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A quartic, self-interacting potential in the induced gravity framework is known to have a pure
de Sitter attractor for the homogeneous mode. In order to obtain non-zero slow roll parameters
we therefore study the quantum back-reaction of the scalar and the tensor perturbations on such a
homogeneous dynamics and compare the results with inflationary observables. Finally some possible
effects of the quantum back-reaction on the Dark Energy equation of state are also addressed.
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I. INTRODUCTION

The paradigm of inflation connects primordial quan-
tum fluctuations to the inhomogeneities observed in the
large scale structures and in the Cosmic Microwave back-
ground (CMB). Indeed the variation of the cosmologi-
cal background due to the accelerated expansion of the
universe and the resulting non-adiabaticity excites the
vacuum and leads to the production of matter quanta
seeding the primordial inhomogeneities. Similarly grav-
itational waves can be produced in this era. The subse-
quent gravitational collapse of the matter thus created
leads to the observed large scale structures. The ever in-
creasing precision of satellite experiments in measuring
the power spectrum associated with the distributions of
inhomogeneities will lead to the understanding of the mi-
croscopic quantum mechanical mechanism which drives
inflation and leads to the primordial structures. Thus
just as one has a standard model for elementary particle
physics one searches for a “standard model” for inflation
and the distribution of matter in the universe.

Many models for inflation have been proposed (see ﬂ]
for a review) and in such models matter is generally
described by a scalar field (inflaton) coupled to gravity
in diverse ways. Many years ago a simple scalar field
model for the generation of Newton’s constant through
the spontaneous breaking of scale invariance in a curved
space was presented @] and its simple cosmological conse-
quences studied. In particular the model, besides gener-
ating the gravitational constant, also led to the presence
of a cosmological constant. The recent discovery of the
presence of a non-zero but small Hubble parameter led us
to study the model, including both radiation and matter,
in more detail. It was found B] that it led to Einstein
gravity plus a cosmological constant as a stable attractor
among homogeneous cosmologies and was therefore a vi-
able Dark Energy (DE) model for a range of scalar field
initial conditions.

In the above latter study we considered values for the
scalar field which were sufficiently close to spontaneously
broken symmetry equilibrium values and compared the
results with the present values of the cosmological con-
stant and solar system data. In subsequent papers M, B]
we studied in detail the above approach for values of the

parameters sufficiently far from the equilibrium values
(back in time) for sufficient inflation and the subsequent
reheating to take place and examined the compatibility
of the predictions for different symmetry-breaking poten-
tials with the most recent data.

In particular the potentials we examined were associated
with the presence of a condensate (Landau-Ginzburg) or
quantum effects (Coleman-Weinberg). In particular for
the latter case we used an effective potential inspired by
the result obtained in flat space.

The scope of this manuscript is to examine the predic-
tions obtained from the effective Lagrangian which in-
cludes the quantum correction evaluated on a curved (de
Sitter) space time. In Section IT induced gravity (IG) is
briefly reviewed. Section III is dedicated to the scalar cos-
mological perturbations, their regularization and renor-
malization for both the Bunch-Davies and Allen-Folacci
vacuum. In section IV the gravitational results are sim-
ilarly studied. In section V the total back-reaction is
studied and compared to observations and in section VI
conclusions are drawn.

II. IG INFLATION

We consider the IG model ﬂa] described by the action

%
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where o is a scalar field, v and A are dimensionless, pos-
itive definite parameters representing the non-minimal
coupling between the scalar field and gravity and the
scalar field self-coupling respectively. The Einstein-
Hillbert term for gravity is replaced by an effective mass-
like term for the scalar field 0. When the scalar field
energy density dominates it drives the dynamics of the
space-time. Further the expectation value of the scalar
field plays the role of an effective Planck mass. On re-
stricting our analysis to the homogeneous mode of the
scalar field and assuming a spatially flat Robertson-
Walker background

