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Abstract

It is shown that in a Minkowski space of total space-time dimension

D = d + 1, the orbits of the planetary motion are stable only if the

total dimension of space-time is D ≤ 4. The proof is performed in a

fully didactic way.

1 INTRODUCTION

Bertrand’s theorem establishes that the only central potentials with stability
are the harmonic oscillator and the Coulomb’s one [2]. It has been related
the closeness of the classical orbits to their symmetries [3]. The existence of
different kinds of factorization operators for the radial Schrödinger equation
corresponding to the Kepler and harmonic oscillator problems has been at-
tributed to the classical stability of these systems according to the Bertrand’s
theorem [4]. Also, a generalization of this result has been developed when
the potential has suitable extra angular momentum [5]. More subtle points
has been studied like the connection between closed orbits and their stable
symmetries for small perturbations [6]. It has been found that when all eight
symmetries are stable the orbits are closed, but not necessarily if only three
symmetries of them are stable, as it happens in the relativistic case where
the perihelion of the orbit advances [6].
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Recently it has been studied the circular orbits stability for the Schwarzs-
child geometry (D = 4) in commutative and noncommutative spaces [7].
Schwarzschild solution in commutative space possesses stable circular orbits
for a radial distance r > 6GM and unstable ones for 3GM < r < 6GM ,
where M is the mass of the attractor center and G is the gravitational con-
stant. The space non-commutativity increases the radius of stable circular
orbits [7]. Gravitational classical instability in higher dimensions (D > 4) has
been explored for various static and non static spacetimes: black holes, brane
worlds, generalized Schwarzschild, AdS black strings, ”bubbles of nothing”
[8] and hyperbolic spaces [9].

The aim of the present paper is to show that the planetary circular orbits
in a Minkowski spacetime of total dimension D = d+1, are stable only when
D ≤ 4. To obtain this result the Bertrand’s theorem plays a central role
which allow us to give an elegant and didactic proof. In section 2, we obtain
the gravitational force in d spacial dimensions due to a particle of mass M .
In section 3, we sketch the Bertrand’s theorem, and it is applied to constraint
the spatial dimensions in order to obtain the stability of circular orbits. In
section 4, we give the concluding remarks.

2 GRAVITATIONAL FORCE IN A

d-DIMENSIONAL SPACE

The magnitude of the attractive gravitational force between two point par-
ticles m and M in the three-dimensional space is given by

~F = −G(3)mM

r2
r̂, (1)

which satisfies the Gauss’ law (setting m = 1) in three dimensions

∫

S2(r)

~F · d~a = −4πG(3)Menc, (2)

where Menc is the enclosed mass by the Gaussian sphere S2 and G(3) ≡ G.
We are interested in generalizing expression (1) to a d-dimensional space.

In order to obtain this, we demand that the gravitational force satisfies the
Gauss’ law (2) for any d value, remaining fixed the value of the right hand
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side. This means that the flux of the gravitational force on any sphere Sd−1(r)
is always equal to the enclosed mass times 4πG(3) [1].

Some remarks about d~a are necessary. If we consider the spheres S1

and S2, their areas are equal to 2πr and 4πr2, respectively. The area
of the sphere S3 is some alike a three-dimensional volume. To higher-
dimensional spaces the area of a sphere Sd−1 of radius r is known as the
volume, a ≡(vol(Sd−1(r))). In what follows we use this terminology to de-
note areas for any d value. Hence, the volumes for S1 and S2 are

vol(S1(r)) = 2πr, (3)

vol(S2(r)) = 4πr2. (4)

Thus, the factor 4π in equation (2) is equal to the volume of the unit sphere
S2. Equations (3) and (4), lead to infer that for a sphere in a d-dimensional
space the equality vol(S(d−1)(r)) = rd−1vol(Sd−1) must hold, being vol(Sd−1)
the volume of the unit sphere. Moreover, the volume differentials (r fixed)
are

d[vol(S1(r))] = rdθ = rd[vol(S1)], (5)

d[vol(S2(r))] = r2 sin(θ)dθdφ = r2d[vol(S2)], (6)

from which we conclude that in general, for a d-dimensional sphere, the
equality

da = d[vol(Sd−1(r))] = rd−1d[vol(Sd−1)] (7)

holds.
In order to the gravitational force flux on the sphere Sd−1(r) be the fixed

constant 4πG(3), according to the result (7), the force between two massive
point particles must depend on 1/rd−1. We propose it has the form

~F = −G(d)mM

rd−1
r̂. (8)

Now we focus our attention on the right hand side of equation (2). The mass
M as an intrinsic matter property must not depend on the space dimension.
Hence, the product 4πG(3) = vol(S2)G(3) must have a fixed value for any d.
Since in higher dimensions the area (volume) of the unit sphere depends on
the space dimension, the gravitational constant must depend on the dimen-
sion too. Hence, vol(Sd−1)G(d) = 4πG(3). Above remarks allows to write the
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generalized Gauss’ law as
∫

Sd−1(r)

~F · d~a = −vol(Sd−1)G(d)Menc. (9)

which is satisfied by the gravitational force

~F = −
4πG(3)

vol(Sd−1)

mM

rd−1
r̂, (10)

for m = 1.
The next step is to find the volume of a unit sphere of dimension d − 1.

We proceed as in [10] and calculate the integral

Id =
∫

∞

−∞

∫

∞

−∞

· · ·
∫

∞

−∞

dx1dx2 · · · dxde
−r2 =

∫

Rd
e−r2dv (11)

in all space in two ways.
First, since r2 = x2

1 + x2
2 + ...+ x2

d, the integrand of (11) is separable and
it reduces to a product of one-dimensional integrals. Thus,

Id =
d
∏

i=1

∫

∞

−∞

dxie
−x2

i (12)

However, each integral of the product is well known from the probability
theory, it is

∫

∞

−∞
dxie

−x2

i = π
1

2 . Therefore, Id = π
d
2 .

