the
form of an infinite scale factor of the universe, named
as Big Rip [13]. Other models were postulated and the
family of candidates increased. The price to pay was vio-
lation of one or several energy conditions and hence these
possibilities were not considered in classical theorems of
singularities [14]. Among these we may find:

• Sudden singularities: Finite-time singularities for
which the weak and strong energy conditions hold,
but the pressure of the cosmological fluid blows up
whereas the density remains finite [15]. If the sec-
ond derivative of the scale factor is positive, they
are called Big Boost singularities [16]. Related to
braneworld models for which the embedding of the
brane in the bulk is singular at some point they
have also been named quiescent singularities [17].
However the name quiescent appeared originally in
a different context in [18] related to non-oscillatory
singularities.
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• Generalized sudden singularities: These are finite-
time singularities with finite density and pressure
[19] instead of diverging pressure. Again in the
braneworld context they have also been called qui-
escent [20], though this name had already been as-
signed to sudden singularities.

• Big Brake: These singularities arise originally in
tachyonic models and are characterized by a neg-
ative infinite second derivative of the scale factor
whereas the first derivative vanishes and the scale
factor remains finite [21]. They are consequently a
subcase of sudden singularities.

• Big Freeze: These singularities were detected in
generalised Chaplygin models and are characterised
by a finite scale factor and an infinite density [22].

• Inaccesible singularities: These singularities appear
in cosmological models with toral spatial sections,
due to infinite winding of trajectories around the
tori. For instance, compactifying spatial sections of
the de Sitter model to cubic tori. However, these
singularities cannot be reached by physically well-
defined observers. This fact suggests the name of
inaccesible singularities [23].

• Directional singularities: Curvature scalars vanish
at the singularity but there are causal geodesics
along which the curvature components diverge [24].
That is, the singularity is encountered just for
some observers. In a general framework they were
dubbed p.p curvature singularities (curvature sin-
gularities with respect to a parallelly propagated
basis) in [14].

Most of them are compiled in a classification due to
Nojiri, Odintsov and Tsujikawa (N.O.T. in the following)
in terms of which physical quantities blow up [25]:

• Big Bang / Crunch: Zero a, divergent H , density
and pressure.

• Type I: “Big Rip”: Divergent a, density and pres-
sure.
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• Type II: “Sudden”: Finite a, H , density, divergent
Ḣ and pressure. They enclose Big Brake and most
of quiescent singularities.

• Type III: “Big Freeze” or “Finite Scale Factor sin-
gularities”: finite a, divergent H , density and pres-
sure.

• Type IV: “Generalised sudden”: Finite a, H ,
Ḣ, density, pressure, divergent higher derivatives.
They comprise the subcase of quiescent singulari-
ties with finite pressure.

This classification is refined further in [26] and [27].
Since innaccesible and directional singularities are not

in principle related to divergences in curvature scalars
they would fall out of this scheme.
Some of these cannot be taken as the end of the uni-

verse, since the spacetime can be extended continuosly
beyond the singularity [28–30]. The case of a string sur-
viving a sudden singularity is proven in [31].
In [1] a cosmological model with just a singular

barotropic index at t = ts is described,
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where γ > 0, in order to prevent the model from be-
coming phantom, and n 6= 1. The constant γ = w − 1
is related to the barotropic index w near the Big Bang
at t = 0. We shall use the subindex s throughout the
paper to refer to quantities calculated at the time of the
singularity ts.
The scale factor, a(ts) = as is regular and the den-

sity and the pressure vanish at ts. Furthermore, if n is
natural, the derivatives of the Hubble parameter are reg-
ular either. However, the effective barotropic index w is
infinite at ts.
In this paper we would like to characterize these w-

singularities in FLRW cosmological models.
In the next section we obtain the cases for which the

barotropic index is singular and check which of them have
vanishing fluid density and pressure at the singularity.
Finally, the cases with singularities in higher derivatives
of the scale factor are removed. A final section of con-
clusions is included.