ds? = g datds” = —dt* + a®(t)dz?, (2)
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the variation of the above Lagrangian leads to the follow-
ing set of independent equations
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in terms of the slow-roll (SR) parameters d,, and ¢,, where
H =a/a, 0 = o(t) and the dot is the derivative w.r.t. the
cosmic time ¢t. The SR parameters are defined recursively
for n > 0 by dln|d,|/dN = 6,41, 0o = o/o(t;)) and
dln|e,|/dN = €p41, €0 = H(t;)/H) with n > 0, where
t; is some initial time and N = In ﬁ is the number
of e-folds. The homogeneous dynamics of the above set
of equations has been studied in detail in our previous
papers B, E] and is known to have de Sitter attractors
with

o
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At the homogeneous level, IG with A\o* potential is thus a
viable quintessence model able to reproduce the cosmic
acceleration observed at small redshift. On the other
hand the background dynamics (Bl is unable to repro-
duce correctly the small deviations from scale invariance
observed in the spectrum of perturbations generated dur-
ing inflation.

Our goal in this paper is to evaluate the deviations from
[B) due to the back-reaction on the homogeneous dynam-
ics of the scalar and tensor perturbations produced by
the accelerated expansion. The modification of the SR
parameters may affect the spectrum of scalar and ten-
sor perturbations produced during inflation and will be
compared with observations. Furthermore the quantum
back-reaction may affect the equation of state for the
quintessence field ¢ and the evidence for such a modifi-
cation can be found by a more accurate analysis of the
SN1a gold dataset [d].

Let us end this section by noting that we shall evalu-
ate the quantum corrections in a de Sitter phase, that
is on the attractor of the background dynamics. Strictly
speaking one actually approaches the attractor and the
SR parameters are non-zero. Indeed if we perturb the
homogeneous solution as [2]

oo (t) =00 (1+&(t), a=so(t)+s(t)  (6)
our equations [@BE) can be expanded for |{] < 1 and
|s| < |so| and take the form
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On requiring that so(¢) (pure de Sitter) be the asymptotic
solution and that £(t) be zero for ¢ — co one has
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and
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Thus as a consequence our SR parameter are non-zero
and in particular

a(t) = so(0)e’ +

61 = %&3“ (10)
and
€ = —4%&311”. (11)

The smallness of the SR parameters and of the correc-
tions to pure de Sitter in (6) require ||£(0)| < H. We
see that in the absence of matter (see [3]), even at the
end of inflation (s < sg), we are still not in a pure de
Sitter stage. In the subsequent sections we shall work to
lowest order for the homogeneous part, that is ignore the
deviation from pure de Sitter which we expect to at most
be of the same order of magnitude as the corrections due
to the quantum back-reaction.

III. SCALAR PERTURBATIONS

The dynamics of the scalar perturbations in an expand-
ing Universe has been studied in detail in many papers
m—lﬂ] The scalar perturbations of the metric tensor
contain two unphysical degrees of freedom which can be
eliminated by a suitable gauge transformation (coordi-
nate transformation). Finally the physical perturbations
can be conveniently expressed in terms of gauge invariant
combinations of the remaining degrees of freedom. This
prescription is necessary both for calculating the spectra
of the cosmological perturbations and for studying the
problem of the back-reaction of the perturbations on the
homogeneous dynamics. The calculation of the quantum
back-reaction on curved space is a delicate task. The re-
sults are know to depend on the gauge choice and a uni-
versally accepted prescription does not appear to exists
(see for instance [7, 8] for recent discussions of this prob-
lem). In this paper we do not address the issue of gauge
dependence of the quantum back-reaction and shall per-
form the calculations in a specific gauge.

In particular, in the IG framework, the uniform curvature
gauge (UCG) appears to be a simple choice to eliminate
the unphysical quantities and fix the gauge ﬂl_lL @]

In general, the scalar perturbations of the metric for the
homogeneous and isotropic FRW background (2] can be
written as

ds? = — (14 2a) dt? — x i dt dz' + a®8;j (1 + 2¢) da* da?