Second, the value of Id is obtained by considering the space Rd as divided
by thin spherical shells. At fixed r the space is the sphere Sd−1(r) and the
volume of the space between r and r + dr is dv =vol(Sd−1(r))dr. This fact
allows to write equation (11) as

Id =
∫

∞

0
vol(Sd−1(r))e−r2dr (13)

= vol(Sd−1)
∫

∞

0
rd−1e−r2dr (14)

=
1

2
vol(Sd−1)

∫

∞

0
t
d
2
−1e−tdt, (15)

where we have used the relation vol(S(d−1)(r)) = rd−1vol(Sd−1) and per-
formed the variable change t = r2. The last integral is identified with the in-
tegral representation of the gamma function defined by Γ(x) ≡

∫

∞

0 tx−1e−tdt,
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with x > 0. With this result we obtain that Id = 1
2
vol(Sd−1)Γ(d

2
). Thus by

equating our two results for Id, we obtain

vol(Sd−1) =
2π

d
2

Γ(d
2
)
. (16)

Results (10) and (16) complete our purpose to find the gravitational force
between two point particles in a d-dimensional space.

Bertrand’s theorem ensures that the circular planetary orbits around the
sun in our four-dimensional space-time are stable under small perturbations
[2], and relates its stability to the values of the power in potentials with the
form V = rν . We notice that the force (10) due to one particle of mass M
on a particle of mass m is proportional to 1/rd−1. This fact will allow us
to apply Bertrand’s theorem to find the values of the spatial dimension d in
order to have stable planetary orbits in higher dimensions.

3 THE BERTRAND’S THEOREM AND

STABILITY OF THE CIRCULARORBITS

IN A d-DIMENSIONAL SPACE

We begin by reviewing the Bertrand’s theorem proof. Since the total angular
momentum is conserved, this allows us to set an inertial frame in the mass
center of the system. Also, since the force is central, the angular momentum
is conserved and restrain the orbit to be plane. Hence, the motion of the
two particles is reduced to that of a single one with reduced mass µ = mM

m+M

under the potential V (r), being r the distance between particles. It is usual
to set the z-axis in the angular momentum direction, orthogonal to the orbit
plane. Also, since V (r) does not depend on time t, the total energy E is
conserved.

Since the lagrangian of the system is

L = T − V =
1

2
µ(ṙ2 + r2θ̇2)− V (r) (17)

and does not depend on the variable θ, the angular momentum ℓ = µr2θ̇ is
conserved. The total energy of the system is

E =
1

2
µ(ṙ2 + r2θ̇2) + V (r) (18)
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=
1

2
µṙ2 +

1

2

ℓ2

µr2
+ V (r) (19)

≡
1

2
µṙ2 + Vef , (20)

from which is obvious the definition of the effective potential Vef(r). For the
case in our study, the reduced mass is µ = mM

m+M
≈ m. Thus, it follows that

∂Vef

∂r
=

∂V (r)

∂r
−

ℓ2

mr3
, (21)

or

Fef = F +
ℓ2

mr3
, (22)

where F ≡ −∂V
∂r
.

The condition to have circular orbits is imposed by ṙ = 0, and they are
stable only when the potential has an effective minimum at a distance r = r0.
This fact implies that for circular orbits, Fef = −

∂Vef

∂r

∣

∣

∣

r=r0
must be equal to

zero (whenever the case, a maximum or a minimum). Thus, equation (22)
reduces to

F = −
ℓ2

mr30
. (23)

By demanding that the effective potential Vef(r) get a minimum at r = r0,
from equation (21) it must satisfy

∂2Vef

∂r2

∣

∣

∣

∣

∣

r=r0

=
∂2V

∂r2

∣

∣

∣

∣

∣

r=r0

+ 3
ℓ2

mr04
> 0 (24)

this implies

−
∂F

∂r

∣

∣

∣

∣

∣

r=r0

> −3
ℓ2

mr04
=

3

r0
F (r)|r=r0, (25)

or
∂F

∂r

∣

∣

∣

∣

∣

r=r0

< −
3

r0
F (r0). (26)

This inequality must be satisfied in order to have stable circular orbits at
r = r0.
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From equation (10) and (16), the force between two particles in a d-
dimensional space is given by

F = −
4πG(3)

vol(Sd−1)

mM

rd−1
= −

2Γ(d
2
)G(3)

π
d
2
−1

mM

rd−1
. (27)

Hence,

dF

dr
=

2Γ(d
2
)

π
d
2
−1

G(3)Mm(d − 1)r−d. (28)

By substituting equations (27) and (28) evaluated at r = r0 into equation
(26), we obtain

d− 1

rd0
<

3

rd0
, (29)

or d < 4. This means that the maximum value of the spatial dimension d is
3, and it is the upper bound we were looking for.

4 CONCLUDING REMARKS

We have shown that the spatial dimension must satisfy d < 4 to have stable
circular orbits. This means that for the planetary motion in a space-time
of five dimensions or higher, the circular orbits become instable. This result
could be derived because the gravitational force in d dimensions possesses
the same mathematical form as those for the central potentials studied by
Bertrand. Although the problem we have treated in this paper is a texbook
one [10], as we have shown above, its solution is non-trivial. Moreover, as
was emphasized in the introduction, the concept of stability is studied in
many current research areas of physics. Being this paper a comprehensive
and fully detailed work, it can be a helpful pledge for the students to make
a glance for advanced topics.
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