II. SINGULARITIES IN BAROTROPIC INDEX

The total content of a FLRW spacetime is described as
a perfect fluid of density ρ and pressure p. Since both of

them are functions of just the time coordinate, the fluid
has at least locally an equation of state p = p(ρ). The
quotient of both is the barotropic index, w = p/ρ, which
is also a function of time. Focusing on flat cosmologies,

ds2 = −dt2 + a2(t)
{

dr2 + r2
(

dθ2 + sin2 θdφ2
)}

, (2)

the barotropic index is constant just for power-law flat,
w 6= −1, and de Sitter models, w = −1.
From Friedmann equations for the effective pressure

and energy density

H =
ȧ

a
, 3H2 = ρ, ρ̇+ 3H(ρ+ p) = 0, (3)

we get the expression for the barotropic index w,

w = −
1

3
−
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3

aä

ȧ2
, (4)

in terms of the derivatives of the scale factor a(t).
Assuming that the scale factor admits a generalized

power expansion [29, 32] of the form

a(t) = c0(ts − t)η0 + c1(ts − t)η1 + · · · ,

η0 < η1 < · · · , c0 > 0, (5)

around a value ts, with real exponents, we may expand
the barotropic index accordingly:

• If η0 6= 0,
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the result is obviously consistent at t = ts with
a linear barotropic perfect fluid, for which η0 =
2/3(1 + ws) with finite ws. In the limit of large η0
de Sitter-like models would appear.

• If η0 = 0, the expansion becomes more involved,
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since several possibilities arise:
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– If η1 6= 1, the barotropic index diverges as a
power (ts − t)−η1 .

– If η1 = 1, depending on the value of η2,

w ≃ −
1

3
−

2c0c2η2 (η2 − 1)

3c21
(ts − t)η2−2,

we may have a singular barotropic index for
η2 ∈ (1, 2) and a regular one for η2 > 2. The
subcase η2 = 2,

w ≃ −
1

3
−

4c0c2
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+

(

16c0c
2
2

3c31
−

4c2
3c1

)

(ts − t)

−
2c0c3η3
3c21

(ts − t)η3−2,

produces also a regular w around ts.

Models with scale factors admitting no generalized
power series, typically models with a(t) ∼ eb/(ts−t)p ,
p > 0, produce finite barotropic indices of the form

w ∼ −1−
2

3

p+ 1

bp
(ts − t)p,

and are therefore no candidates for producing w-
singularities.
A directional singularity of the type of [24] cannot be

a w-singularity since the former has a finite barotropic
index.
Therefore, the only chances for a diverging barotropic

index arise for η0 = 0, η1 6= 1 or η0 = 0, η1 = 1, η2 < 2,
as consigned in Table I.

η0 η1 η2 ws

6= 0 (η0,∞) (η1,∞) Finite

0 (0, 1) (η1,∞) Infinite

1 (1, 2) Infinite

1 [2,∞) Finite

(1,∞) [η1,∞) Infinite

TABLE I. Singularities in barotropic index

In order to get a w-singularity, besides a diverging
barotropic index, we need vanishing density and pres-
sure,

ρ = 3

(

ȧ

a

)2

, p = −

(

ȧ

a

)2

−
2ä

a
. (6)

We check these conditions for both singular cases:

1. η0 = 0, η1 6= 1: a(t) = c0 + c1(ts − t)η1 + · · · .

ρ =
3c21η

2
1

c20
(ts − t)2(η1−1) + · · · ,

p = −
2c1η1(η1 − 1)

c0
(ts − t)η1−2 + · · · .

The expansions show that density tends to zero for
η1 > 1, whereas a vanishing pressure requires η1 >
2.

We have then both vanishing density and pressure
and divergent barotropic index for η0 = 0, η1 > 2.

2. η0 = 0, η1 = 1, η2 < 2: a(t) = c0 + c1(ts − t) +
c2(ts − t)η2 + · · · .