(12)
where the spatial gauge has already been fixed and the
fields «(Z,t), x(Z,t), (&, t) are temporal gauge depen-
dent. Furthermore, for our model, one has to con-
sider the inflaton fluctuation do(Z,t) defined as o(Z,t) =



oo(t) + do(Z,t) which is temporal gauge dependent as
well. The UCG counsists in setting ¢ = 0 by using the
temporal gauge freedom. One is then left with 3 fields
for the perturbations, «, x and do, which are coupled at
the linear order through the Einstein equations and the
Klein-Gordon (KG) equation for the inflaton field. In
terms of these functions the full action () can be writ-
ten as the sum of two contributions: the homogeneous
part, Sy, and the scalar perturbations action, Ss;,, which
is quadratic in do, a, x and their derivatives:

S~ ), + S,y (13)

where
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and Sy, has a quite involved structure.
The variation of S w.r.t. the scalar perturbations and the
subsequent use of the homogeneous solution (&) leads to:
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which represents the linear constraints which relate «,
x and 0o and the comma denotes the partial derivative
fi = 0f/0x%, . The variation of S w.r.t. n(t), a(t)
and o¢(t) gives the Einstein equations [BI4) and the KG
equation toghether with the quadratic corrections com-
ing from the scalar perturbations.

On using (IBIIGIIT) it is possible to reduce the scalar
perturbations in S, to a single, gauge invariant, degree
of freedom, éo, = do + %w, which is the inflaton fluc-
tuation do itself in the UCG. The action S, in terms of
do has been calculated for a generic potential in the IG
framework [14] and has the following general form
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The form of the equations for the homogeneous degrees
of freedom with the perturbations is much more involved.
Some simplification occurs when one evaluates them per-
turbatively by using ([B]) in the second order contribu-
tions. The equations one finally obtains contain contribu-
tions up to the fourth order in the space-time derivatives,
and a linear combination of them gives the following
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In order to evaluate the back-reaction of the scalar per- by

turbations on the homogeneous dynamics, do on r.h.s of
Eqgs. (O2I) has to be quantized and evaluated for a
suitable vacuum state [15, [16].

The equation governing the dynamics of the inflaton fluc-
tuation follows from (I8) and, mode by mode, is given



where 65(1_5, t) is the Fourier amplitude defined by
5o(Z,t) = (2m) > [ B3k exp [zlzf} 65 (k,t). Such an
amplitude can be quantized and exprgssed through the
creation-annihilation operators as 05 (k,t) = doy(t) ag +
do(t) dT,;;' When evaluated for a vacuum state |0) (de-

fined as usual by a;|0) = 0) the r.h.s. of Eqs. (2021
can be re-written terms of doy in the following form
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respectively.

The above integrals are divergent in the ultraviolet limit
and must be regularized and renormalized so as to obtain
finite results. In this paper we shall adopt dimensional
regularization and adiabatic subtraction to cure these di-
vergences.

The equation governing the quantum dynamics of the
scalar fluctuation ([22) can be cast into the form of a
massless test field on a quasi-de Sitter background or,
equivalently, of a massive test field on a de Sitter back-
ground with the “mass” being a function of the SR pa-
rameters. In our perturbative approach we shall evaluate
[22) on the zeroth order background solution (&) and the
“effective mass” of the scalar perturbations is then set
to zero. The Allen-Folacci (AF) vacuum choice [1§] is
known to be the correct prescription for the treatment of
the zero mode of a massless scalar field on an exact de
Sitter space. With such a vacuum the expressions (23|24))
are free of infrared divergences.

The Bunch-Davies (BD) vacuum choice [17] for a massive
scalar field leads to different results to the AF prescrip-
tion when the massless limit is taken at the end of the
calculations ] and is not the correct choice when deal-
ing with massless test fields. Let us stress, however, that,
when the effect of the back-reaction is considered, the SR
parameters turn to be non zero and the scalar perturba-
tions do have an “effective mass”. The BD vacuum choice
appears to be therefore the correct choice for quantizing
the scalar dynamics. At the end of the calculations we
shall then set the mass to zero because it is associated
with higher order contributions to (20I2T]).

In the following we perform the calculations for both vac-
uum prescription in order to compare them bearing in
mind that the massless limit of the BD vacuum appears
to be the correct choice. For the BD choice, one intro-
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duces a mass regulator in the action (IJ)
m2
ASse = ==~ / dz a*Z 60* (25)

thus eliminating the infrared singularity and leading to a
modified KG equation which can be simply obtained from
([22) by replacing k*/a* — m?+k?/a®. The introduction
of the mass regulator [28) modifies the constraint (7))
but leaves (IHI6) unchanged. Furthermore it affects the
Friedmann, the acceleration and the KG equations for the
homogeneous degrees of freedom to second order in doy.

Consequently contributions proportional to m? appear
on the r.h.s. of [23)):
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respectively. At the end of the calculations one finally
eliminates the dependence on the regulator by taking the
m — 0 limit.

A. Regularization and Renormalization

The dynamics of scalar perturbations on a FRW back-
ground is given by Eq. [22)). Our approximation scheme
consists on expanding the background dynamics in se-
O 4 oMWy + . and H(t) = HO +

ries as oo(t) = oy
H®(t)+... where U((JO) and H© satisfy the unperturbed



equations (@) and are thus constant, while Uél)(t) and

H®M(t) depend on the perturbations. In this scheme the
slow-roll parameters on the Lh.s. @UZI) are next to
leading order quantities and will be determined by the
perturbations. Let us note that 061)(t) and HM (t) will
also obtain “off-attractor” contributions such as (O[T
which will rapidly decrease and can be safely neglected
for our proposes.

Within this perturbative approach Eq. [22) (with the
mass regulator ([29])) greatly simplifies and becomes

2
6% + 3HGy, + (% - m2> S0k =0 (28)

where a(t) = ag exp HOt.

The perturbations dynamics can be quantized by in-
troducing the conformal time n (dt = a dn) and the
rescaled scalar perturbation ¢;; = /1 +6va 65 (k,t) [19).
In terms of v the action (I§) is canonically normalized
and takes the following form
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where the prime denotes the derivative w.r.t. the confor-
mal time and H = a’/a = aH®). The variation of (23J)
leads to the KG equation
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where we shall take H = H(® = const. In terms of the
creation and anihilation operators the scalar field ¢ can
be expanded as

Vg = o) ag + fima’ (31)
where fi(n) = v/I+ 6yadoy, is normalized so that

fr (F8) = (fe) o =1i. (32)

and satisfies ([B0). The normalization condition deter-
mines just one of the two integration constant in fr. A
second condition is needed in order to fix uniquely the
vacuum state az|0) = 0. The BD vacuum corresponds
to the condition fx(n) — exp [ikn] when kn — —oco and
leads to

fio = Y5 HD (<kn) (33)
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where H,El)(z) is the Hankel function and v = \/% — ’Hn—i

The integrals in (23I24) plus the corrections (2627,
evaluated for the BD vacuum, are divergent in the

ultraviolet and one must choose a renormalization
scheme to obtain finite results. In particular we choose
dimensional regularization and fourth order adiabatic
subtraction [15].

B. BD Results

One then obtains the following renormalized expres-
sions for the BD vacuum choice in the massless limit:
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Let us note that the above results are as expected apart
from the factor 1 + 6 in the denominator which follows
from the normalization of v, [15].

On using the fact that, owing to the perturbative ap-
proach employed, the r.h.s. of ([B4BIBH) are constant
and taking the derivative of the result (34) w.r.t. the
cosmic time ¢ one obtains

1 o [ d|dok]
53 dkk( o - 0. (37)

Further, on also deriving (B6l), one finds that the follow-
ing relations hold for the integrals and for their renor-
malized results as well:
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We note that the results given by (@0, {I)) are the conse-
quence of the fact that the expression (B) is constant.

C. AF Results

A quite different approach is followed in order to renor-
malize the divergent integrals obtained for the AF vac-
uum choice. In such a case the mass regulator is not
necessary and one can eliminate the infrared and ultravi-
olet divergences in (2324]) by subtracting mode by mode
from the singular contributions the corresponding terms
in the adiabatic series before performing the integrals
[15].

In the massless case, the KG equation for the perturba-
tions (28)) has two independent solutions which can be

written as
1 ) )
=—(1-—)e " 42
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and its complex conjugate. Mode by mode subtraction of
the divergent quantities in ([Z3l24]) leads to the following
renormalized expressions
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The relations B8BY) still hold and one finds
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Let us note that (@3)[44) are the usual results for a mass-
less scalar field on a de Sitter background [15].