ρ =
3c21
c20

+
6η2c1c2

c20
(ts − t)η2−1

− 6

(

c1
c0

)3

(ts − t) + · · · ,

p = −
2c2η2(η2 − 1)

c0
(ts − t)η2−2 −

c21
c20

+ · · · .

Since the density is finite and the pressure diverges
in this case, it cannot be a w-singularity, but a
sudden singularity.

For vanishing pressure and density and divergent
barotropic index we are left just with the η0 = 0, η1 > 2
case:
A FLRW cosmological model has a singular barotropic

index w with vanishing pressure and density at a finite

time ts if and only if the generalized power expansion of
the scale factor a(t) is of the form

a(t) = c0 + c1(ts − t)η1 + · · · , (7)

with η1 > 2.
If we allow finite pressure, the condition is relaxed to

η1 > 1.
Finally, since the scale factor does not vanish at ts the

only possibility for a singularity in higher derivatives of
the Hubble factor is that a derivative of the scale factor
(7) blows up. If η1 is non-integer, there will be derivatives
ap)(t) ∼ c1(ts − t)η1−p which blow up for p > η1.
The only way to prevent this is to require that η1 be

natural. But then the reasoning would be the same for
η2 and the subsequent exponents. Hence, the only pos-
sibility to avoid a diverging derivative of the scale factor
is that every exponent ηi be natural. But in this case
the series is no longer a generalised power series, but a
Taylor series. Since η1 > 2, the lowest power would be
at least three:
A FLRW cosmological model has a w-singularity at a

finite time ts if and only if the scale factor a(t) admits
a Taylor series at ts with vanishing linear and quadratic

terms,

a(t) = c0 +

∞
∑

n=3

cn(ts − t)n. (8)

If we allow finite pressure, then just the linear term is to
vanish.
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η0 η1 η2 {ηi} Tipler Królak N.O.T.

(−∞, 0) (η0,∞) (η1,∞) I Strong Strong I

0 (0, 1) (η1,∞) S Weak Strong III

1 (1, 2) S Weak Weak II

[2,∞) S Weak Weak IV

(1, 2) (η1,∞) S Weak Weak II

[2,∞) (η1,∞) S Weak Weak IV

[3,∞)a [η1 + 1,∞) N Weak Weak w

(0,∞) (η0,∞) (η1,∞) I Strong Strong Crunch
a If we include finite pressure w-singularities, then η1 ∈ [2,∞).

TABLE II. Singularities in cosmological models

III. DISCUSSION

Cosmological models with generalized power expan-
sions of the scale factor have been discussed in [29].
The exponents of the power expansion are related to the
appearance of cosmological singularities, which can be
strong or weak.

Weak singularities are not actual singularities in the
sense that the spacetime can be extended continuously
beyond the singularity. Or, put in another way, from the
physical point of view, a finite object is not necessarily
crushed on crossing a weak singularity. The classification
of singularities [29] in terms of the exponents of the scale
factor expansion is recorded in Table II.

The column {ηi} stands for the properties of the expo-
nents of the expansion: I means no additional condition
on them, S means that at least one exponent must be
non-natural in order to have a singularity in one of the
derivatives and N means that every exponent is natural.

The difference between Tipler’s [33] and Królak’s [34]
criterion for the strength of singularities is just that,
whereas the former requires the volume of finites objects
to tend to zero at a strong singularity, the latter just im-
poses the derivative of the volume with respect to proper
time to be negative, which is a milder requirement. Con-
ditions for checking both criteria may be found in [35].
Another criterion is the one in [36].
All cosmological models with w-singularities therefore

belong to the last but one line of the classification and
hence we may conclude that w-singularities are weak sin-
gularities.
Therefore, the diverging barotropic index for w-

singularities, which is not shared necessarily by Type IV
singularities, does not influence the weak character of
both families of singularities.
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