(39)
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IV. GRAVITATIONAL WAVES

Gravitational waves can be produced during inflation
and their contribution must be accounted for when cal-
culating the quantum back-reaction on the homogeneous
dynamics m] Gravitational waves (i.e. tensor perturba-
tions of the RW metric) are gauge invariant perturbations
described by the traceless, transverse tensor h;; defined
by

ds® = —dt®> + a® (0ij + hij) da* d’ (47)

At the linear order in their amplitude the dynamics of
the tensor perturbations decouples from that of the scalar
perturbations and can be described by the action

Sqw= > /d% a? o} [h2 - —6”ha ihaj — Wh2
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where « describes the two independent degrees of free-
dom in h;; related to the possible polarizations of the
graviton and
aoyg  4Ay+1 O'O

uT—2—+4 +8-—— + +4—+m2 (49)
a a oo vy Uo g0

where m? is the mass regulator added to cure the infrared
singularity for the BD vacuum choice. Let us note that
tensor perturbations (just as the scalar perturbations)
again have an “effective mass” when the SR parameters
are different from zero. For a comparison the quantiza-
tion will again be performed both for the BD and AF
procedures.
The full action (I3) with scalar and tensor contributions
is

S =5n+ Sep + Sgw (50)

and its variation leads to Eqs. (20ZI) plus the tensor
contributions which, on r.h.s.; take the following form
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In terms of the Fourier amplitude h ; defined by

o d*k ik [ 4 - *
ha(.I, t) = / W € k (agha,k + ai];h'a,k) (53)



one finds that (BI]) can be written as
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The equation of motion for the tensor perturbations
modes can be derived from [S) and it is given by
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The standard quantization procedure for the gravita-
tional waves is again performed by introducing the con-
formal time and defining H, , = \/gaooha,k in terms
of which one obtains the canonically normalized action
for the rescaled perturbations:

1
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Such an action has the same form as (29)) for the scalar
modes. The extension of the results obtained for the
scalar perturbation to the tensorial case is then straight-
forward. Since oy is constant at leading order, the
BD and AF vacuum contributions for the tensor case
are those of the scalar case multiplied by the factor
2(1+67)/ (y03) owning to the different normalization
factors in the definitions of ¢;, and H, ; in terms of doy,
and hg ; respectively. We are then led to the following
renormalized expressions for the BD case:
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and to the following results for the AF vacuum
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V. QUANTUM BACK-REACTION OF THE
PERTURBATIONS

The combined back-reaction of the scalar plus tensor
fluctuations determines a deviation from the first order
homogeneous solution (El)ﬂﬂ] Such a deviation can be
expressed in terms of the slow roll parameters §; and
€1 which appear on the Lh.s. of eqs. (20R2I) when
both scalar and tensor contributions are considered. For
€1 < 1, 61 < 1 (both constant) and d2 negligible one can
approximate the Lh.s. of egs. Z02T) by

61(1467) (34201 + 62 —€e1) 361 (1+67)  (64)

and
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Summing up all the contributions on the r.h.s. one finally
obtains results valid to the first order in the slow-roll
approximation. In particular for BD vacuum one finds
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and for the AF vacuum one gets
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Let us note that §; is positive in both cases indicating
that the scalar field slowly increases. On the other hand
€1 is negative for v > vy = (\/@— 11) /192 ~ 0.048
and positive elsewhere for the BD case and is negative
independently of v in the AF case.
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FIG. 1: The trajectories of the vector (ns,r) obtained by vary-
ing \/y* for the BD vacuum (plot above) and the AF vacuum
(plot below) compared with observations. The part of the tra-
jectory between the continuous contour and the dotted contour
is compatible with observations at the 68% confidence level.
The part of the trajectory inside the dotted contour is com-
patible with observations at the 95% confidence level. The
points on the trajectory of the above plot are for \/y* = 2°
and i = 5,6,7,8,9,10,11 (from the right to the left). The
points on the trajectory of the plot below are for \/y* = 2°
and i = —1,0,1,2,3,4 (from the left to the right).

A. IG inflation and observations

As far as inflation in IG is concerned the above SR
parameters can be related to the basic observed features
of the CMB spectrum and the parameters A\ and 7 con-
strained by observations. Value of 7 leading to a negative
€1 are associated with an increasing Hubble parameter H.
Such a behavior for H is somehow unnatural during in-
flation when one generally expects that it decreases with
time increasing. In IG framework ﬂﬂ] one finds that the
spectrum of the comoving curvature perturbation Pz has
an amplitude given by

H2

Pr(f.) = 472 (1 + 6) 6302

(70)

where all the quantities on the r.h.s. should be calculated
when the pivot scale k, exits the horizon and for our
analysis they can be treated as constant. Observational
bounds coming from CMB data [23] constrain (Z0) to be

Pr = (2.445 +0.096) x 107°. (71)

The spectral index ng—1 of the Pr spectrum is implicitly
defined around the pivot scale by

Pr(k) = Pr(k.) (kﬁ) (72)

and, in IG, it can be expressed in terms of the SR pa-
rameters as

ng—1=-2 (61 + 61) (73)

when do = 0. Such a spectral index with the tensor to
scalar ratio

P
M — 166, + € (74)
R

where Pj, is the amplitude of the spectrum of the ten-
sor perturbations and all the quantities in (74 should be
evaluated near k., can be compared with CMB observa-
tions as well.

At the leading order (without back-reaction) a quartic
potential has a pure de Sitter attractor and (70) is singu-
lar. Such a singularity generally appears when inflation
is studied in the limit H = const and ¢ = 0 both in the
Einstein Gravity (EG) and in the IG frameworks. This
regime is often addressed as unphysical because H, being
exactly constant, would imply a never-ending inflation
and in EG is related to the presence of a cosmological
constant which does not produce any curvature pertur-
bation. In the IG framework, however, the H = const
regime is the consequence of the scalar field dynamics and
in this context scalar fluctuations are indeed generated.
The homogeneous dynamics can then be modified by the
quantum corrections and if such corrections become large
enough or when other effects, such as the interaction with
other fields, become important inflation may come to an
end. In our perturbative approach we are not able to de-
scribe these effects beyond the linear order but we may
safely assume that the quantum fluctuations determine
the slow-roll parameters before the accelerated era ends
when they are no longer small.

The singular behavior of P is closely related to the defi-
nition of the gauge invariant variable R when ¢ = 0. This
means that the amplitude of the scalar perturbations gen-
erated during inflation needs a different gauge treatment
to be properly studied in this dynamical regime. Explor-
ing the consequences of a choice of a different variable
for the description of the evolution of the scalar perturba-
tions is not so straightforward and goes beyond the scope
of this paper. We just emphasize that our perturbative
approach is not suitable for calculating the quantum cor-
rections to Pg which is divergent on the attractor (Bl but



is inverse proportional to §; away from it and we restrict
our analysis to ns and r.

On imposing the observational bounds on ng and r one
can determine the values of v and A compatible with

CMB data. Let us note that there exists a linear relation
between ([73]) and (4] of the form

r=8|ns— 1]. (75)

In particular, for the BD vacuum, independently of A,
when 0 < v < 7, one has ny < 1 and (73) can be
re-written as r = 8(1 —n,) and when v > vy one
finds ns > 1 and ([3) becomes r = 8(ns —1). The
latter relation always holds for the AF vacuum choice.
The consistency relation (7)) is plotted in the Figure
(@ and compared with observations. Such a comparison
shows that only the BD vacuum corrections with v < vs
are compatible with the observed spectrum of the CMB
anisotropies.

In particular, when v < 1, one finds

n(Af) — 1~ %;Zw?% (77)

and
r(BD) ~ —%%, (78)
PAP) %% (79)

which simply depend on A/42. Different choices of the
ratio A/v? are then presented in the Figure ().

The BD vacuum turns to be compatible with CMB data
for v < 1 and X such as

2° S M7 521 (80)

For these values of the parameters the condition for in-
flation to occur, ¢; ~ 1075\/4% < 1, is always satisfied
and one also has ¢; > 0 (no super-acceleration). On the
other hand AF vacuum results are not compatible with
(ns, ) observational constraints (see Fig. () below).
The more general case (v < 77) for the BD vacuum
is plotted in Fig. () where we impose the observational
bounds on (ng,r) which appear in Fig. (@) to (\,7).
Such bounds are obtained by calculating the intersection
between the line (7)) in the (ng,r) plane and the 68%
confidence level contour. They can be then expressed
as constraint on ng of the form 0.972 < ng < 0.998 in
the (A, v) plane. Figure () shows the possible choices of
(\,v) compatible with observations compared with the
corresponding value of €;. We find that only values of ¢;
such as 0 < €; < 1072 are compatible with observations.
Moreover the dashed lines in Fig. (@) represent the con-
straints ([80) on A\/7? found analytically for v < 1.
To conclude, deviations from scale invariance compati-
ble with observations can be found for the BD vacuum,
v < vamr and A chosen according to the constraints plotted

in Fig. @).
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FIG. 2: The shaded region represents the observational bounds
on (X, 7) for the BD vacuum. The solid lines are some of the
curves for e1 = const and the dashed lines are the contours
of the region (B0) found for v < 1. These contours deviate
more and more from the boundaries of the shaded region as v
imncreases.

B. Dark Energy

Another possible application of the above results is to
the present DE dominated era. In the IG framework
the scalar field with the quartic potential (1) has been
found to be a viable candidate for DE with an effective
equation of state estimated numerically of the order of
wpr ~ —1 — O(7) B] Such an equation of state is
that of a phantom energy dominated Universe and is a
consequence of the non minimal coupling between the
scalar field and gravity. Phantom energy is responsi-
ble for super-acceleration (¢; < 0) and its very evidence
would indicate that DE is originated by a dynamical field
and it is not simply a cosmological constant. According
to some recent analyses the SNIa data appear to be com-
patible with a super-accelerated expansion which started
at small redshift z < 0.5 ﬂ2Tl|, 22, Iﬁ] apparently driven by
a fluid with an equation of state —1 < wpp < —1.8. The
IG model and more general scalar-tensor theories have
attracted much attention to explain such a possibility.
Considered as a DE candidate, the model () has severe
bounds on « imposed by the solar system observations
(see [26] for details) which constrain v < 5-1077. Val-
ues of 7 compatible with solar system observations lead
to a phantom energy equation of state indistinguishable
from a pure cosmological constant within the precision of
SNIa data. On the other hand the effects of the quantum
corrections are proportional to A/4? and in priciple can
be large for tiny values of . In order to reproduce the
correct values of the cosmological constant A and of New-
ton’s constant Gy one must have Aog ~ 107122Mp* and
yod ~ Mp? respectively where Mp is the Planck mass.
Thus A/7? is O (107'22) and one is led to an effective



equation of state w(Dq)E satisfying

2
|w§§3E +1] = §|61| <1012 (81)

for both (E76J) and is thus indistinguishable from that
of a pure cosmological constant.

The leading deviation from the pure cosmological con-
stant behavior is then given by ([II) where £(0)/H ~
91(0) should be evaluated when the scalar field begins to
dominate over pressure-less matter and t ~ (3H )_1 In3
is the time interval between the beginning of the scalar
field domination and today. The effective equation of
state wpp at the leading order is then determined by

2 16
WpE + 1= gel,today = _57 (82)

where we use the initial condition d;(0) ~ 2v (see [3]).

VI. CONCLUSIONS

The back-reaction of the quantum scalar and tensor
perturbations on the homogeneous dynamics of an IG
model with a quartic, self-interacting potential have been
studied. The calculations were performed perturbatively
by expanding around the de Sitter attractor of the ho-
mogeneous dynamics and the energy-momentum tensor
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of the quantum fluctuations was renormalized through
the dimensional regularization and fourth order adia-
batic subtraction both for the BD and the AF vac-
uum. In the inflationary context we found that the back-
reaction for the BD vacuum choice was able to reproduce
a nearly scale invariant spectrum for the scalar pertur-
bations compatible with observations for suitable choices
of the free parameters of the theory v and A. On the
other hand the AF vacuum was not compatible with the
observed spectrum of the CMB.

As a Dark Energy candidate the inclusion of the back-
reaction effects to IG with a quartic potential leads to a
tiny deviation from a pure de Sitter era (e; < 0) for both
the AF vacuum and for the BD vacuum due to the se-
vere constraints on v and A coming from the solar system
observations and cosmological evolution. Leading order
effects responsible for a super-accelerated era originated
from the classical dynamics of the scalar field when it ap-
proaches the de Sitter attractor. Unfortunately they are
too small to be compared with the present observations.
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